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Abstract

Analysis of cosmic microwave background radiation fluctuations favors an effective number of neutri-
nos, Nν > 3. This motivates a reinvestigation of the neutrino freeze-out process. Here we characterize the 
dependence of Nν on the Standard Model (SM) parameters that govern neutrino freeze-out. We show that 
Nν depends on a combination η of several natural constants characterizing the relative strength of weak 
interaction processes in the early Universe and on the Weinberg angle sin2 θW . We determine numerically 
the dependence Nν(η, sin2 θW ) and discuss these results. The extensive numerical computations are made 
possible by two novel numerical procedures: a spectral method Boltzmann equation solver adapted to allow 
for strong reheating and emergent chemical non-equilibrium, and a method to evaluate Boltzmann equation 
collision integrals that generates a smooth integrand.
© 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/3.0/). Funded by SCOAP3.

1. Introduction

The relic neutrino background is believed to be a well preserved probe of a Universe only 
a second old. The properties of the neutrino background are influenced by the details of the 
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freeze-out or decoupling process at a temperature T =O(1 MeV), which is in turn controlled by 
the standard model (SM) of particle physics parameters. In this paper, we study the influence of 
SM parameters on the neutrino distribution after freeze-out. This exercise is of interest because:

• There is a tension between the known number of neutrinos (three flavors) and the effective 
number of neutrinos Nν � 3.5 deduced from the study of the cosmic microwave background 
(CMB). Detailed analysis of the CMB by the Planck satellite collaboration (Planck) [1] tests 
both gravitational and SM interactions in the early Universe. So far very little effort has 
been devoted to the understanding how these results characterize SM properties in the early 
Universe.

• The topic of time variation of natural constants is a very active field with a long history [2]. 
Consideration of neutrino freeze-out dependence on natural constants provides new insights 
on the time and/or temperature variation of several SM parameters considered at an early 
era, t ≈ 1 s, in the Universe’s evolution.

The presence of relativistic particles, such as neutrinos, strongly impacts the dynamics of the 
expansion of the Universe, constrained by direct measurement and analysis of cosmic microwave 
background (CMB) temperature fluctuations [1]. The effect is described by Nν which quantifies 
the amount of radiation energy density, ρr , in the Universe prior to photon freeze-out and after 
e± annihilation and is defined by

ρr = (1 + (7/8)R4
νNν

)
ργ , (1)

where ργ is the photon energy density. The factor 7/8 is the ratio of Fermi to Bose normalization 
in ρ and the neutrino to photon temperature ratio Rν is the result of the transfer of e+e− entropy 
into photons after Standard Model (SM) left handed neutrino freeze-out:

Rν ≡ Tν/Tγ , R0
ν = (4/11)1/3. (2)

This well known value R0
ν arises in the limit where no entropy from the annihilating e± pairs is 

transferred to neutrinos, i.e. all entropy feeds and reheats the photon background.
We expect to measure a value Nν = 3, i.e. the number of SM left handed neutrino flavors only 

if:

1. Photons and SM neutrinos are the only effectively massless particle species in the Universe 
between the freeze-out of the left handed neutrinos at Tγ =O(1 MeV) and photon freeze-out 
at Tγ = 0.25 eV, and

2. No flow of entropy from e± annihilation to neutrinos occurs. The current status is that com-
putation of the neutrino freeze-out process employing SM two body scattering interactions 
and carried out using the Boltzmann equation gives N th

ν = 3.046 [3], a value close to the 
number of flavors.

The value of Nν can be measured by fitting to observational data, such as the distribution of 
CMB temperature fluctuations. The Planck [1] analysis gives Nν = 3.36 ± 0.34 (CMB only), 
Nν = 3.30 ± 0.27 (CMB + BAO), and Nν = 3.62 ± 0.25 (CMB + H0) (68% confidence levels). 
Combinations of Planck results with other priors are also reported by the Planck Collaboration
with most resulting in central values Nν ∈ (3.3, 3.6). With more dedicated CMB experiments on 
the drawing board it is believed that a significantly more precise value of Nν is forthcoming in 
the next decade.
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The tension between the values inferred from observation and the SM prediction has inspired 
various theories, including the consideration of: modified neutrino interactions [4]; a model in 
which the temperature of decoupling was a model parameter [5]; a model of a new spontaneously 
broken symmetry associated with massless Goldstone bosons that freeze out prior to the disap-
pearance of muons [6], and a similar consideration motivated by recognition that the quark–gluon 
plasma phase transition potentially offers the required physics context [7].

In this paper we explore the dependence of Nν on the value of natural constants within realm 
of known interactions. We show that Nν depends only on the magnitude of the Weinberg angle 
in the form sin2 θW , and a dimensionless relative interaction strength parameter η,

η ≡ Mpm3
eG

2
F , M2

p ≡ 1

8πGN

, (3)

a combination of the electron mass me, Newton constant GN , and the Fermi constant GF . The 
magnitude of sin2 θW is not fixed within the SM and could be subject to variation as function of 
time or temperature. We find that sin2 θW which differs substantially from the value measured 
today in vacuum is capable of significantly altering the value of Nν that is generated during 
neutrino freeze-out. We further show the combined effect of modified η and sin2 θW and argue 
that this can remove or at least reduce the tension of Nν with the Planck data.

In Section 2 we introduce the two body scattering description of neutrino freeze-out. In partic-
ular we discuss the Boltzmann equation, which is used to model the neutrino freeze-out process, 
and present the matrix elements that control neutrino freeze-out in Subsection 2.1. We then dis-
cuss in Subsections 2.2 and 2.3 the dependence of the Boltzmann equation on SM parameters, 
the Weinberg angle sin2 θW , and the interaction strength parameter η respectively. In Section 3
we introduce the technical methods we use to solve the Boltzmann equation. In Subsection 3.1
we outline our solution method for the Boltzmann equation. In Subsection 3.2 we detail a new 
method for analytically simplifying the collision integrals in order to reduce the numerical inte-
gration costs. In Subsection 3.4 we compare with the results by previous authors, highlighting 
the improvements we have made.

In Section 4 we show the impact of SM parameter values on neutrino freeze-out and the ef-
fective number of neutrinos. In particular, we show how the impact of the strength parameter η
and sin2 θW on Nν . We discuss the implications and connections of this work to other areas of 
physics, namely Big Bang nucleosynthesis and dark radiation, in Section 5. We give our conclud-
ing analysis in Section 6. Appendix A contains some mathematical background that is useful for 
the collision integral calculations of Subsection 3.2 and in Appendix B we apply the method to 
the processes involved in neutrino freeze-out. Finally, Appendix C contains additional plots and 
numerical fits that show the impact of SM parameters on various quantities characterizing the 
neutrino distributions after freeze-out.

2. Dynamical description of neutrino freeze-out

2.1. Einstein–Boltzmann equation

To model the flow of energy and entropy into the relic neutrino distribution, and hence obtain 
the value of Nν after freeze-out, we must solve the general relativistic Einstein–Boltzmann equa-
tion. Several references discuss this generalization of the Boltzmann equation in detail [8–13]
and other works specialize this to the question of neutrino freeze-out [14–18,3]. Here we provide 
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a quick overview of this literature. In the context of general relativity the Boltzmann equation is 
given by

pα∂xαf − Γ j
μνp

μpν∂pj f = C[f ]. (4)

Γ
j
μν are the Christoffel symbols and so the left hand side expresses the fact that particles undergo 

geodesic motion in between point collisions.
The term C[f ] on the right hand side of the Boltzmann equation is called the collision operator 

and models the short range scattering processes that cause deviations from geodesic motion. For 
2 ↔ 2 reactions between fermions, such as neutrinos and e±, the collision operator takes the 
form

C[f1] = 1

2

∫
F(p1,p2,p3,p4)S|M|2(2π)4δ(�p)

4∏
i=2

δ0
(
p2

i − m2
i

) d4pi

(2π)3
,

F = f3(p3)f4(p4)f
1(p1)f

2(p2) − f1(p1)f2(p2)f
3(p3)f

4(p4),

f i = 1 − fi. (5)

Here |M|2 is the process amplitude or matrix element, S is a numerical factor that incorporates 
symmetries and prevents over-counting, f i are the Fermi blocking factors, δ(�p) enforces four-
momentum conservation in the reactions, and the δ0(p

2
i − m2

i ) restrict the four momenta to the 
future timelike mass shells.

We now restrict our attention to systems of fermions under the assumption of homogeneity 
and isotropy. We assume that the particles are effectively massless, i.e. the temperature is much 
greater than the mass scale. Homogeneity and isotropy imply that the distribution function of 
each particle species under consideration has the form f = f (t, p) where p is the magnitude of 
the spacial component of the four momentum. In a spatially flat FRW universe the Boltzmann 
equation reduces to

∂tf − pH∂pf = 1

E
C[f ], H ≡ ȧ

a
. (6)

This, combined with the Einstein equations and the matrix elements for the relevant processes, 
constitutes the dynamical equations governing neutrino freeze-out.

We also obtain formulas for the rate of change in the number density and energy density of 
the ith species

1

a3

d

dt

(
a3ni

)= gp

(2π)3

∫
C[fi]d

3p

E
. (7)

1

a4

d

dt

(
a4ρi

)= gp

(2π)3

∫
C[fi]d3p. (8)

For free-streaming particles the vanishing of the collision operator implies conservation of ‘co-
moving’ particle number of the ith species. From the associated powers of a in Eq. (7) and Eq. (8)
we see that the energy of a free streaming particle scales as 1/a. This means that the distribution 
of a free streaming massive particle species will, once the mass scale becomes relevant, evolve 
into non-thermal shape [5,19].

The matrix elements for weak force scattering processes involving neutrinos and e± are given 
in Tables 1 and 2. They were obtained from Ref. [15] and are valid in the limit |p| � MW, MZ , 
where in vacuum the gauge boson masses are MW = 80.4 GeV, MZ = 91.19 GeV.
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Table 1
Matrix elements [15] for electron–neutrino processes where particle j = μ, τ , gL = 1

2 + sin2 θW , gR = sin2 θW .

Process S|M|2
νe + ν̄e → νe + ν̄e 128G2

F
(p1 · p4)(p2 · p3)

νe + νe → νe + νe 64G2
F

(p1 · p2)(p3 · p4)

νe + ν̄e → νj + ν̄j 32G2
F

(p1 · p4)(p2 · p3)

νe + ν̄j → νe + ν̄j 32G2
F

(p1 · p4)(p2 · p3)

νe + νj → νe + νj 32G2
F

(p1 · p2)(p3 · p4)

νe + ν̄e → e+ + e− 128G2
F

[g2
L
(p1 · p4)(p2 · p3) + g2

R
(p1 · p3)(p2 · p4) + gLgRm2

e(p1 · p2)]
νe + e− → νe + e− 128G2

F
[g2

L
(p1 · p2)(p3 · p4) + g2

R
(p1 · p4)(p2 · p3) − gLgRm2

e(p1 · p3)]
νe + e+ → νe + e+ 128G2

F
[g2

R
(p1 · p2)(p3 · p4) + g2

L
(p1 · p4)(p2 · p3) − gLgRm2

e(p1 · p3)]

Table 2
Matrix elements [15] for μ and τ neutrino processes where i = μ, τ , j = e, μ, τ , j 
= i, g̃L = gL − 1 = − 1

2 + sin2 θW , 
gR = sin2 θW .

Process S|M|2
νi + ν̄i → νi + ν̄i 128G2

F
(p1 · p4)(p2 · p3)

νi + νi → νi + νi 64G2
F

(p1 · p2)(p3 · p4)

νi + ν̄i → νj + ν̄j 32G2
F

(p1 · p4)(p2 · p3)

νi + ν̄j → νi + ν̄j 32G2
F

(p1 · p4)(p2 · p3)

νi + νj → νi + νj 32G2
F

(p1 · p2)(p3 · p4)

νi + ν̄i → e+ + e− 128G2
F

[g̃2
L
(p1 · p4)(p2 · p3) + g2

R
(p1 · p3)(p2 · p4) + g̃LgRm2

e(p1 · p2)]
νi + e− → νi + e− 128G2

F
[g̃2

L
(p1 · p2)(p3 · p4) + g2

R
(p1 · p4)(p2 · p3) − g̃LgRm2

e(p1 · p3)]
νi + e+ → νi + e+ 128G2

F
[g2

R
(p1 · p2)(p3 · p4) + g̃2

L
(p1 · p4)(p2 · p3) − g̃LgRm2

e(p1 · p3)]

2.2. Weinberg angle

The SU(2) ×U(1) gauge coupling constants g, g′ are constrained by the two physical param-
eters, the Weinberg angle θW and the electric charge e

sin θW = g′√
g2 + g′ 2

, e = gg′√
g2 + g′ 2

. (9)

An alternative way to write these constraints is

g sin θW = e, g′ cos θW = e,
1

e2
= 1

g2
+ 1

g′ 2
. (10)

θW enters the matrix elements presented in Tables 1 and 2 by way of

gL = 1

2
+ sin2 θW , gR = sin2 θW , g̃L = gL − 1 = −1

2
+ sin2 θW . (11)

The Fermi constant GF fixes the vacuum expectation value of the Higgs field

v ≡ 2−1/4G
−1/2
F = 246.22 GeV. (12)

The mass of the W and Z gauge bosons can be written in terms of v
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Fig. 1. Dependence of W and Z boson masses on Weinberg angle, using ve/2 = 38.4 GeV at the Z-scale. The vertical 
line refers to the SM vacuum case.

MW = v

2
g = ve

2 sin θW

, MZ = v

2

√
g2 + g′ 2 = ve

2 sin θW cos θW

. (13)

We show the dependence of MW and MZ on Weinberg angle in Fig. 1, using ve/2 = 38.4 GeV
at the Z-scale.

Fixing v and e, MW is minimized when sin θW = 1. Thus we find a factor of 1/2 as a maximal 
possible reduction in MW , also seen in Fig. 1. This implies that MZ > MW � |p| for neutrino 
momentum p in the energy range of neutrino freeze-out, around 1 MeV, even as we vary sinθW . 
Even if v is allowed to vary, for this approximation to cease to be valid it would have to be 
reduced by a factor of 105, in our view an extreme amount. Therefore we can carry out the 
computation of neutrino decoupling within the effective Fermi theory of weak interactions.

The ratio MW/MZ = cos θW = 0.8815 implies sin2 θW = 0.223. Considering that there is a 
rapid change with scale the actual values are sin2 θW |MZ

= 0.23116 ±0.00012 and sin2 θW |MW
=

0.22296 ± 0.00028. We will present our results as a function of sin2 θW which we consider to 
be an unknown parameter in the hot Universe aged about one second. The other SM parameter 
of the electro-weak theory is the electric charge e. A variation in e is also possible, for example, 
due to time evolution of the grand unified scale [20].

The symmetry breaking parameter sin2 θW is at present a measured but theoretically uncon-
strained SM parameter. However, should a grand unified approach in which the strong interac-
tions are merged into the electroweak interactions be discovered, then presumably sin2 θW could 
become fixed by the particular group structure. Such models are strongly constrained by proton 
decay limits [21], hence a fundamental constraint on sin2 θW is not (yet) in sight.

2.3. Interaction strength parameter η

In order to isolate the combination of natural constants which controls the neutrino freeze-out 
process, we cast the Einstein–Boltzmann model of neutrino freeze-out into dimensionless form. 
In the first step we look at the expansion of the Universe, i.e. the Hubble parameter H . The 
Einstein equations contain the Hubble equation

(MpH)2 = ρ
, Mp = 2.4354 1018 GeV, (14)
3
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where ρ = T 0
0 is the total gravitating energy density of the Universe and, as is usual in the context 

of general relativity, the Planck mass Mp incorporates the factor 8π in the definition, Eq. (3).
The divergence freedom of the Einstein equations requires divergence freedom of the stress 

energy tensor T μν , a condition which reads for a homogeneous Universe

ρ̇

ρ + P
= −3H. (15)

Combining Eq. (14) with Eq. (15) shows that time change occurs at scale τ ∝ Mp/
√

ρ. In the 
domain of interest the energy density ρ is characterized by the electron mass ρ ∝ m4

e . The 
scale me is related both to the key energy component of the Universe at the time of neutrino 
freeze-out and the ambient temperature. We thus recognize the time scale to be characterized 
by τ ≡ Mp/m2

e = 6.12 s; the actual time scale is close to 1 s considering the presence of many 
degrees of freedom.

Using the timescale τ , and scaling all momenta, energies, energy densities, pressures, and 
temperatures by the appropriate power of me we can combine all scale dependent parameters in 
the Einstein–Boltzmann equation. We thus find

∂tf − pH∂pf = η
C[f ]

E
, (16)

where in the interaction strength η, Eq. (3), we include the G2
F factor common to all of the 

neutrino interaction matrix elements.
Aside from the θW dependence of the matrix elements seen in Tables 1 and 2, the complete 

dependence on natural constants is now contained in a single dimensionless interaction strength 
parameter η with the vacuum present day value,

η0 ≡ Mpm3
eG

2
F

∣∣
0 = 0.04421. (17)

If the dominant component of the electron mass originates in the Higgs mechanism, we find 
somewhat different scaling η ∝ g3

YeMp/v, where Yukawa electron coupling is introduced 
gYe � v/me .

The discussion we presented is only focused on the normalization by natural constants of 
the collision term. The magnitude of the scattering integrals also depends on the magnitude 
of the scaled temperature T/me. In particular, in the limit T/me < 1 the scattering integrals 
involving e± neutrino scattering are suppressed exponentially by a factor e−me/T or e−2me/T

due to the diminished presence of e± pairs. However, our objective in writing Eq. (16) was not 
to isolate the leading order behavior, but rather to separate out all dependence on dimensioned 
natural constants and isolated them in the interaction strength parameter η. This means that, 
as a dynamical system, the solutions of the dimensionless form Eq. (16) depends only on the 
parameters η and sin2 θW , and hence all quantities computed from solutions of the Boltzmann 
equation that are dimensionless, such as Nν , can also only depend on η and sin2 θW . Of course 
dimensioned quantities, for example the magnitude of freeze-out temperatures, still have to be 
scaled appropriately, i.e. energies must be multiplied by me and times must be multiplied by 
the timescale τ , and so dimensioned quantities will show an additional dependence on natural 
constants.

Our argument that there are only two dimensionless variables of interest, η, sin2 θW , re-
lies on the fact that there is only one particle scale parameter that enters the energy density 
and collision integrals, namely me . This is so since for T ∈ (0.1, 3) MeV, muons are too 
heavy, mμ = 105.66 MeV, the baryon energy density controlled by MB − μB is too small, and 
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all other energy components in Universe are completely negligible. Thus though in principle 
Nν = Nν(η, sin2 θW , me/mμ, me/(MB − μB)), we can safely ignore all additional dimension-
less quantities. Furthermore, given our hypothesis that a modification of SM parameters in the 
early Universe could contribute to Nν , there is also a contribution to the Universe dynamics from 
the rate of change of these parameters. We assume that any such rate of change is small enough 
to be insignificant and will not discuss it further.

The dependence of Nν(η, sin2 θW ) will be the key result of this work and is presented be-
low in Section 4. Qualitatively, it is apparent that an increase in Nν requires increased coupling 
strength η. The dependence on sin2 θW is much less obvious in view of the gauge boson mass 
MW , MZ variation, see Fig. 1. The key question we aim to resolve in this work is how sensitive 
is Nν to a change in η and sin2 θW .

3. Solving the relativistic Boltzmann equation

3.1. Emerging chemical non-equilibrium method

We solve the Boltzmann equation (6) by the spectral method detailed in [22]. We give only a 
brief outline of the method here. Our approach is adapted to systems near kinetic equilibrium (i.e. 
equilibrium momentum distribution) but not necessarily chemical equilibrium (i.e. allowing for 
non-equilibrium particle number yield), allowing for potentially large reheating. In other words, 
the method performs best when the distribution is of the form

f (t,p) = fΥ (t,p)
(
1 + φ(t,p)

)
, fΥ (t,p) = 1

Υ −1ep/T + 1
(18)

where φ is small and T and Υ are the dynamical effective temperature and fugacity (i.e. phase 
space occupation parameter) respectively. Since we adapt both T and Υ as function of time, we 
employ a moving (in Hilbert space) frame, in which the orthogonal polynomial basis dynamically 
evolves to suit the problem.

Our approach should be contrasted with the method used in [17,18], which we call the chem-
ical equilibrium method, that studied neutrino freeze-out using a fixed orthogonal polynomial 
basis generated by the chemical equilibrium weight

fc = 1

ey + 1
, y = a(t)p. (19)

We note in the above that the temperature scaling is also assumed, that is T a(t) = Const. In our 
approach we allow for reheating of the effective temperature to occur and thus also T , like Υ , 
evolves in time independently.

The deviation from chemical equilibrium is characterized in fΥ by the fugacity Υ . A non-
equilibrium Υ 
= 1 builds up during neutrino freeze-out, specifically in the temperature range 
where the process e+e− → νν̄ is too slow to equilibrate particle number but e±ν → e±ν scatter-
ing is still able to equilibrate momentum. The introduction of chemical non-equilibrium through 
Υ 
= 1 contrasts with the chemical equilibrium method described above.

The chemical equilibrium method is appropriate for the physical regime studied in [17,18], 
wherein neutrinos are almost entirely decoupled by the time of e± annihilation and therefore 
there is little time for reheating of neutrinos or the development of chemical non-equilibrium. 
However, for our purposes, namely the characterization of Nν(η, sin2 θW ), we must use a method 
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that does not rely on small coupling for its effectiveness, hence we were motivated to develop 
the method described here. A comparison with the results of the chemical equilibrium method is 
found in Section 3.4. We refer to Ref. [22] for further discussion and detailed validation of the 
method we present.

After changing variables z = p/T , we will solve Eq. (6) by expanding φ in the basis of 
orthonormal polynomials, ψ̂i(z), generated by the parametrized weight function

w(z) ≡ wΥ (z) ≡ z2

Υ −1ez + 1
(20)

on the interval [0, ∞)

φ(t, z) =
∞∑
i=0

bi(t)ψ̂i(z). (21)

By convention, they are indexed so that ψ̂j has degree j . This choice of the weight is physi-
cally motivated by the phase space of practically massless neutrinos emerging into a chemical 
non-equilibrium distribution.

The Boltzmann equation then results in an equation for the mode coefficients [22]

ḃk =
(

H + Ṫ

T

)∑
i

Ak
i (Υ )bi − Υ̇

Υ

∑
i

Bk
i (Υ )bi +

〈
1

fΥ E
C[f ], ψ̂k

〉
(22)

where the matrices A and B are

Ak
i (Υ ) ≡

〈
z

fk

ψ̂i∂zfk, ψ̂k

〉
+ 〈z∂zψ̂i, ψ̂k〉 =

〈 −z

1 + Υ e−z
ψ̂i , ψ̂k

〉
+ 〈z∂zψ̂i, ψ̂k〉, (23)

Bk
i (Υ ) ≡ Υ

(〈
1

fk

∂fk

∂Υ
ψ̂i, ψ̂k

〉
+
〈
∂ψ̂i

∂Υ
, ψ̂k

〉)
=
〈

1

1 + Υ e−z
ψ̂i , ψ̂k

〉
+ Υ

〈
∂ψ̂i

∂Υ
, ψ̂k

〉
. (24)

For details on how to construct the inner products 〈 ∂ψ̂i

∂Υ
, ψ̂k〉 we refer to Appendix A

of Ref. [22].
The dynamics of the effective temperature and fugacity are fixed by the requirement that fΥ

captures the number density and energy density of the full distribution f , leaving φ to describe 
only the non-thermal distortions. In practice, this implies that b0(t) = b1(t) = 0 and a minimum 
of only two degrees of freedom (or modes), T and Υ , are required for our method. See Ref. [22]
for details on the resulting evolution equations for T (t) and Υ (t). In contrast, we note that the 
minimum number modes required for the chemical equilibrium method is four.

3.2. Collision integral inner products

In order to solve for the mode coefficients, the inner products of collision integrals with respect 
to the weight function (20),

Rk ≡
〈

1

fΥ E1
C[f1], ψ̂k

〉
, (25)

must be computed.
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Rk =
∞∫

0

ψ̂k(z1)C[f1](z1)
z2

1

E1
dz1 (26)

= 1

2

∫
ψ̂k(z1)

∫ [
f3(p3)f4

(
p4)f 1(p1)f

2(p2) − f1(p1)f2(p2)f
3(p3)f

4(p4)]

× S|M|2(s, t)(2π)4δ(�p)

4∏
i=2

d3pi

2(2π)3Ei

z2
1

E1
dz1 (27)

= 2(2π)3

8π
T −3

1

∫
Gk(p1,p2,p3,p4)S|M|2(s, t)(2π)4δ(�p)

4∏
i=1

d3pi

2(2π)3Ei

(28)

= 2π2T −3
1

∫
Gk(p1,p2,p3,p4)S|M|2(s, t)(2π)4δ(�p)

4∏
i=1

δ0
(
p2

i − m2
i

) d4pi

(2π)3
(29)

Gk = ψ̂k(z1)
[
f3(p3)f4(p4)f

1(p1)f
2(p2) − f1(p1)f2(p2)f

3(p3)f
4(p4)

]
,

f i = 1 − fi. (30)

The matrix element for a 2 − 2 reaction can be written as a function of the Mandelstam variables 
s, t, u, of which only two are independent, defined by

s = (p1 + p2)
2 = (p3 + p4)

2, (31)

t = (p3 − p1)
2 = (p2 − p4)

2, (32)

u = (p3 − p2)
2 = (p1 − p4)

2, (33)

s + t + u =
∑

i

m2
i , (34)

and we will consider this done for the analysis that follows.
Note that Rk only uses information about the distributions at a single spacetime point, and so 

we can work in a local orthonormal basis for the momentum. Among other things, this implies 
that p2 = pαpβηαβ where η is the Minkowski metric

ηαβ = diag(1,−1,−1,−1). (35)

From Eq. (26), we see that a crucial prerequisite of our spectral method is the capability to 
evaluate integrals of the type

M ≡
∫

G(p1,p2,p3,p4)S|M|2(s, t)(2π)4δ(�p)

4∏
i=1

δ0
(
p2

i − m2
i

) d4pi

(2π)3
, (36)

G(p1,p2,p3,p4) = g1(p1)g2(p2)g3(p3)g4(p4) (37)

for some functions gi . Even after eliminating the delta functions in Eq. (36), we are still left 
with an 8-dimensional integral. To facilitate numerical computation, we analytically reduce this 
expression down to fewer dimensions. Fortunately, the systems we are interested in have a large 
amount of symmetry that we can utilize for this purpose.

The distribution functions we are concerned with are isotropic in some frame defined by a 
unit timelike vector U , i.e. they depend on the four-momentum pi only through the quantities 
pi · U and p2 = m2. The same is true of the basis functions ψ̂k and hence we can assume the 
i i
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gi depend only on pi · U as well. In [14,15] approaches are outlined that reduce integrals of 
this type down to 3 dimensions. However, the integrand one obtains from these methods is only 
piecewise smooth or has an integration domain with a complicated geometry. This can present 
difficulties for numerical integration routines and so we take an alternative approach that, for 
the scattering kernels found in e±, neutrino interactions, reduces the problem to three iterated 
integrals (but not quite to a three dimensional integral) and results in an integrand with better 
smoothness properties. Depending on the integration method used, this can significantly reduce 
the numerical cost of evaluating the collision integrals. The derivation presented expands on what 
is found in Ref. [23].

3.3. Simplifying the collision integral

Our strategy for simplifying the collision integrals is as follows. We first make a change of 
variables designed to put the 4-momentum conserving delta function in a particularly simple 
form, which allows us to analytically use that delta function to reduce the integral from 16 to 
12 dimensions. The remaining four delta functions, which impose the mass shell constraints, are 
then seen to reduce to integration over a product of spheres. The simple form of this submanifold 
allows us to apply the method described in Appendix A to analytically evaluate all four of the 
remaining delta functions simultaneously. During this process, the isotropy of the system in the 
frame given by the 4-vector U allows us to reduce the dimensionality further, by analytically 
evaluating several of the angular integrals.

The change of variables that simplifies the 4-momentum conserving delta function is given by

p = p1 + p2, q = p1 − p2, p′ = p3 + p4, q ′ = p3 − p4. (38)

The Jacobian of this transformation is 1/28. Therefore, changing variables in the delta functions 
we find

M = b

∫
G
(
(p + q) · U/2, (p − q) · U/2,

(
p′ + q ′) · U/2,

(
p′ − q ′) · U/2

)
S|M|2

× Θ
(
p0 − ∣∣q0

∣∣)Θ((p′)0 − ∣∣(q ′)0∣∣)δ(p − p′)
× δ
(
(p + q)2/4 − m2

1

)
δ
(
(p − q)2/4 − m2

2

)
× δ
((

p′ + q ′)2/4 − m2
3

)
δ
((

p′ − q ′)2/4 − m2
4

)
d4pd4qd4p′d4q ′ (39)

where Θ(x) denotes the Heaviside function, b = 1/256(2π)8, and U is the four velocity charac-
terizing the isotropic frame as discussed above.

Using the coarea formula, Theorem 2 in Appendix A, we decompose this into an integral over 
s = p2, the center of mass energy, and also eliminate the integration over p′ using δ(p − p′),

M = b

∞∫
s0

∫
δ
(
p2 − s

)[∫
S|M|2F (p,q, q ′)Θ(p0 − ∣∣q0

∣∣)Θ((p′)0 − ∣∣(q ′)0∣∣)

× δ
(
(p + q)2/4 − m2

1

)
δ
(
(p − q)2/4 − m2

2

)
δ
((

p + q ′)2/4 − m2
3

)
× δ
((

p − q ′)2/4 − m2
4

)
d4qd4q ′

]
d4pds, (40)

F
(
p,q, q ′)= G

(
(p + q) · U/2, (p − q) · U/2,

(
p + q ′) · U/2,

(
p − q ′) · U/2

)
,

s0 = max
{
(m1 + m2)

2, (m3 + m4)
2}.
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The lower bound on s comes from the fact that both p1 and p2 are future timelike and hence

p2 = m2
1 + m2

2 + 2p1 · p2 ≥ m2
1 + m2

2 + 2m1m2 = (m1 + m2)
2. (41)

The other inequality is obtained using p = p′.
Note that the integral in brackets in Eq. (40) is invariant under SO(3) rotations of p in the 

frame defined by U . Therefore we obtain

M = b

∞∫
s0

∞∫
0

K(s,p)
4π | �p|2

2p0
d| �p|ds, p0 = p · U =

√
| �p|2 + s, (42)

K(s,p) =
∫

S|M|2F (p,q, q ′)Θ(p0 − ∣∣q0
∣∣)Θ((p′)0 − ∣∣(q ′)0∣∣)δ((p + q)2/4 − m2

1

)
× δ
(
(p − q)2/4 − m2

2

)
δ
((

p + q ′)2/4 − m2
3

)
δ
((

p − q ′)2/4 − m2
4

)
d4qd4q ′

(43)

where | �p| denotes the norm of the spacial component of p and in the formula for K(s, p), p
is any four vector whose spacial component has norm | �p| and timelike component 

√| �p|2 + s. 
Note that in integrating over δ(p2 − s)dp0, only the positive root was taken, due to the Heaviside 
functions in the K(s, p).

We now simplify K(s, p) for fixed but arbitrary p and s that satisfy p0 = √| �p|2 + s and 
s > s0. These conditions imply p is future timelike, hence we can change variables in q , q ′ by 
an element of Q ∈ SO(1, 3) so that

Qp = (
√

s,0,0,0), QU = (α,0,0, δ) (44)

where

α = p · U√
s

, δ = 1√
s

(
(p · U)2 − s

)1/2
. (45)

Note that the delta functions in the integrand imply p±q is timelike (or null if the corresponding 
mass is zero). Therefore p0 > ±q0 iff p ∓ q is future timelike (or null). This condition is pre-
served by SO(1, 3), hence p0 > |q0| in one frame iff it holds in every frame. Similar comments 
apply to p0 > |(q ′)0| and so K(s, p) has the same formula in the transformed frame as well.

We now evaluate the measure that is induced by the delta functions, using the method given 
in Appendix A. We have the constraint function

Φ
(
q, q ′)= ((p + q)2/4 − m2

1, (p − q)2/4 − m2
2,
(
p + q ′)2/4 − m2

3,
(
p − q ′)2/4 − m2

4

)
(46)

and must compute the solution set Φ(q, q ′) = 0. Adding and subtracting the first two components 
and the last two respectively, we have the equivalent conditions

s + q2

2
= m2

1 + m2
2, p · q = m2

1 − m2
2,

s + (q ′)2

2
= m2

3 + m2
4, p · q ′ = m2

3 − m2
4. (47)

If we let (q0, �q), ((q ′)0, �q ′) denote the spacial components in the frame defined by p =
(
√

s, 0, 0, 0) we have the equivalent conditions
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q0 = m2
1 − m2

2√
s

, |�q|2 = (m2
1 − m2

2)
2

s
+ s − 2

(
m2

1 + m2
2

)
, (48)

(
q ′)0 = m2

3 − m2
4√

s
,

∣∣�q ′∣∣2 = (m2
3 − m2

4)
2

s
+ s − 2

(
m2

3 + m2
4

)
. (49)

Note that the above formulas, together with s ≥ s0, imply

|q0|
p0

≤ |m2
1 − m2

2|
(m1 + m2)2

< 1 (50)

and similarly for q ′. Hence the Heaviside functions are identically equal to 1 under these condi-
tions and we can drop them from the formula for K(s, p).

The conditions (48) imply that our solution set is a product of spheres in �q and �q ′, as long as 
the conditions are consistent, i.e. so long as |�q|, |�q ′| > 0. To see that this holds for almost every s, 
first note

d

ds
|�q|2 = 1 − (m2

1 − m2
2)

2

s2
> 0 (51)

since s ≥ (m1 + m2)
2. At s = (m1 + m2)

2, |�q|2 = 0. Therefore, for s > s0 we have |�q| > 0 and 
similarly for q ′. Hence we have the result

Φ−1(0) = {q0}× B|�q| ×
{(

q ′)0}× B|�q ′| (52)

where Br denotes the radius r ball centered at 0. We will parametrize this by spherical angular 
coordinates in q and q ′, denoted by r , θ , φ and r ′, θ ′, φ′ respectively.

We now compute the induced volume form. First consider the differential

DΦ =

⎛
⎜⎜⎝

1
2 (q + p)αηαβdqβ

1
2 (q − p)αηαβdqβ

1
2 (q ′ + p)αηαβdq ′ β
1
2 (q ′ − p)αηαβdq ′ β

⎞
⎟⎟⎠ . (53)

Evaluating this on the coordinate vector fields ∂q0 , ∂r we obtain

DΦ(∂q0) =

⎛
⎜⎜⎝

1
2 (q0 + √

s)
1
2 (q0 − √

s)

0
0

⎞
⎟⎟⎠ , DΦ(∂r) =

⎛
⎜⎜⎝

− 1
2 |�q|

− 1
2 |�q|
0
0

⎞
⎟⎟⎠=

⎛
⎜⎜⎝

− 1
2 r

− 1
2 r

0
0

⎞
⎟⎟⎠ . (54)

Similar results hold for q ′. Therefore we have the determinant

det
(
DΦ(∂q0) DΦ(∂r) DΦ(∂(q ′)0) DΦ(∂r ′)

)= s

4
rr ′. (55)

By Corollary 1 and Eq. (A.18) in Appendix A, this implies that the induced volume measure is

δ
(
(p + q)2/4 − m2

1

)
δ
(
(p − q)2/4 − m2

2

)
δ
((

p + q ′)2/4 − m2
3

)
× δ
((

p − q ′)2/4 − m2
4

)
d4qd4q ′

= 4

srr ′ i(∂q0 ,∂r ,∂(q′)0 ,∂r′ )
[(

r2 sin(φ)dq0drdθdφ
)∧ ((r ′)2 sin

(
φ′)d(q ′)0dr ′dθ ′dφ′)]

= 4rr ′
sin(φ) sin

(
φ′)dθdφdθ ′dφ′ (56)
s
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where

r = 1√
s

√(
s − (m1 + m2)2

)(
s − (m1 − m2)2

)
,

r ′ = 1√
s

√(
s − (m3 + m4)2

)(
s − (m3 − m4)2

)
(57)

and i is the interior product (i.e. contraction) operator as described in Appendix A.
Consistent with our interest in the Boltzmann equation, we assume F factors as

F
(
p,q, q ′)= F12

(
(p + q) · U/2, (p − q) · U/2

)
× F34

((
p + q ′) · U/2,

(
p − q ′) · U/2

)
(58)

≡ G12(p · U,q · U)G34
(
p · U,q ′ · U). (59)

For now, we suppress the dependence on p · U , as it is not of immediate concern. In our chosen 
coordinates where U = (α, 0, 0, δ) we have

q · U = q0α − rδ cos(φ) (60)

and similarly for q ′.
To compute

K(s,p) = 4rr ′

s

∫ [∫
S|M|2(s, t)G34 sin

(
φ′)dθ ′dφ′

]
G12 sin(φ)dθdφ (61)

first recall

t = (p1 − p3)
2 = 1

4

(
q − q ′)2 = 1

4

(
q2 + (q ′)2 − 2

(
q0(q ′)0 − �q · �q ′)), (62)

�q · �q ′ = rr ′(cos
(
θ − θ ′) sin(φ) sin

(
φ′)+ cos(φ) cos

(
φ′)). (63)

Together, these imply that the integral in brackets in Eq. (61) equals

π∫
0

2π∫
0

S|M|2(s, t(cos
(
θ − θ ′) sin(φ) sin

(
φ′)+ cos(φ) cos

(
φ′)))

× G34
((

q ′)0α − r ′δ cos
(
φ′)) sin

(
φ′)dθ ′dφ′ (64)

=
1∫

−1

2π∫
0

S|M|2(s, t(cos(ψ) sin(φ)

√
1 − y2 + cos(φ)y

))
G34
((

q ′)0α − r ′δy
)
dψdy.

(65)

Therefore

K(s,p) = 8πrr ′

s

1∫
−1

[ 1∫
−1

( 2π∫
0

S|M|2(s, t(cos(ψ)

√
1 − y2

√
1 − z2 + yz

))
dψ

)

× G34
((

q ′)0α − r ′δy
)
dy

]
G12
(
q0α − rδz

)
dz (66)

where
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Table 3
Comparison of neutrino freeze-out results obtained in Ref. [3] (top line) with those obtained using the described methods, 
which allow for a reduced number of expansion modes.

Method Modes zfin δρ̄νe δρ̄νμ,τ Nν

Chemical Eq 4 1.39785 0.009230 0.003792 3.044269
Chemical Non-Eq 2 1.39784 0.009269 0.003799 3.044383
Chemical Non-Eq 3 1.39785 0.009230 0.003791 3.044264

t (x) = 1

4

((
q0)2 − r2 + ((q ′)0)2 − (r ′)2 − 2q0(q ′)0 + 2rr ′x

)
, (67)

= 1

4

((
q0 − (q ′)0)2 − r2 − (r ′)2 + 2rr ′x

)
. (68)

This is as far as we can simplify things without more information about the form of the matrix 
elements. In Appendix B we apply this method and analytically simplify Eq. (66) for each of 
the processes in Tables 1 and 2 as much as possible and in the process we show that M can be 
written in terms of three iterated integrals for each of these processes.

3.4. Validation

We solve the Boltzmann equation, Eq. (4), for both the electron neutrino distribution and the 
combined μ, τ neutrino distribution, including all of the processes from Tables 1 and 2 in the 
scattering operator, together with the Hubble equation for a(t), Eq. (14). The total energy density 
appearing in the Hubble equation consists of the contributions from both neutrino distributions as 
well as chemical equilibrium e± and photon distributions at some common temperature Tγ . The 
dynamics of Tγ are fixed by the divergence freedom of the total stress energy tensor, Eq. (15). In 
addition, we include the QED corrections to the e± and photon equations of state as described 
in [18].

We compared the results of numerically evaluating the collision integrals using our method 
as given in Section 3.2 and Appendix B with the method used by Ref. [15] and validated that 
results agree, up to numerical integration tolerance. To compare our results from solving the 
Boltzmann equation with Ref. [3], where neutrino freeze-out was simulated using sin2 θW = 0.23
and η = η0, in Table 3 we present Nν together with the following quantities

zfin = Tγ a, ρν0 = 7

120
π2T 4, δρ̄ν = ρν

ρν0
− 1. (69)

The quantities presented in Eq. (69) and Table 3 were introduced in Ref. [3], but some addi-
tional discussion is in order.

1. The quantity zfin measures the deviation of the photon temperature Tγ from the ‘free 
streaming’ temperature T ∝ 1/a, i.e. the temperature of a (hypothetical) particle species 
that is completely decoupled throughout the domain of temperature considered. Therefore, 
zfin = Tγ /T is the measure of the amount of reheating photons underwent due to the annihi-
lation of e±. For the case of already completely decoupled neutrinos, whose temperature is 
in this case just the free-streaming temperature, according to Eq. (2)

zfin|ν decoupled = (11/4)1/3 ≈ 1.401. (70)
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For the case of some e± annihilation occurring while neutrinos are still coupled, one expects 
this value to be slightly reduced, due to the transfer of some e± entropy into neutrinos. This 
is reflected in the values seen in Table 3.

2. ρν0 is the energy density of a single massless fermion with two degrees of freedom and 
temperature equal to the free-streaming temperature. In other words, it is the energy density 
of a single neutrino species, assuming it decoupled before reheating. Consequently, δρ̄ν is 
the fractional increase in the energy density of a coupled neutrino species, due to its partial 
participation in reheating.

The top entry in Table 3 corresponds to the reference values from Ref. [3]. The next two lines 
present our results that use the chemical non-equilibrium method which, as we show, allows for 
a smaller basis set. We show 2 and 3 modes, respectively which compare with the 4 modes case 
for the equilibrium method. The value of Nν we obtain agrees for the case of 2 modes with that 
found in [3], up to their cited error tolerance.

Considering both the improved smoothness properties of integrands developed in Section 3.2
and Appendix B and the reduction in the required number of modes for the chemical non-
equilibrium method, our approach with the minimum number 2 of required modes is found to 
be more than 20× faster than the chemical equilibrium method with its minimum number 4 of 
required modes. This computational performance improvement makes it possible to explore the 
neutrino freeze-out process for many different circumstances and parameter sets employing a 
desktop PC.

4. Dependence of neutrino freeze-out on Standard Model parameters

4.1. Neutrino freeze-out temperature

SM parameters impact Nν by changing how long the neutrinos remain coupled to the annihi-
lating e± and thereby impacting the amount of energy and entropy transfer. In other words, the 
neutrino freeze-out temperature is modified. Before we present the dependence of Nν on θW and 
η we first consider in detail the freeze-out temperatures of neutrinos with an initial focus on the 
conventional SM parameters.

In the literature one finds estimates of freeze-out temperatures based on a comparison of 
Hubble expansion with neutrino scattering length and considering only number changing (i.e. 
chemical) processes, see e.g. Ref. [12]. We employ a similar definition of freeze-out temperature 
in the context of the Boltzmann equation and refine the results by noting that there are three 
different freeze-out processes:

1. Neutrino chemical freeze-out: the neutrino pair number changing annihilation process

l + l̄ ⇔ νl + ν̄l (71)

which we will see decouples at the highest temperature.
2. Neutrino kinetic freeze-out: The sharing of energy between leptons and neutrinos by way of 

scattering

l + ν ⇔ l + ν (72)

stops at a lower energy compared to neutrino number changing processes.
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3. Collisions between neutrinos are capable of re-equilibrating energy within and between fla-
vor families. These processes end at a yet lower temperature and the neutrinos will be truly 
free-streaming from that point on.

The attentive reader will notice that we have omitted here a discussion of flavor neutrino oscil-
lations. If it weren’t for the differences between the matrix elements for the interactions between 
e± and νe on one hand and e± and νμ, ντ on the other, oscillations would have no effect on the 
flow of entropy into neutrinos and hence no effect on Nν . However, there are differences and 
they do lead to a modification of Nν . In Ref. [3] the impact of oscillations on neutrino freeze-
out for the present day measured values of θW and η was investigated. It was found that while 
oscillations redistributed energy amongst the neutrino flavors, the impact on Nν was negligible. 
We have therefore ignored neutrino oscillation effects in our study as we do not have a clear 
idea why for other values of η and θW the redistribution of neutrino energy would create any 
larger effect than already determined. Once the relevant neutrino properties are fully understood, 
the precision of the results we present could possibly be improved by incorporating the effect of 
neutrino oscillations.

4.1.1. Scattering length and freeze-out temperature
The notion of freeze-out temperature is conceptually useful, but within the Boltzmann ap-

proach there is no such precise temperature, as the freeze-out process is gradual, with low energy 
neutrinos freezing-out before high energy ones. Thus a procedure to determine the freeze-out 
condition can only be approximate. However, the differences that arise through investigating the 
freeze-out of the three different classes of processes while natural constants are varied help us to 
understand the results which will be presented below.

To define the freeze-out condition we follow the standard procedure [12]: we compare the 
distance L traveled by a particle between two scattering processes to the characteristic Universe 
expansion length LH = c/H . The crossing of the Hubble-length with the neutrino scattering 
length produces an estimate of the decoupling temperatures. To obtain the scattering length L we 
begin with Eq. (7) for the fractional rate of change of comoving particle number

d
dt

(a3n)

a3n
= gν

2π2n
T 2
∫

C[f ]zdz. (73)

This expression includes both forward and back-reactions, producing the net change.
However, we would rather count the number of interactions. For that reason, we consider only 

one direction for the process and define as the rate of interest

r ≡ gν

2π2n
T 2
∫

C̃[f ]zdz (74)

where the forward-reaction operator C̃[f ] is computed as in Eq. (5) except with F replaced by

F̃ = f1(p1)f2(p2)f
3(p3)f

4(p4). (75)

If particle type 1 also participates in the reverse of the reaction 1 + 2 → 3 + 4 (i.e. it is the same 
as one of the final particles 3, 4) then a corresponding term for the reverse reaction must also be 
added. The key point is that we are counting reactions, and not the net particle number change 
which requires by detailed balance also a negative contribution.

Using the average velocity, which for neutrinos is v̄ = c = 1, we obtain according to this 
procedure the scattering length
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Fig. 2. Comparison of Hubble parameter to neutrino scattering length for various types of processes for sin2 θW = 0.23
and η = η0: on left for νe and on right for νμ and ντ .

L ≡ v̄

r
=

∫∞
0

z2dz

Υ −1ez+1∑
i

∫∞
0

C̃i [f ]z2dz
E

(76)

where the sum is over the one way scattering operators for the collection of processes of interest.
Like in Ref. [12], L can be compared to the Hubble length LH = c/H and the temperature 

at which L = LH we call the freeze-out temperature for that reaction. Fig. 2 shows LH together 
with the scattering length for the three types of neutrino reactions described above, on the left for 
νe and the right for νμ, ντ . The flavor dependence is due to charge current W-mediated interac-
tions being present only for νe. The solid lines in Fig. 2 corresponds to the chemical freeze-out 
scattering length, the dashed line corresponds to the kinetic freeze-out scattering length, and the 
dot-dashed line corresponds to re-equilibration processes within the neutrino fluid.

Using our Boltzmann equation solver, we have characterized the dependence of neutrino 
freeze-out temperature on sin2 θW and η, shown in Fig. 3 via the method described above. The 
left panels show the result for νe and the right for νμ, ντ . The SM results corresponding to the 
crossings in Fig. 2 are read out along the vertical lines in the top two panels.

We see in Fig. 3 that as a function of θW the behavior of Tνe is opposite to that of Tνμ and 
Tντ for sin2 θW < 0.25, and for sin2 θW > 0.25 all neutrino processes tend to decouple at lower 
temperature with increasing sin2 θW . Neutrino–neutrino scattering process remains constant, as 
their matrix elements are independent of Weinberg angle. An increased coupling strength η is 
equivalent to an increase in GF , resulting in the neutrinos interacting with the e± plasma down 
to lower temperatures. Hence the monotonic decreasing behavior of the freeze-out temperature 
as a function of η/η0 seen in Fig. 3 is expected. The SM values are seen at the left margin of the 
bottom panels.

As discussed above, neutrino oscillations are not considered in these results. We expect that 
incorporating oscillations would lead to a smaller difference between the freeze-out temperatures 
of the different neutrino flavors, and would likely pull up the drop in νμ, νe freeze-out tempera-
ture at small sin2 θW , at least to some degree. We recall that for other observable quantities we 
discuss in the following, the effect of neutrino oscillations is expected to be negligible [3].
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Fig. 3. Freeze-out temperatures for electron neutrinos (left) and μ, τ neutrinos (right) for the three types of processes, 
see text. Top panels as functions of sin2 θW for η = η0, vertical line is sin2 θW = 0.23; bottom panels as a function of 
relative change in interaction strength η/η0 obtained for sin2 θW = 0.23.

4.2. Dependence of Nν on Standard Model parameters

The main result of this paper is the dependence of Nν on the SM parameters sin2 θW and η, 
Eq. (3). These results are shown in the left panel of Fig. 4, presented as a function of Weinberg 
angle sin2 θW for η/η0 = 1, 5, 10, 26. The effect of an increase in both parameters above the 
vacuum values superpose in the parameter range considered, amplifying the effect and generating 
a significant increase in Nν → 3.5.

The last to freeze-out from the kinetic equilibrium is νe and we show the associated value of 
freeze-out temperature in the right panel of Fig. 3. Since the freeze-out for present day vacuum 
value SM parameters occurs well above the electron mass, the reheating effect is normally small. 
for the present day vacuum value of Weinberg angle puts the νμ, ντ freeze-out temperature, 
Tk,νe = 1.2 MeV, seen in the right panel of Fig. 3. With increasing η and sin2 θW the temperature 
drops but even for the most extreme cases shown it always remains well above the onset of 
nucleosynthesis at about T < 0.150 MeV.
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Fig. 4. The effective number of neutrinos Nν (left panel), and the kinetic freeze-out temperature Tk,νe (right panel) as a 
function of Weinberg angle for several values of η/η0 = 1, 2, 5, 10, 26. Vertical line is sin2 θW = 0.23.

We performed a least squares fit of Nν over the range 0 ≤ sin2 θW ≤ 1, 1 ≤ η/η0 ≤ 10 shown 
in Fig. 4, obtaining a result with relative error less than 0.2%,

Nν = 3.003 − 0.095 sin2 θW + 0.222 sin4 θW − 0.164 sin6 θW

+
√

η

η0

(
0.043 + 0.011 sin2 θW + 0.103 sin4 θW

)
. (77)

Nν is monotonically increasing in η/η0 with dominant behavior scaling as 
√

η/η0. Monotonicity 
is to be expected, as increasing η decreases the freeze-out temperature and the longer neutrinos 
are able to remain coupled to e±, the more energy and entropy from annihilation is transferred 
to neutrinos.

The bounds on Nν from the Planck analysis [1] can be used to constrain time or temperature 
variation of sin2 θW and η. In Fig. 5 the dark (green) color shows the combined range of variation 
of natural constants compatible with CMB + BAO and the light (teal) color shows the extension 
in the range of variation of natural constants for CMB + H0, both at a 68% confidence level. The 
dot-dashed line within the dark (green) color delimits this latter domain. The dotted line shows 
the limit of a 5% change in Nν . Any increase in η/η0 and/or sin2 θW moves the value of Nν into 
the domain favored by current experimental results.

Further parameter study is found in Appendix C. In Figs. C.6 and C.7 and the data fits 
Eqs. (C.1)–(C.4)) we complement the Nν results by showing the variation of the parameters that 
characterize the neutrino distributions after freeze-out: the neutrino temperature, shown through 
the ratio of the reference photon to neutrino temperature Tγ /Tν separately for νe and νμ, ντ and 
well as the two fugacities Υνe and Υνμ = Υντ .

5. Connections

Our study interfaces with two other areas of physics:

• Any change of natural constants that would be able to explain a measured variation in Nν

from SM expectations would need to be made consistent with the ensuing in evolution of 
the Universe Big Bang nucleosynthesis (BBN). Smoothness of time evolution of the natural 
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Fig. 5. Nν bounds in the η/η0, sin2 θW plane. Dark (green) for Nν ∈ (3.03, 3.57) corresponding to Ref. [1] CMB + BAO 
analysis and light (teal) extends the region to Nν < 3.87 i.e. to CMB + H0. Dot-dashed line delimits the 1 s.d. lower 
boundary of the second analysis. (For interpretation of the references to color in this figure legend, the reader is referred 
to the web version of this article.)

constants and the known challenges that beset the BBN results present an interesting avenue 
of future work which we briefly describe in the following Subsection 5.1.

• The effective number of neutrinos Nν is a characterization of the relativistic energy content 
in the early Universe, see Eq. (1), independent of its source. Thus, even given a conclusive 
measurement of Nν > 3, there would still remain ambiguity in regard the origin of the effect. 
Specifically, any light particles that decouple at an earlier epoch can contribute to the energy 
content of the invisible Universe. Two potential candidates we describe below in Subsec-
tion 5.2: the sterile neutrino, and yet to be identified novel nearly ‘dark’ Goldstone Bosons 
relating to broken symmetries at QGP phase transformation in the early Universe.

5.1. Connection to Big Bang nucleosynthesis

Big Bang nucleosynthesis is one of the pillars of modern observational cosmology. It is dis-
cussed in comprehensive review articles such as [24–28] and places strong constraints on the 
state of the Universe in the temperature range Tγ = 100–10 keV. Variation of natural constants 
that impact the nuclear reaction rates or expansion of the Universe during the BBN era have 
been investigated, including in particular the time dependence of the neutron to proton mass ra-
tio [28–30], the fine structure constant and deuteron binding energy [30], or Newton’s constant 
(i.e. the Planck mass) [31].

Natural constant modifications will not always connect neutrino freeze-out and BBN pro-
cesses:

1. The parameter sin2 θW controlling the relationship between charged and neutral weak cur-
rents, and the interactions of neutrinos within the primordial plasma, does not factor promi-
nantly into BBN, where only combinations that involve the Fermi coupling constant GF are 
so far recognized as significant. Therefore, changes in sin2 θW which for η > 1 can affect the 
neutrino freeze-out processes rather strongly, are to best of current knowledge unconstrained 
by BBN.
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2. The neutrino freeze-out remains in a domain of temperature T > 200 keV even for the 
strongest parameter changes we considered in Fig. 3 right panel. On the other hand, the 
BBN era processes set in for T < 150 keV. Thus if one is willing to accept some fine tun-
ing of the time dependence of natural constants, there would never be a conflict of neutrino 
freeze-out modification by natural constants with BBN.

3. In the neutrino freeze-out process all relevant natural constants combine to the one param-
eter η, Eq. (3). If both me and GF are varying independently, effect of their increase can 
compensate since it mainly afflicts the neutron abundance. However both effects would be 
compounded in the neutrino-freeze out process. This can produce the desired increase in Nν

without affecting BBN. However, within the SM we expect a strong correlation between me

and GF . If we assume that minimal SM coupling controls the electron mass, then η ∝ 1/v, 
since m3

e ∝ v3 while GF ∝ 1/v2, see Subsection 2.2. The controling scale v is due to Higgs 
vacuum structure, believed to have decoupled from possible modifications near the BBN 
epoch.

4. Gravity enters through η ∝ 1/
√

GN . As discussed in [31], the required large decrease in GN

would conflict with BBN unless fine-tuned to phase out before the strong onset of BBN. 
Thus a combination of neutrino freeze-out process, BBN, assuming smoothness of GN in 
time and minimal coupling of electrons could set a very strong limit on variation of GN in 
the early Universe only a fraction of a second old.

We believe that there is very likely only weak coupling between modifications we consider in the 
era of neutrino freeze-out and BBN. Thus we could seek to understand the cosmological value 
of Nν in terms of modifications of natural constants, and only then turn to answer the question 
how this can be kept consistent with the BBN processes.

In the above discussion we assumed that it is advisable not to perturb BBN. However, not all 
is perfectly well with BBN. An outstanding problem is the observed abundance of 7Li, which is 
significantly smaller than the prediction of the standard BBN model, see for example Fig. 3 in 
Ref. [32] and Fig. 5 in Ref. [33]. The situation with 6Li also raises concerns but there the looser 
constraints from reaction processes and after-BBN effects make the larger disagreement less 
compelling for the much smaller 6Li yield. Various approaches to the 7Li-problem have been 
investigated, including non-standard neutron sources [34], nuclear resonances, or dark matter, 
Ref. [32] provides comprehensive references on the latter two possibilities. The potential for an 
explanation of this effect within the context of late neutrino freeze-out modification of natural 
constants has not been explored, and it is not immediately obvious how this could work. It is 
possible that delayed decoupling of neutrinos could contributed to some key reaction, but future 
work is needed before anything definitive can be said.

5.2. Nν from dark radiation

In this paper, we considered the possibility of modifying Nν via neutrinos sharing in a greater 
fraction of the entropy of annihilating e±, achieved by a change in natural constants. As Nν

is only a measure of the relativistic energy density leading up to photon decoupling, a natu-
ral alternative mechanism for obtaining Nν > 3 is the introduction of additional, presently not 
discovered, weakly interacting (effectively) massless particles. As discussed in Refs. [35–38,7], 
such particles can contribute fractionally to Nν depending on their degeneracy, Bose–Fermi na-
ture, and freeze-out temperature. For the study of the impact of such dark radiation on BBN 
see [39,40].
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Of particular relevance could be a so-called light sterile neutrino [41], possibly the right 
handed complement to the left handed neutrinos. If such particles exist and freeze-out well be-
fore regular neutrinos, their contribution to Nν would be subject to dilution by reheating [7] and 
thus would depend on when precisely they begin free-streaming.

These unknown dark ‘radiation’ particles, as well as neutrinos, could have a mass that is at 
the scale of the temperature of photon decoupling Tγ 0 = 0.25 eV, for which an analysis of the 
Universe density fluctuations akin to Planck [1] would need to be adapted. We have discussed in 
Ref. [5] a consistent treatment of neutrino mass and Nν in the case of a particular type of delayed 
massive neutrino freeze-out. This approach is the same as for dark radiation: Near to Tγ 0 =
0.25 eV massive neutrinos are indistinguishable from massive dark radiation, which contributes 
as an additional particle with reduced contribution to Nν [7].

Removing the degeneracy in the interpretation of Nν as being due to the decoupling processes 
of neutrinos, or due to the presence of ‘dark’ particles will naturally depend on other experimental 
information, such as the contribution to resolving the Li puzzle in BBN or other experimental 
impacts of dark particles, and of course a contribution from both avenues could be envisioned.

6. Summary, discussion and conclusions

We have employed a novel spectral method Boltzmann solver and a new procedure for eval-
uating the Boltzmann scattering integrals in order to characterize the impact of a potential time 
and/or temperature variation of SM parameters on the effective number of neutrinos. Specifically, 
we identified a dimensionless combination of me, Mp , and GF , called the interaction strength η, 
that, along with the Weinberg angle sin2 θW , control neutrino freeze-out and the resulting value 
of the effective number of neutrinos, Nν .

6.1. Novel mathematical tool

In order to carry this comprehensive study we have developed a novel approach to obtain 
Boltzmann equation solutions. Our spectral method, which we call the emergent chemical non-
equilibrium method, employs a moving (in Hilbert space) frame, in which the orthogonal poly-
nomial basis dynamically evolves to suit the problem. Our approach as presented here makes 
several modifications that both improve its numerical speed and make it better suited to the 
regime we are investigating, namely the stronger coupling between neutrinos and e± that is ob-
tained when SM parameters are varied, and that lead to an increase in Nν . As detailed in the 
general presentation of the method [22], the improvements are

1. We allow a general time dependence of the effective temperature parameter T , i.e. we do 
not assume redshift temperature scaling T ∝ 1/a – this accommodates the effect of reheat-
ing. Without this, the method would be very inefficient in systems with strong reheating, 
eventually leading to a failure to converge when the reheating ratio exceeds 2.

2. We have introduced a chemical non-equilibrium distribution in the weight function, i.e. we 
introduced an evolving, time dependent Υ which equals 1 at high temperature, correspond-
ing to chemical equilibrium, and allows for the emergence of chemical non-equilibrium 
Υ 
= 1 during freeze-out.

3. We have introduced an additional factor of z2 to the functional form of the weight as 
proposed in a different context in Refs. [42,43] which accounts in our approach for the 
effectively massless neutrino phase space.
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The salient feature is that we are letting the fugacity, Υ and temperature T be time dependent 
and there is no requirement that Υ → 1. This should be contrasted with the method used in 
[17,18], which we call the chemical equilibrium method, that studied neutrino freeze-out using 
a fixed orthogonal polynomial basis generated by the chemical equilibrium weight and without 
the z2 factor. The chemical equilibrium method also assumes a particular temperature scaling 
T a(t) = Const. In other words, the neutrino momenta are scaled by 1/a(t) instead of a dynamical 
effective temperature T (t) as in our method. Such a method is effective for the weak reheating 
found for SM vacuum parameters, but it becomes less inefficient and eventually fails to converge 
as the reheating ratio increases.

Due to the inclusion of the neutrino phase space z2 factor in the weight, and facilitated by the 
near thermal shape of the distribution, only two modes corresponding to T and Υ are required 
to capture the energy density and number density of the neutrino distribution. In comparison, the 
chemical equilibrium method, because it lacks the z2 factor, requires a minimum of four modes. 
We discussed how further important savings in computation time are arrived at by making the 
integrands of the collision integrals smooth functions. Overall, the speed up of solutions is at 
level 20 times or more.

6.2. Primordial variation of natural constants

The question which we answer in this paper is: What neutrino decoupling in the early Universe 
can tell us about the values of natural constants when the Universe was about 1 second old and 
at an ambient temperature near to 1.2 MeV (14 billion degrees K). Our results were presented 
assuming that the Universe contains no other effectively massless particles but the three left 
handed neutrinos and corresponding, three right handed anti-neutrinos.

We found that near to the physical value of the Weinberg angle sin2 θW � 0.23 the effect of 
changing sin2 θW on the decoupling of neutrinos is small. Thus as seen in Fig. 4 the dominant 
variance is due to the change in the coupling strength η/η0, Eq. (3) and Eq. (17). The dotted line 
in Fig. 5 shows that in order to achieve a change in Nν at the level of up to 5%, that is Nν � 3.2, 
both sin2 θW and η/η0 must change significantly, with e.g. η increasing by an order of magnitude.

Let us review what an increase in the strength parameter η by factor 10 means, looking case 
by case on all the natural constant contributions as if each were responsible for the entire change:

• Considering that η ∝ Mp ∝ G
−1/2
N this translates into a decrease in the strength of Gravity 

at neutrino freeze-out by a factor 100. This effect would need to become much smaller by 
the time the age of the Universe is 1000 times longer (1 s compared to 10 min) for Big Bang 
nucleosynthesis to be unaffected. This presumably means that, conversely, as we go further 
back in time we would need gravity to continue to rapidly become very much weaker yet. 
In models of emergent gravity we can imagine a ‘melting’ of gravity in the hot primordial 
Universe. Whether such a model can be realized will be a topic for future consideration. 
The attractive aspect of Gravity weakening rapidly with increasing temperature is that for 
exponentially disappearing GN → 0 as t → 0 and/or T → ∞ the dynamics can be arranged 
to be similar to an inflationary Universe.

• Since η ∝ m3
e , electron mass would need to go up ‘only’ by factor 2.15. Compared to all 

other particles the electron mass has an anomalously low value. Appearance of a mechanism 
just when T � me that ‘restores’ the electron mass to where intuition would like it to be, 
a few MeV, arising from the systematics of other Yukawa Higgs coupling gYe compared to 
the Yukawa coupling of other charged light particles, where me = gYev seems to us also a 
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possible scenario. Interestingly, laboratory limits for these conditions could be attainable in 
the foreseeable future.

• Since η ∝ G2
F ∝ 1/v4 we would need to find a mechanism that would decrease the vacuum 

value v0 � 246 GeV by factor 1.8 already at temperature T � me . Allowing three powers 
of v to cancel by using the Higgs minimal coupling formula for electron mass we need to 
change v by an order of magnitude near to T � me . This appears impossible.

While ideas justifying strong variation of η can be developed as two of the above three cases 
argue, a model for temperature or time dependence of sin2 θW seems at this time without a theo-
retical anchor point, mainly so since we do not have a valid grand unified theoretical framework 
in which the electro-weak mixing or equivalently the masses MW, MZ would be anchored.

To conclude: The explanation of Nν > 3.05 in terms of variation of natural constants that we 
have presented comprises speculative and beyond the standard model ideas akin, in this aspect, 
to the alternative explanation based on new dark ‘radiation’ particles. In order to achieve an 
increase in Nν the change in natural constants must cause, through a delay in neutrino freeze-out, 
a greater participation of neutrinos in reheating during e± annihilation. We believe that the study 
here presented shows a viable mechanism capable of influencing Nν , and thus merits further 
investigation. In particular, reconciliation with the following BBN epoch will help to estimate 
limits on variation in the early Universe of the two fundamental parameters controlling Nν: η
(see Eq. (3)) and sin2 θW , the latter parameter in principle remaining unconstrained by BBN and 
could freely evolve as long as it reaches the present day measured value.
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Appendix A. Inducing volume forms on submanifolds

Given a Riemannian manifold (M, g) with volume form dVg and a hypersurface S, the stan-
dard Riemannian hypersurface area form, dAg is defined on S as the volume form of the pullback 
metric tensor on S. Equivalently, it can be computed as

dAg = ivdVg (A.1)

where v is a unit normal vector to S and iv denotes interior product (i.e. contraction) of the 
antisymmetric tensor dVg with the vector v.

We take a moment to describe the properties of the interior product that are relevant for our 
purposes. The interior product, iXω, is linear in both the vector X and the form ω and for a one 
form (i.e. dual vector) τ , iXτ is just the usual contraction of a vector and dual vector. On higher 
degree forms the interior product is characterized by the relation

iX(ω ∧ τ) = (iXω) ∧ τ + (−1)kω ∧ (iXτ) (A.2)

where ω is a k-form and τ is an l-form. In particular in a coordinate system xi , contracting the 
coordinate volume element with a coordinate vector ∂xi is straightforward
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i∂
xi

dx1...dxn = (−1)i−1dx1...dxi−1dxi+1...dxn (A.3)

where we omit the wedge product signs. In the following we will only be concerned with the 
results up to sign (i.e. with the density defined by a volume form). Iterated contractions with the 
vectors Xj will be denoted by i(X1,...,Xm). As we are only concerned with the result up to sign, 
the order in which we contract is irrelevant.

The Riemannian method of inducing volume measures extends to submanifolds of codimen-
sion greater than one as well as to semi-Riemannian manifolds, as long as the metric restricted to 
the submanifold is non-degenerate, by contracting with an orthonormal basis for the normal vec-
tors. However, there are many situations where one would like to define a natural volume form 
on a submanifold that is induced by a volume form in the ambient space, but where the above 
method is inapplicable, such as defining a natural volume form on the light cone or other more 
complicated degenerate submanifolds in relativity. In this appendix, we will describe a method 
for inducing volume forms on regular level sets of a function that is applicable in cases where 
there is no metric structure and show its relation to more widely used semi-Riemannian case.

Let M , N be smooth manifolds, c be a regular value of a smooth function F : M → N , and 
ΩM and ΩN be volume forms on M and N respectively. Using this data, we will be able to 
induce a natural volume form on the level set F−1(c). The absence of a metric on M is made up 
for by the additional information that the function F and volume form ΩN on N provide. The 
following theorem makes our definition precises and proves the existence and uniqueness of the 
induced volume form.

Theorem 1. Let M , N be m (resp. n)-dimensional smooth manifolds with volume forms ΩM

(resp. ΩN ). Let F : M → N be smooth and c be a regular value. Then there is a unique volume 
form ω (also denoted ωM ) on F−1(c) such that ωx = i(v1,...,vn)Ω

M
x whenever vi ∈ TxM are such 

that

ΩN(F∗v1, ...,F∗vn) = 1. (A.4)

We call ω the volume form induced by F : (M, ΩM) → (N, ΩN).

Proof. F∗ is onto TF(x)N for any x ∈ F−1(c). Hence there exists {vi}n1 ⊂ TxM such that

ΩN(F∗v1, ...,F∗vn) = 1. (A.5)

In particular, F∗vi is a basis for TF(x)N . Define ωx = i(v1,...,vn)Ωx . This is obviously a nonzero 
m − n form on TxF

−1(c) for each x ∈ F−1(c). We must show that this definition is independent 
of the choice of vi and the result is smooth.

Suppose F∗vi and F∗wi both satisfy Eq. (A.4). Then F∗vi = A
j
i F∗wj for A ∈ SL(n). There-

fore vi − A
j
i wj ∈ kerF∗x . This implies

i(v1,...,vn)Ω
M
x = ΩM

x

(
A

j1
1 wj1, ...,A

jn
n wjn, ·

)
(A.6)

since the terms involving kerF∗ will vanish on TxF
−1(c) = kerF∗x . Therefore

i(v1,...,vn)Ω
M
x = A

j1
1 ...A

jn
n ΩM

x (wj1, ...,wjn, ·) (A.7)

=
∑
σ∈Sm

π(σ )A
σ(1)
1 ...Aσ(n)

n ΩM
x (w1, ...,wn, ·) (A.8)

= det(A)i(w1,...,wn)Ω
M
x (A.9)

= i(w ,...,wn)Ω
M. (A.10)
1 x
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This proves that ω is independent of the choice of vi . If we can show ω is smooth then we are 
done. We will do better than this by proving that for any vi ∈ TxM the following holds

i(v1,...,vn)Ω
M
x = ΩN(F∗v1, ...,F∗vn)ωx. (A.11)

To see this, take wi satisfying Eq. (A.4). Then F∗vi = A
j
i F∗wj . This determinant can be com-

puted from

ΩN(F∗v1, ...,F∗vn) = det(A)ΩN(F∗w1, ...,F∗Wn) = det(A). (A.12)

Therefore, the same computation as Eq. (A.7) gives

i(v1,...,vn)Ω
M
x = det(A)ωx = ΩN(F∗v1, ...,F∗vn)ωx (A.13)

as desired. To prove that ω is smooth, take a smooth basis of vector fields {Vi}m1 in a neighborhood 
of x. After relabeling, we can assume {F∗Vi}n1 are linearly independent at F(x) and hence, by 
continuity, they are linearly independent at F(y) for all y in some neighborhood of x. In that 
neighborhood, ΩN(F∗V1, ..., F∗Vn) is non-vanishing and therefore

ω = (ΩN(F∗V1, ...,F∗Vn)
)−1

i(V1,...,Vn)Ω (A.14)

which is smooth. �
Corollary 1. For any vi ∈ TxM the following holds

i(v1,...,vn)Ω
M
x = ΩN(F∗v1, ...,F∗vn)ωx. (A.15)

Corollary 2. If φ : M → R is smooth and c is a regular value then by equipping R with its 
canonical volume form we have

ωx = ivΩ
M
x (A.16)

where v ∈ TxM is any vector satisfying dφ(v) = 1.

A coarea formula can be proved for the induced volume forms.

Theorem 2 (Coarea formula). Let M be a smooth manifold with volume form ΩM , N a smooth 
manifold with volume form ΩN and F : M → N be a smooth map. If F∗ is surjective at a.e. 
x ∈ M then for f ∈ L1(ΩM) ∪ L+(M)∫

M

f (x)ΩM(dx) =
∫
N

∫
F−1(z)

f (y)ωM
z (dy)ΩN(dz) (A.17)

where ωM
z is the volume form induced on F−1(z) as in Theorem 1.

The induced measure defined above allows for a coordinate independent definition of a delta 
function supported on a regular level set. Such an object is of great use in performing calculations 
in relativistic phase space in a coordinate independent manner.

Definition 1. Motivated by the coarea formula, we define the composition of the Dirac delta 
function supported on c ∈ N with a smooth map F : M → N such that c is a regular value of F
by
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δc

(
F(x)

)
ΩM ≡ ωM (A.18)

on F−1(c). For f ∈ L1(ωM) we will write∫
M

f (x)δc

(
F(x)

)
ΩM(dx) (A.19)

in place of∫
F−1(c)

f (x)ωM(dx). (A.20)

It is useful to translate the induced volume element into a form that is more readily appli-
cable to computations in coordinates. Choose arbitrary coordinates yi on N and write ΩN =
hN(y)dyn. Choose coordinates xi on M such that F−1(c) is the coordinate slice

F−1(c) = {x : x1 = ... = xn = 0
}

(A.21)

and write ΩM = hM(x)dxm. The coordinate vector fields ∂xi are transverse to F−1(c) and so

ΩN(F∗∂x1 , ...,F∗∂xn) = hN
(
F(x)

)
det

(
∂F i

∂xj

)
i,j=1..n

(A.22)

and

i(∂
x1 ,...,∂xn )Ω

M = hM(x)dxn+1...dxm. (A.23)

Therefore we obtain

ωx = hM(x)

hN(F (x))
det

(
∂F i

∂xj

)−1

i,j=1..n

dxn+1...dxm. (A.24)

Using Eq. (A.24), along with the coordinates described there, we can (at least locally) write 
the integral with respect to the delta function in the more readily usable form∫

M

f (x)δc

(
F(x)

)
ΩM =

∫
F−1(c)

f (x)
hM(x)

hN(F (x))

∣∣∣∣det

(
∂F i

∂xj

)−1∣∣∣∣dxn+1...dxm. (A.25)

The absolute value comes from the fact that we use δc(F (x))ΩM to define the orientation on 
F−1(c).

Appendix B. Electron and neutrino collision integrals

B.1. νν → νν

Using Eq. (31), the matrix elements for neutrino–neutrino scattering can be simplified to

S|M|2 = C(p1 · p2)(p3 · p4) = C
s2

4
(B.1)

where the coefficient C is given in Table B.4.
For simplicity, in Appendix B we will denote | �p| by p, not to be confused with the 4-vector 

defined in Eq. (38). From Eq. (B.1) we obtain
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Table B.4
Matrix element coefficients for neutrino neutrino scattering processes.

Process C

νi + νi → νi + νi , i ∈ {e,μ, τ } 64G2
F

νi + νj → νi + νj , i 
= j , i, j ∈ {e,μ, τ } 32G2
F

Table B.5
Matrix element coefficients for neutrino–neutrino scattering processes.

Process C

νi + ν̄i → νi + ν̄i , i ∈ {e,μ, τ } 128G2
F

νi + ν̄i → νj + ν̄j , i 
= j , i, j ∈ {e,μ, τ } 32G2
F

νi + ν̄j → νi + ν̄j , i 
= j , i, j ∈ {e,μ, τ } 32G2
F

Mνν→νν = C

256(2π)5

∞∫
s0

s2

∞∫
0

1∫
−1

G12
(
p0, q0α − rδz

)
dz

×
1∫

−1

G34
(
p0,
(
q ′)0α − r ′δy

)
dy

p2

p0
dpds. (B.2)

Therefore, as we claimed above, Mνν→νν can be written in a form that requires the numerical 
evaluation of only three iterated integrals, but not quite as a three dimensional integral. If we 
want to emphasize the role of C then we write Mνν→νν(C). Note that if one scales p and s
by the appropriate powers of T in order to convert to dimensionless variables, one obtains a 
prefactor of T 8.

B.2. νν̄ → νν̄

Using Eq. (31), the matrix elements for neutrino anti-neutrino scattering can be simplified to

S|M|2 = C

(
s + t

2

)2

(B.3)

where the coefficient C is given in Table B.5.
Using this we find

2π∫
0

S|M|2(s, t(cos(ψ)

√
1 − y2

√
1 − z2 + yz

))
dψ = πC

16
s2(3 + 4yz − y2 − z2 + 3y2z2)

≡ πC

16
s2q(y, z), (B.4)

Mνν̄→νν̄ = C

2048(2π)5
T 8

×
∞∫ ∞∫

s2

[ 1∫ 1∫
q(y, z)G34

(
p0,−py

)
G12
(
p0,−pz

)
dydz

]
p2

p0
dpds. (B.5)
0 0 −1−1
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Table B.6
Matrix element coefficients for neutrino–neutrino annihilation into e± .

Process A B C

νe + ν̄e → e+ + e− 128G2
F

g2
L

128G2
F

g2
R

128G2
F

gLgR

νi + ν̄i → e+ + e−, i ∈ {μ,τ } 128G2
F

g̃2
L

128G2
F

g2
R

128G2
F

g̃LgR

Again, by converting to dimensionless variables we see that this scales with T 8. If we want to 
emphasize the role of C then we write Mνν̄→νν̄ (C). Note that due to the polynomial form of 
the matrix element integral, the double integral in brackets breaks into a linear combination of 
products of one dimensional integrals, meaning that the nesting of integrals is only three deep.

B.3. νν̄ → e+e−

Using Eq. (31), the matrix elements for neutrino–anti-neutrino annihilation into e± can be 
simplified to

S|M|2 = A

(
s + t − m2

e

2

)2

+ B

(
m2

e − t

2

)2

+ Cm2
e

s

2
(B.6)

where the coefficients A, B, C are given in Table B.6.
The integral of each of these terms is

2π∫
0

(s + t (ψ) − m2
e)

2

4
dψ = π

16
s
(
3s − 4m2

e

)+ π

4
s3/2
√

s − 4m2
eyz

− π

16
s
(
s − 4m2

e

)(
y2 + z2)+ 3π

16
s
(
s − 4m2

e

)
y2z2, (B.7)

2π∫
0

(m2
e − t (ψ))2

4
dψ = π

16
s
(
3s − 4m2

e

)− π

4
s3/2
√

s − 4m2
eyz (B.8)

− π

16
s
(
s − 4m2

e

)(
y2 + z2)+ 3π

16
s
(
s − 4m2

e

)
y2z2, (B.9)

2π∫
0

m2
e

s

2
dψ = πm2

es. (B.10)

Therefore
2π∫

0

S|M|2(s, t (ψ)
)
dψ

= π

16
s
[
3s(A + B) + 4m2

e(4C − A − B)
]+ π

4
s3/2
√

s − 4m2
e(A − B)yz

− π

16
s
(
s − 4m2

e

)
(A + B)

(
y2 + z2)+ 3π

16
s
(
s − 4m2

e

)
(A + B)y2z2

≡ πq(me, s, y, z). (B.11)
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Table B.7
Matrix element coefficients for neutrino e± scattering.

Process A B C

νe + e− → νe + e− 128G2
F

g2
L

128G2
F

g2
R

128G2
F

gLgR

νi + e− → νi + e−, i ∈ {μ,τ } 128G2
F

g̃2
L

128G2
F

g2
R

128G2
F

g̃LgR

νe + e+ → νe + e+ 128G2
F

g2
R

128G2
F

g2
L

128G2
F

gLgR

νi + e+ → νi + e+, i ∈ {μ,τ } 128G2
F

g2
R

128G2
F

g̃2
L

128G2
F

g̃LgR

Mνν̄→e+e− = 1

128(2π)5

∞∫
4m2

e

∞∫
0

√
1 − 4m2

e/s

[ 1∫
−1

1∫
−1

q(me, s, y, z)

× G34
(
p0,−(√1 − 4m2

e/s
)
py
)
G12
(
p0,−pz

)
dydz

]
p2

p0
dpds. (B.12)

By scaling s, p, and me by the appropriate powers of T we again obtain a prefactor of T 8. 
If we want to emphasize the role of A, B, C then we write Mνν̄→e+e−(A, B, C). Note that this 
expression is linear in (A, B, C) ∈R

3. Also note that, under the assumptions that the distributions 
of e+ and e− are the same (i.e. ignoring the small matter–anti-matter asymmetry), the Gij terms 
that contain the product of e± distributions are even functions. Hence the term involving the 
integral of yz vanishes by antisymmetry.

B.4. νe± → νe±

Using Eq. (31), the matrix elements for neutrino e± scattering can be simplified to

S|M|2 = A

(
s − m2

e

2

)2

+ B

(
s + t − m2

e

2

)2

+ Cm2
e

t

2
(B.13)

where the coefficients A, B , C are given in Table B.7.
The integral of each of these terms is

2π∫
0

(s − m2
e)

2

4
dψ = π

(s − m2
e)

2

2
, (B.14)

2π∫
0

(s + t (ψ) − m2
e)

2

4
dψ

= π

16s2

(
s − m2

e

)2(3m4
e + 2m2

es + 3s2)+ π

4s2

(
s − m2

e

)3(
s + m2

e

)
yz

− π

16s2

(
s − m2

e

)4(
y2 + z2)+ 3π

16s2

(
s − m2

e

)4
y2z2, (B.15)

2π∫
m2

e

t (ψ)

2
dψ = − π

2s
m2

e

(
s − m2

e

)2
(1 − yz). (B.16)
0
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Therefore we have

2π∫
0

S|M|2(s, t (ψ)
)
dψ = π

[
A

2
+ B

16s2

(
3m4

e + 2m2
es + 3s2)− C

2s
m2

e

](
s − m2

e

)2

+ π

[
B

4s2

(
s − m2

e

)(
s + m2

e

)+ C

2s
m2

e

](
s − m2

e

)2
yz

− B
π

16s2

(
s − m2

e

)4(
y2 + z2)+ B

3π

16s2

(
s − m2

e

)4
y2z2

≡ πq(me, s, y, z) (B.17)

and

r = r ′ = s − m2
e√

s
, q0 = (q ′)0 = −m2

e√
s
, δ = p√

s
, α = p0

√
s
. (B.18)

Mνe→νe = 1

128(2π)5

∞∫
m2

e

∞∫
0

(
1 − m2

e/s
)2( 1∫

−1

1∫
−1

q(me, s, y, z)G34
(
p0,
(
q ′)0α − r ′δy

)

× G12
(
p0, q0α − rδz

)
dydz

)
p2

p0
dpds. (B.19)

As above, after scaling s, p, and me by the appropriate powers of T we obtain a prefactor of 
T 8. If we want to emphasize the role of A, B, C then we write Mνe→νe(A, B, C). Note that this 
expression is also linear in (A, B, C) ∈R

3.

B.5. Total collision integral

We now give the total collision integrals for neutrinos. In the following, we indicate which 
distributions are used in each of the four types of scattering integrals discussed above by us-
ing the appropriate subscripts. For example, to compute Mνeν̄μ→νeν̄μ we set G1,2 = ψ̂j f

1f 2, 
G3,4 = f3f4, f1 = ψ̂j fνe , f3 = fνe , and f2 = f4 = fν̄μ in the expression for Mνν̄→νν̄ from 
Appendix B.3 and then, to include the reverse direction of the process, we must subtract the 
analogous expression whose only difference is G1,2 = ψ̂j f1f2, G3,4 = f 3f 4. With this notation 
the collision integral for νe is

Mνe = [Mνeνe→νeνe + Mνeνμ→νeνμ + Mνeντ →νeντ ]
+ [Mνeν̄e→νeν̄e + Mνeν̄e→νμν̄μ + Mνeν̄e→ντ ν̄τ + Mνeν̄μ→νeν̄μ + Mνeν̄τ →νeν̄τ ]
+ Mνeν̄e→e+e− + [Mνee−→νee− + Mνee+→νee+] (B.20)

Symmetry among the interactions implies that the distributions of νμ and ντ are equal. We 
also neglect the extremely small matter–anti-matter asymmetry and so we take the distribution 
of each particle to be equal to that of the corresponding antiparticle. Therefore there are only 
three independent distributions, fνe , fνμ , and fe and so we can combine some of the terms in 
Eq. (B.20) to obtain
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Mνe = Mνeνe→νeνe

(
64G2

F

)+ Mνeνμ→νeνμ

(
2 × 32G2

F

)+ Mνeν̄e→νeν̄e

(
128G2

F

)
+ Mνeν̄e→νμν̄μ

(
2 × 32G2

F

)+ Mνeν̄μ→νeν̄μ

(
2 × 32G2

F

)
+ Mνeν̄e→e+e−

(
128G2

F g2
L,128G2

F g2
R,128G2

F gLgR

)
+ Mνee→νee

(
128G2

F

(
g2

L + g2
R

)
,128G2

F

(
g2

L + g2
R

)
,256G2

F gLgR

)
. (B.21)

Introducing one more piece of notation, we use a subscript k to denote the orthogonal polynomial 
basis element that multiplies f1 or f 1 in the inner product. The inner product of the kth basis 
element with the total scattering operator for electron neutrinos is therefore

Rk = 2π2T −3Mk,νe . (B.22)

Under these same assumptions and conventions, the total collision integral for the combined νμ, 
ντ distribution (which we label νμ) is

Mνμ = Mνμνμ→νμνμ

(
64G2

F + 32G2
F

)+ Mνμνe→νμνe

(
32G2

F

)+ Mνμν̄μ→νeν̄e

(
32G2

F

)
+ Mνμν̄μ→νμν̄μ

(
128G2

F + 32G2
F + 32G2

F

)+ Mνμν̄e→νμν̄e

(
32G2

F

)
+ Mνμν̄μ→e+e−

(
128G2

F g̃2
L,128G2

F g2
R,128G2

F g̃LgR

)
+ Mνμe→νμe

(
128G2

F

(
g̃2

L + g2
R

)
,128G2

F

(
g̃2

L + g2
R

)
,256G2

F g̃LgR

)
, (B.23)

Rk = 2π2T −3Mk,νμ. (B.24)

B.6. Conservation laws and scattering integrals

For some processes, some of the Rk’s vanish exactly. As we now show, this is an expression 
of various conservation laws. First consider processes in which f1 = f3 and f2 = f4, such as 
e±ν → e±ν. Since m1 = m3 and m2 = m4 we have r = r ′, q0 = (q ′)0. The scattering terms are 
all two dimensional integrals of some function of s and p multiplied by

Ik ≡
1∫

−1

[ 1∫
−1

( 2π∫
0

S|M|2(s, t(cos(ψ)

√
1 − y2

√
1 − z2 + yz

))
dψ

)

× f1
(
h1(y)

)
f2
(
h2(y)

)
dy

]
f 1

k

(
h1(z)

)
f 2(h2(z)

)
dz (B.25)

−
1∫

−1

[ 1∫
−1

( 2π∫
0

S|M|2(s, t(cos(ψ)

√
1 − y2

√
1 − z2 + yz

))
dψ

)

× f 1(h1(y)
)
f 2(h2(y)

)
dy

]
f1,k

(
h1(z)

)
f2
(
h2(z)

)
dz (B.26)

h1(y) = (p0 + (q ′)0α − r ′δy
)
/2, h2(y) = (p0 − q0α + rδy

)
/2,

f1,k = ψ̂kf1, f 1
k = ψ̂kf

1. (B.27)

For k = 0, ψ̂0 is constant. After factoring it out of Ik , the result is obviously zero and so R0 = 0.
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We further specialize to a distribution scattering from itself, i.e. f1 = f2 = f3 = f4. Since 
m1 = m2 and m3 = m4 we have q0 = (q ′)0 = 0 and

h1(y) = (p0 − r ′δy
)
/2, h2(y) = (p0 + rδy

)
/2. (B.28)

By the above, we know that R0 = 0. ψ̂1 appears in I1 in the form ψ̂1(h1(z)), a degree one 
polynomial in z. Therefore R1 is a sum of two terms, one which comes from the degree zero part 
and one from the degree one part. The former is zero, again by the above reasoning. Therefore, 
to show that R1 = 0 we need only show I1 = 0, except with ψ̂1(h1(z)) replaced by z. Since 
h1(−y) = h2(y), changing variables y → −y and z → −z in the following shows that this term 
is equal to its own negative, and hence is zero

1∫
−1

[ 1∫
−1

( 2π∫
0

S|M|2(s, t(cos(ψ)

√
1 − y2

√
1 − z2 + yz

))
dψ

)
f1
(
h1(y)

)
f1
(
h2(y)

)
dy

]

× zf 1(h1(z)
)
f 1(h2(z)

)
dz (B.29)

−
1∫

−1

[ 1∫
−1

( 2π∫
0

S|M|2(s, t(cos(ψ)

√
1 − y2

√
1 − z2 + yz

))
dψ

)

× f 1(h1(y)
)
f 1(h2(y)

)
dy

]
zf1
(
h1(z)

)
f1
(
h2(z)

)
dz. (B.30)

We note that the corresponding scattering integrals do not vanish for the chemical equilibrium 
spectral method employed in [17,18]. This is another advantage of the method outlined in Sec-
tion 3.1. Further differences are discussed in Section 6.1.

Finally, we point out how the vanishing of these inner products is a reflection of certain con-
servation laws. From Eq. (7), Eq. (26), and the fact that ψ̂0, ψ̂1 span the space of polynomials 
of degree ≤ 1, we have the following expressions for the change in number density and energy 
density of a massless particle

1

a3

d

dt

(
a3n
)= gp

2π2

∫
1

E
C[f ]p2dp = c0R0, (B.31)

1

a4

d

dt

(
a4ρ
)= gp

2π2

∫
C[f ]p2dp = d0R0 + d1R1 (B.32)

for some c0, d0, d1. Therefore, the vanishing of R0 is equivalent to conservation of comoving 
particle number. The vanishing of R0 and R1 implies ρ ∝ 1/a4, i.e. that the reduction in energy 
density is due entirely to redshift; energy is not lost from the distribution due to scattering. These 
findings match the situations above where we found one or both of R0 = 0, R1 = 0. R0 vanishes 
for scattering processes that exchange momentum but don’t change particle number. Both R0

and R1 vanished for a distribution scattering from itself and in such a process one expects that 
no energy is lost from the distribution by scattering, it is only redistributed among the particles 
corresponding to that distribution.
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Fig. C.6. Photon–neutrino νμ, ντ temperature ratios (left) and neutrino fugacities (right), as functions of Weinberg angle 
for η = η0.

Fig. C.7. Photon–neutrino νμ , ντ temperature ratios (left) and neutrino fugacities (right), as functions of relative interac-
tion strength η/η0 for sin2 θW = 0.23. Vertical line is sin2 θW = 0.23.

Appendix C. Temperature ratios and fugacities

We complement the results presented in Section 4.2 with photon to neutrino temperature ratios 
Tγ /Tνe , Tγ /Tνμ = Tγ /Tντ , and the neutrino fugacities, Υνe, Υνμ = Υντ , both results are shown 
in Figs. C.6 and C.7, varying only one of the two parameters.

We further show least squares fits to all these quantities for the range 0 ≤ sin2 θW ≤ 1, 1 ≤
η/η0 ≤ 10 with relative error less than 0.2%

Tγ

Tνμ

= 1.401 + 0.015x − 0.040x2 + 0.029x3 − 0.0065y + 0.0040xy − 0.017x2y, (C.1)

Υνe = 1.001 + 0.011x − 0.024x2 + 0.013x3 − 0.005y − 0.016xy + 0.0006x2y, (C.2)
Tγ

Tνe

= 1.401 + 0.015x − 0.034x2 + 0.021x3 − 0.0066y − 0.015xy − 0.0045x2y, (C.3)

Υνμ = 1.001 + 0.011x − 0.032x2 + 0.023x3 − 0.0052y + 0.0057xy − 0.014x2y. (C.4)
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where

x ≡ sin2 θW , y ≡
√

η

η0
. (C.5)

As mentioned in Section 4.1, neutrino oscillations are neglected in these results. Presumably, 
incorporating this effect would lead to a closer match between the fugacities and temperature 
ratios of the different neutrino flavors.
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