FEBS Letters 351 (1994) 119-122

FEBS 14450

Molecular cloning and expression of a prostaglandin E_2 receptor of the $EP_{3\beta}$ subtype from rat hepatocytes

Frank Neuschäfer-Rube, Christa DeVries, Kristina Hänecke, Kurt Jungermann, Gerhard P. Püschel*

Institut für Biochemie und Molekulare Zellbiologie, Humboldtallee 23, Georg-August-Universität, Göttingen, Germany

Received 6 July 1994

Abstract

Rat hepatocytes have previously been reported to possess prostaglandin E_2 receptors of the EP₃-type (EP₃-receptors) that inhibit glucagonstimulated glycogenolysis by decreasing cAMP. Here, the isolation of a functional EP₃₀ receptor cDNA clone from a rat hepatocyte cDNA library is reported. This clone can be translated into a 362-amino-acid protein, that displays over 95% homology to the EP₃₀ receptor from mouse mastocytoma. The amino- and carboxy-terminal region of the protein are least conserved. Transiently transfected HEK 293 cells expressed a single binding site for PGE₂ with an apparent K_d of 15 nM. PGE₂ > PGF_{2α} > PGD₂ competed for [³H]PGE₂ binding sites as did the EP₃ receptor agonists M&B 28767 = sulprostone > misoprostol but not the EP₁ receptor antagonist SC 19220. In stably transfected CHO cells M&B 28767 > sulprostone = PGE₂ > misoprostol > PGF_{2α} inhibited the forskolin-elicited cAMP formation. Thus, the characteristics of the EP₃₀ receptor of rat hepatocytes closely resemble those of the EP₃₀ receptor of mouse mastocytoma.

Key words: Prostaglandin receptor; Hepatocyte (rat); Molecular cloning and expression

1. Introduction

Hepatocyte carbohydrate metabolism has been shown to be modulated by prostaglandins in two opposing ways: In unstimulated rat hepatocytes prostaglandins $F_{2\alpha}$, E_2 and D_2 increased InsP₃ formation, glycogen phosphorylase activity and glucose output apparently via PGF_{2a} receptors (FP receptors) and PGE₂ receptors of the subtype 1 (EP_1 receptors) that are linked to phospholipase C by a G_0 protein [1–5]. In contrast, in rat hepatocytes stimulated with glucagon PGE₂ and to a lesser extent $PGF_{2\alpha}$ and PGD_2 inhibited the glucagoninduced increase in cAMP formation, glycogen phosphorylase activity and glucose output. These latter effects were mediated via PGE₂ receptors of the subtype 3 (EP₃ receptors) that inhibit adenylate cyclase via a pertussis toxin sensitive G_i protein [3,6-8]. Rat hepatocytes may also contain PGE₂ receptors of the subtype 2 $(EP_2 \text{ receptors})$ which activate adenylate cyclase via a G_s protein [3,6].

In the last three years structural information about prostanoid receptors, that had so far been charaterized only pharmacologically, has been gained by molecular cloning and expression [9,10]. The sequence data available on the human thromboxane A_2 receptor [11] and the mouse mastocytoma PGE₂ receptor (subtype EP₃) [12, 13] made it possible to characterize the rat hepatic prostaglandin receptors on a molecular level. Here, as a first hepatic prostaglandin receptor, the molecular cloning, expression and characterization of the rat hepatocyte PGE₂ receptor of the EP₃ θ subtype is reported.

2. Materials and methods

2.1. Materials

All materials were of analytical grade and from commercial sources. M&B 28767, sulprostone, misoprostol and SC-19920 were generous gifts from Rhone-Poulenc Rorer (Dagenham, UK), Schering Pharmaceutical (Berlin, Germany) and Searle (Skokie, USA), respectively. [³H]PGE₂ was obtained from Amersham (Braunschweig, Germany), unlabeled prostaglandins were purchased from Paesel (Frankfurt, Germany) or Cascade (Berkshire, UK). Geneticin (G-418 sulphate) was obtained from Gibco-BRL (Eggenstein, Germany) and forskolin was from ICN (Meckenheim, Germany). The sources of other materials are given in the text.

2.2. Hepatocyte purification

Hepatocytes were isolated from male Wistar rats (200–260 g) according to Meredith [14] without the use of collagenase by perfusion with Ca^{2+} -free Krebs-Henseleit buffer containing 2 mM EDTA as described previously [3]. The bulk of detritus and non-parenchymal cells were removed by repeated sedimentation of hepatocytes at 50 × g. Viable hepatocytes were further purified by centrifugation through a gradient containing 58% Percoll.

2.3. PCR-amplification of EP₃ receptor cDNA fragments

Total RNA was isolated from purified hepatocytes by CsCl gradient centrifugation [15]. Poly(A)⁺ mRNA was prepared by affinity purification using oligo-(dT) beads from Quiagen (Rathingen, Germany) according to the manufacturer's instructions. First strand cDNA was synthesized by reverse transcription using oligo-(dT)₁₂₋₁₈ (Pharmacia,

^{*}Corresponding author. Fax: (49) (551) 395 960.

Abbreviations: CHO cells, chinese hamster ovary cells; DMEM, Dulbecco's modified eagle medium; FCS, fetal calf serum; HEK cells, human embryonal kidney cells; IBMX, 3-isobutyl-1-methylxanthine; PCR, polymerase chain reaction; PG, prostaglandin.

The sequence has the EMBL Data Library accession number: X80133 *R. norvegicus* mRNA for hepatocyte EP3 beta receptor.

Freiburg, Germany) as a primer. PCR was carried out using 1–10 ng first strand cDNA as a template and oligonucleotide primers corresponding to position 651-680 and 1264-1293 of the mouse EP₃ sequence [13]. Thirty-five cycles of PCR were performed with the following temperature profile: 40 s 95°C, 40 s 60°C and 1.5 min 72°C. A 640 bp and a 730 bp fragment were amplified and cloned into PUC18 (Pharmacia). Nucleotide sequence analysis was carried out on double stranded templates using the dideoxy chain termination method [16]

2.4. EP₃ receptor cDNA cloning

Rat hepatocyte cDNA was prepared from hepatocyte poly(A)+ RNA by an oligo-(dT) priming method using a cDNA synthesis kit (Pharmacia) and inserted into the *Eco*RI site of $\lambda gt11$ (Gibco-BRL) DNA with *Eco*RI adaptors including an internal *Not*I site (Pharmacia). The 10⁶ clones derived from this library were screened by hybridisation with the cloned 640 and 730 bp EP₃ receptor probes labelled with digoxigenin by PCR replacing 5% of the dTTP by 11-digoxygenindUTP. Positive plaques were isolated and analysed with restriction digestion and PCR. The cDNAs of three clones were amplified by PCR using primers flanking the *Eco*RI cloning site, subcloned into PUC18 and sequenced.

2.5. Transient expression of the EP₃ receptor cDNA in HEK293 cells The full-length 2.0-kb NotI cDNA fragment of one clone (clone 15/1) was subcloned into the eucaryotic expression vector pcDNA I (Invitrogen, San Diego, USA). The resultant plasmid was transfected into HEK293 cells by a calcium phosphate method using 5% (v/v) modified bovine serum from Stratagene (La Jolla, USA). Cells were cultured for 72 h in DMEM with 10% FCS and then scraped into a homogenization buffer containing 25 mM Tris-HCl pH 7.5, 250 mM sucrose, 10 mM MgCl₂, 1 mM EDTA and 1 mM phenyl-methyl-sulfonyl-fluoride (PMSF). After homogenization of the cells in a dounce homogenizer a crude membrane fraction was prepared by centrifugation of the homogenate at $100,000 \times g$. The resulting pellet was suspended in binding buffer containing 25 mM Tris-HCl pH 6.2, 10 mM MgCl₂ and 1 mM EDTA and stored at -20° C.

2.6. PGE_2 binding assays with membranes of transfected HEK293 cells For ligand binding membranes (20-50 µg protein) were incubated with 5 nM [³H]PGE₂ and various concentrations of unlabelled prostaglandins, receptor agonists and antagonists in 100 µl binding buffer for 1 h at 20°C. Non-specific binding was determined in presence of 10 µM PGE₂. Bound and unbound ligand were separated by rapid vacuum filtration through GF 52 filters (Schleicher and Schüll, Dassel, Germany) [17]. Filters were washed with 4 ml ice-cold binding buffer. Radioactivity retained on the filter was counted in 5 ml Hydroluma (Baker, Deventer, NL). Binding constants were calculated by non-

2.7. Stable expression of EP₃ receptor cDNA in CHO cells

linear regression analysis (LIGAND [18]).

The full-length 2.0-kb NotI cDNA fragment of clone 15/1 was subcloned into the eucaryotic expression vector pRc/CMV (Invitrogen). 20 μ g of the resultant plasmid were linearized and transfected into 10⁷ CHO cells by electroporation. Transfectants were isolated by growing the cells in HAM F-12 medium containing 10% (v/v) FCS and 1.2 mg/ml G-418 as substrate of the selection marker aminoglycoside phosphotransferase (NEO). Clonal cell lines were isolated by single cell cloning and tested for expression by PGE₂ binding and inhibition of forskolin-induced cAMP formation.

2.8. cAMP-formation in transfected CHO cells

CHO cells expressing the cDNA of clone 15/1 were cultured in 3.5 cm diameter plates to a density of 5×10^5 in HAM-F12 medium containing 10%(v/v) FCS. Cells were washed 3 times with 1 ml HEPES buffer pH 7.4 containing 140 mM NaCl, 4.7 mM KCl, 2.2 mM CaCl₂, 1.2 mM KH₂PO₄, 11 mM glucose and 15 mM HEPES and then preincubated in 1 ml of the same buffer with 1 mM IBMX at 37°C for 10 min. Then prostaglandins, receptor agonists and forskolin (1 μ M) were added in a volume of 10 μ l buffer to the final concentration indicated. After incubation for 10 min the reaction was stopped by removing the buffer and freezing the cells in liquid nitrogen. Cells were lysed in 500 μ l 10 mM HCl containing 1 mM IBMX for 1 h at 4°C. The lysate was centrifuged and cAMP was quantified in the supernatant with a [¹²⁵I]cAMP assay kit of Amersham.

3. Results and discussion

3.1. Sequence of the rat hepatocyte EP₃ receptor

Hepatocyte cDNA was used as template for PCR. The primer corresponded to position 651–680 and 1264–1293 of the published sequence of the mouse mastocytoma EP_3 receptor [13]. PCR yielded two products of about 640 and 730 bp (not shown) as described for mouse kidney, uterus, stomach and lung [13]. The PCR products were cloned into PUC 18 and partially sequenced. They showed high homology to the a and β splice variants of the mouse mastocytoma EP3 receptor, which contain 365 and 361 amino acids, respectively and differ only in their C-terminal peptide [13]. Both PCR products were labelled with digoxigenin and used to screen a rat hepatocyte cDNA library in λ gt11. Three cDNA clones were isolated.

Clone 15/1 was subcloned into PUC 18 and sequenced in both directions. An open reading frame of 1086 bp

-102 AGCAGAGCCCCGGGCCCGCGCCTCCGCGCCCCGCCGCCGCCGCCGC													-61 -1							
AI	'GGC	CGG	CGT	GTG	GGG	GCC	GGF	GCA	стс	GGT	TG	AGO	GCI	CAG	CAR	CC I	GTC	AAC	TACT	60
М	A	G	v	W	A	₽	Е	н	s	V	E	A	Н	S	N	Q	S	S	A	20
GC	CGF	CGG	CTG	CGG	CTC	TGI	GTC	CGI	GGC	CTI	rcco	CAD	CAC	CAT	GAT	GG'I	CAC	TGC	CTTC	120
A	ď	G	С	G	s	v	s	v	A	F	Ρ	I	Т	M	м	V	Т	G	F	40
GI	GGG	CAA	ccc	GCI	GGC	CAT	GTI	CCT	TGT	GTC	GCC	CAC	CT7	TAC	ACO	cce	GGA	GAG	CAAA	180
V	G	N	A	L	A	м	L	L	V	S	R	s	Y	R	R	R	Е	s	к	60
co		ב מממ	GTC	ուսո	000	COT	1C/Pr	יריאיד	mee		COT			0.00		COM		• ccc	CCAC	240
R	ĸ	K	S	F	L	L	C	Ĩ	G	W	L	A	L	T	D.	L	V	G	O	240
			٠					_											II	
СТ	ссл	GAC	CAG	TCC	GG'I	GGT	CAT	CCT	CGT	GTA	CCI	GTO	GCP	GCG	ACC	СТС	GGA	GCA	ACTC	300
L	Ŀ	T	S	P	v	v	I	_ L	v	Y	L	s	Q	R	R	W	Е	Q	L	100
GA	crc	ልጥሮ	ccc	ccc	CCT	GTC	cac	CTT	COM	ccc	<u>сс</u> т	~ ~ ~ ~	יריאיז		acr	COM	ecc	200	CTCC	260
D	₽	S	G	R	L	C	T	F	F	G	L	T	M	T	V	F	G	L	S	120
												<u> </u>			-			11	1	
TC	GCI	CTT	GGT	GGC	CAG	CGC	CAT	GGC	CGT	GGA	GCG	CGC	cci	Gec	TAT	CCG	TGC	ecc	GCAC	420
<u>s</u>	_Ľ	Г	v	A	S	A	<u>M</u>	A	<u>v</u>	Е	R	Α	г	А	I	R	А	Ρ	н	140
ΤG	GTA	TGC	CAG	CCA	CAT	GAA	GAC	TCG	ccc	CAC	GCG	CGC	GGT	ACT	GCT	GGG	TGT	GTG	GCTG	480
w	Y	A	s	н	м	к	т	R	A	т	R	<u>A</u>	v	L	L	G	v	W	L	160
тс	ŤGT	GCT	CGC	CTT	CGC	сст	ഹൗ	ററ	TGT	GCT	666	CGT	acc	cra	ሮሞል	CAC		cr a	GTGG	540
s	v	Ľ	A	F	A	L	L	P	v	L	G	v	G	R	Ŷ	S	v	001	W W	180
	I	v											-							
CC	CGG	CAC	GTG	GTG	CTT	CAT	CAG	CAC	CGG	GCC	GGC	GGG	CAA	CGA	GAC	GGA	CTC	TGC	GCGG	600
Р	G	т	w	C	r	Т	S	т	G	P	А	G	N	Е	т	D	s	A	R	200
GA	GCC	GGG	റംപ	CGT	GGP	ርሞም	ጥርር	CTC	റററ	CTT	rar	CTC	TCT	ACC	ርሞሞ	CCT	ccc	ጥሮሞ	CCTG	660
E	P	G	5	v	A	F	A	s	A	F	A	C	L	G	L	L	A	L	V V	220
					~												v	_		
GT	GAC	CTT	Tec	CTG	CAA	CCT	eec	GAC	CAT	CAA	AGC	CCT	GGT	GTC	CCG	CTG	cce	GGC	CAAA	720
<u>v</u>	_ <u>r</u> _	F.	<u>A</u>	C	N	<u>ь</u>	A	т		к	A	Г	v	S	R	С	R	A	к	240
GC	CGC	CGC	CTC	GCA	GTC	CAG	cGC	CCA	GTG	GGG	ccg	GAT	CAC	CAC	GGA	GAC	GGC	тат	CCAG	780
A	A	A	s	Q	s	s	A	2	w	G	R	I	T	T	E	T	A	I	Q	260
																			-	
CT	TAT	GGG	GAT	CAT	GTG	TGT.	ACT	GIC	CGT	CTG	CTG	GTC	ecc	GCT	ATT	GAT	AAT	GAT	GCTG	840
т.	<u>M</u>	G	1	M	ç	<u>v</u>	<u> </u>	s	V		W		P	<u> </u>	г_	I	M	M	L	280
AA	ААТ	GAT	CTT	CAA	TCA	GAT	GTC	AGT	AGA	GCA	ጋጥል	CAA	GAC	GCA	GAT	GGG	ΔΔΔ	GGA	GAAG	900
к	м	I	F	N	Q	м	s	v	Е	Q	c	ĸ	т	Q	M	G	к	E	ĸ	300
GA	GTG	CAA	TTC	CTT	CCT.	AAT	cgc	CGT	TCG	сст	GGC	TTC	GCT	GAA	CCA	GAT	CTT	GGA	TCCC	960
Е	C	N	5	r	<u> </u>	1	A	V	ĸ	<u> </u>	A		1	N	-0	1	Р_	_D	P	320
ΤG	GGT	TTA	TCT	GCT	GC'T.	AAG	ААА	GAT	CCT	тст	TCG	ААА	GTT	CTG	CCA	GAT	GAT	GAA	CAAC	1020
W	v	Y	L	L	г	R	к	I	L	L	R	к	F	С	Q	М	М	N	N	340
										_					_					
CT	GAA	GCG	GAG	TTT	CAT	TGC.	AAT.	ACC	TGC	TTC	CCT	GAG	TAT	GAG.	AAT	TTC	TTC	ccc	CAGG	1080
Ъ	к	ĸ	5	Ľ.	T	A	Ţ	Б	A	S	Г	s	м	К	1	S	S	Р	к	360
GA.	AGG.	ATA	ACT	GAA	TCA	TTT	TGG	ATT	GTA											1109
	6	*			1				•											362

Fig. 1. Nucleotide and deduced amino acid sequence of the rat hepatocyte $EP_{3\beta}$ receptor. Amino acids differing from the mouse mastocytoma $EP_{3\beta}$ receptor are printed in bold face, putative transmembrane regions are underlined and numbered with roman numerals. Potential phosphorylation sites for protein kinase A and N-glycosylation sites are marked by diamonds and hearts, respectively. could be translated into a 362 amino acid protein (Fig. 1). The protein displayed >95% sequence homology with the mouse mastocytoma $EP_{3\beta}$ receptor [13]. While this work was in progress additional prostaglandin receptors have been cloned. The rat $EP_{3\beta}$ receptor showed 85% homology to the human [19] and 83% to the rabbit [20] kidney $EP_{3\alpha}$ receptor. Sequence homologies to mouse mastocytoma EP_1 , EP_2 , and mouse ovary FP receptors [21–23] were below 50%. Non-conservative exchanges were clustered in the N- and C-terminal domain.

The sequence-deduced molecular mass was 39628 Da. Hydrophobicity analysis indicated the existence of 7 membrane spanning domains and a hydrophobic C-terminus similar to the mouse EP38 receptor. Protein kinase A phosphorylation sites (Ser-59 and Ser-64) and N-glycosylation sites (Asn-16 and Asn-194) described for the mouse mastocytoma $EP_{3\beta}$ receptor and the $EP_{3\alpha}$ receptor from rat kidney [24] were preserved. In the middle of the cDNA (position 453-459) an additional triplet was located. Thereby a proline was replaced by an Arg and Ala which are not present in the mouse $EP_{3\alpha}$ and $EP_{3\beta}$ [13] receptor and the $EP_{3\alpha}$ receptor from rat kidney [24], yet were found in the $EP_{3\alpha}$ receptor from human [19] and rabbit [20] kidney. The C-terminal β -peptide of the mouse mastocytoma $EP_{3\beta}$ receptor contains 3 Ser and 1 Thr, that are 4 potential phosphorylation sites which have been proposed to play a role in the regulation of the signalling activity of ligand-occupied receptors [13]. Notably, all these potential phosphorylation sites in the C-terminal β peptide are conserved. Yet Thr-343 of the mouse mastocytoma β peptide is replaced by Ser-344 in the rat hepatocyte EP₃₆ receptor. Futhermore, Gly-352 of the mouse mastocytoma $EP_{3\beta}$ receptor is replaced by a Ser-353 of the rat hepatocyte $EP_{3\beta}$ receptor. Thus, the rat EP₃₈ receptor C-terminal peptide contains an additional potential phosphorylation site.

3.2. Ligand binding properties of the transiently expressed $EP_{3\beta}$ receptor

The cDNA of clone 15/1 was subcloned into pcDNA I and transiently expressed in HEK293 cells. Membranes of the cells transfected with pcDNA I 15/1, in contrast to membranes of mock transfected cells, expressed a unique PGE₂ binding site with an apparent K_d of 15 nM. About 0.6 pmol receptor per mg membrane protein were expressed. $PGF_{2\alpha}$ and PGD_2 competed with [³H]PGE₂ for its binding site with about 100- and 1000-fold lower affinity, respectively (Fig. 2). The EP₃ receptor subtype agonists M&B 28767 and sulprostone had a slightly higher affinity for the PGE₂ binding site than had PGE_2 (Fig. 2), whereas the EP₃ receptor agonist misoprostol had a roughly 10-fold lower affinity. The EP₁ receptor ligand SC 19920 did not compete with [³H]PGE₂. The ligand binding properties are similar to those described for the $EP_{3\beta}$ receptor of mouse mastocytoma [13] except

Fig. 2. Competition by PGE₂, PGF_{2a}, PGD₂, M&B 28767, sulprostone, misoprostol and SC 19920 of [³H]PGE₂ binding to membranes of pcDNA I 15/1 transfected HEK293 cells. HEK293 cells were transfected with the pcDNA I 15/1 construct. Binding of 5 nM [³H]PGE₂ was measured after 1 h at 20°C in presence of the concentrations of unlabelled prostaglandins and their analogs indicated. MandB 28767, sulprostone and misoprostol are EP₃ receptor agonists, SC 19920 is an EP₁ receptor antagonist. [³H]PGE₂ binding in presence of 10 μ M PGE₂ was defined as unspecific binding.

that the apparent K_d for PGE₂ binding was about 5-fold higher.

3.3. Functional properties of the stably expressed EP_3 receptor

Clone 15/1 was subcloned into pRc/CMV and stably expressed in CHO cells. Expression of a PGE₂ binding site was about 10-fold lower than in HEK293 cells transiently transfected with pcDNA I 15/1 (not shown). In transfected CHO cells PGE₂ inhibited the forskolin-induced cAMP formation up to 60% (Fig. 3). About 10 nM PGE₂ caused a half-maximal inhibition. 50-fold higher concentrations of $PGF_{2\alpha}$ were needed for half-maximal inhibition. PGD₂, despite of its binding to the PGE₂ receptor, did not significantly reduce forskolin-induced cAMP formation in CHO cells. The EP₃ subtype agonists M&B 28767, sulprostone and misoprostol inhibited forskolin-induced cAMP formation with decreasing potency (Fig. 3). The concentrations of prostaglandins and their analogs that inhibited forskolin-stimulated cAMP formation half-maximally were in the same concentration range as needed for 50% competition of

Fig. 3. Inhibition of forskolin-stimulated cAMP formation in pRc/ CMV 15/1 transfected CHO cells by PGE₂, PGF₂, PGD₂, M&B 28767, sulprostone and misoprostol. CHO cells were stably transfected with the pRc/CMV 15/1 construct. cAMP formation induced by 1 μ M forskolin after 10 min at 37°C in presence of the concentrations indicated of PGE₂, PGF₂, PGD₂ or the EP₃ receptor agonists M&B 28767, sulprostone and misoprostol was determined by radioimmuno assay. cAMP formation in absence of prostaglandins was set equal to 100%.

 $[{}^{3}H]PGE_{2}$ binding. Mock transfected CHO cells did neither express a PGE₂ binding site nor was forskolin-stimulated cAMP formation inhibited by PGE₂.

The functional properties of the cloned rat hepatocyte $EP_{3\beta}$ receptor were very similar to those of the mouse mastocytoma $EP_{3\beta}$ receptor [13], yet differed slightly from the properties of the G_i coupled PGE₂ receptor in isolated rat hepatocytes [3]. In hepatocytes glucagoninduced cAMP formation was inhibited by PGE₂. For half-maximal inhibition of glucagon-induced cAMP formation in hepatocytes about 30-fold higher concentrations of PGE₂ were needed then for half-maximal inhibition of forskolin-induced cAMP formation in transfected CHO cells. Furthermore, in hepatocytes misoprostol and sulprostone had a roughly identical ED₅₀ for the inhibition of glucagon-induced cAMP formation, whereas in transfected CHO-cells sulprostone was clearly more potent than misoprostol. This might be due to a different equipment with G_i proteins in hepatocytes and CHO cells. It might also be due to differences in the metabolism of prostaglandin E₂ and its analogs by hepatocytes and CHO cells. PGE₂ is very rapidly inactivated and degraded in hepatocyte cultures and suspensions by peroxysomal β -oxidation, o-oxydation and oxidation of the C-15 OH group [25]. It is, therefore, not clear at present whether the newly cloned EP_{3 β}-receptor from rat hepatocytes is involved in the inhibition of glucagon-induced cAMP formation, glycogen phosphorylase activation and glucose output from rat hepatocytes.

Acknowledgements: This work was supported by the Deutsche Forschungsgemeinschaft through the Sonderforschungsbereich 236, Teilprojekt A11.

References

- Athari, A. and Jungermann, K. (1989) Biochem. Biophys. Res. Commun. 163, 1235-1242.
- [2] Mine, T., Kojima, I. and Ogata, E. (1990) Endocrinology 126, 2831–2836.
- [3] Püschel, G.P., Kirchner, C., Schröder, A. and Jungermann, K. (1993) Eur. J. Biochem. 218, 1083–1089.
- [4] Püschel, G.P., Neuschäfer-Rube, F., Kirchner, C., Schröder, A. and Jungermann, K. (1993) Hepatology 18, 206A.
- [5] Püschel, G.P., Miura, H., Neuschäfer-Rube, F. and Jungermann, K. (1993) Eur. J. Biochem. 217, 305–311.
- [6] Melien, O., Winsnes, R., Refsnes, M., Gladhaug, I.P. and Christoffersen, T. (1988) Eur. J. Biochem. 172, 293–297.
- [7] Okumura, T., Sago, T. and Saito, K. (1988) Prostaglandins 36, 463-475.
- [8] Garrity, M.J., Reed, M.M. and Brass, E.P. (1989) J. Pharmacol. Exp. Ther. 248, 979–983.
- [9] Negishi, M., Sugimoto, Y. and Ichikawa, A. (1993) J. Lipid Res. 32, 417-434.
- [10] Thierauch, K.H., Dinter, H. and Stock, G. (1994) J. Hypertens. 12, 1–5.
- [11] Hirata, M., Hayashi, Y., Ushikubi, F., Yokota, Y., Kageyama, R., Nakanishi, S. and Narumiya, S. (1991) Nature 349, 617–620.
- [12] Sugimoto, Y., Namba, T., Honda, A., Hayashi, Y., Negishi, M., Ichikawa, A. and Narumiya, S. (1992) J. Biol. Chem. 267, 6463–6466.
- [13] Sugimoto, Y., Negishi, M., Hayashi, Y. Namba, T., Honda, A., Watabe, A., Hirata, M., Narumiya, S. and Ichikawa, A. (1993)
 J. Biol. Chem. 268, 2712–2718.
- [14] Meredith, M.J. (1988) Cell. Biol. Toxicol. 4, 405-425.
- [15] Chirgwin, J.M., Przybyla, A.E., MacDonald, R.J. and Rutter, W.J. (1979) Biochemistry 18, 5294–5299.
- [16] Sanger, F., Nicklen, S. and Coulson, A.R. (1977) Proc. Natl. Acad. Sci. USA 74, 5463–5437.
- [17] Neuschäfer-Rube, F., Püschel, G.P. and Jungermann, K. (1993) Eur. J. Biochem. 211, 163–169.
- [18] Munson, P.J. and Rodbard, D. (1980) Anal. Biochem. 107, 220-239.
- [19] Yang, J.H., Xia, M.H., Goetzl, E.J. and An, S.Z. (1994) Biochem. Biophys. Res. Commun. 198, 999–1006.
- [20] Breyer, R.M., Emeson, R.B., Tarng, J.L., Breyer, M.D., Davis, L.S., Abromson, R.M. and Ferrenbach, S.M. (1994) J. Biol. Chem. 269, 6163–6169.
- [21] Watabe, A., Sugimoto, Y., Honda, A., Irie, A., Namba, T., Negishi, M., Ito, S., Narumiya, S. and Ichikawa, A. (1993) J. Biol. Chem. 268, 20175–20178.
- [22] Honda, A., Sugimoto, Y., Namba, T., Watabe, A., Irie, A., Negishi, M., Narumiya, S. and Ichikawa, A. (1993) J. Biol. Chem. 268, 7759-7762.
- [23] Sugimoto, Y., Hasumoto, K., Namba, T., Irie, A., Katsuyama, M., Negishi, M., Kakizuka, A, Narumiya, S. and Ichikawa, A. (1994) J. Biol. Chem. 269, 1356–1360.
- [24] Takeuchi, K., Abe, T., Takahashi, N. and Abe, K. (1993) Biochem. Biophys. Res. Commun. 194, 885–891.
- [25] Huber, M. and Keppler, D. (1990) Prog. Liv. Dis. 9, 117-141.