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We consider the Cauchy problem of the Ostrovsky equation.
We first prove the time local well-posedness in the anisotropic
Sobolev space Hs,a with s > −a/2 − 3/4 and 0 � a � −1 by
the Fourier restriction norm method. This result include the time
local well-posedness in Hs with s > −3/4 for both positive and
negative dissipation, namely for both βγ > 0 and βγ < 0. We next
consider the weak rotation limit. We prove that the solution of the
Ostrovsky equation converges to the solution of the KdV equation
when the rotation parameter γ goes to 0 and the initial data of
the KdV equation is in L2. To show this result, we prove a bilinear
estimate which is uniform with respect to γ .

© 2009 Elsevier Inc. All rights reserved.

1. Introduction

We consider the initial value problem of the Ostrovsky equation as follows:

{
∂t u + c∂xu + αu∂xu − β∂3

x u = γ ∂−1
x u, (x, t) ∈ R × [0,∞),

u(x,0) = ϕ(x), x ∈ R,
(1.1)

where u(x, t) is a real valued function, c, α, β and γ are real valued constant parameter. The Ostro-
vsky equation has some physical models (see, e.g. [1,5,8,9,29]). For example, it describes the gravity
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waves propagating down a channel under the influence of Coriolis force. The parameter γ mea-
sures the effect of the Earth’s rotation and is very small in real situations. When γ = 0, (1.1) is
the Korteweg-de Vries equation, which is completely integrable. However, when γ �= 0, (1.1) is known
to be not integrable [9,30]. Our aim is to study the effect of the rotating term, namely, to under-
stand differences and similarities between γ = 0 and γ �= 0. Existence and stability of solitary waves
and existence of traveling wave were studied in [16,21,22,24–27]. In the present paper, we consider
more fundamental problems. One is the well-posedness, which means the existence of solutions and
the uniqueness and the continuous dependence on initial data, the other is the convergence of the
solutions when γ → 0.

Before we proceed to our problems, for simpleness, we normalize parameters by the change of
variables and the scaling as follows:

c = 0, α = 1, β = +1 or − 1, γ ∈ R.

We first recall the known results for the KdV equation (γ = 0). In [3], Bourgain proved the time
local well-posedness in L2 by introducing the Fourier restriction norm method. In [19], Kenig, Ponce
and Vega proved refined bilinear estimates to extend Bourgain’s result to Hs with s > −3/4. Earlier
results can be found in [2,10,17,18]. The lifetime of the solutions by the time local well-posedness
results above, depends only on the size of the Hs norm of the initial data. Therefore, by combining
the L2 conservation law and time local results, we have the time global well-posedness in Hs with
s � 0. Since the KdV equation on Hs for s < 0 has no conservation law, it seemed difficult to consider
the long time behavior of solutions in Hs with s < 0. However, in [7], Colliander, Keel, Staffilani,
Takaoka and Tao overcame this difficulty and proved the time global well-posedness with s > −3/4
by introducing a regularizing Fourier multiplier operator I and calculating a modified energy defined
in Hs , which is called the “I-method”. The value s = −3/4 seems to be critical. Nakanishi, Takaoka and
Tsutsumi proved that the fundamental bilinear estimate used to prove the time local well-posedness
fails when s � −3/4 in [28]. Christ, Colliander and Tao proved the time local well-posedness with
s � −3/4 by studying the modified KdV equation and the Miura transform in [6]. They also proved
the time local ill-posedness with −1 � s < −3/4 in the sense that the solution operator fails to be
uniformly continuous with respect to the Hs norm (see also [4,20,31]).

We next recall the known results for well-posedness of the Ostrovsky equation (γ �= 0). Assume
that ϕ is in Hs ∩ Ḣ−1. Varlamov and Liu proved the time local well-posedness for s > 3/2 in [32].
Linares and Milanés extended this result to s > 3/4 in [23]. Huo and Jia extended this result to
s � −1/8 by the Fourier restriction norm method in [13]. In [14], Isaza and Mejia considered the case
ϕ ∈ Hs without Ḣ−1 assumption and proved the time local well-posedness for s > −3/4 with βγ < 0
and for s > −1/2 with βγ > 0. In [12], Gui and Liu also considered the case ϕ ∈ Hs without Ḣ−1

assumption and proved the time local well-posedness for s > −7/12 with βγ > 0. In [33], Wang and
Cui considered the case ϕ ∈ Hs,a

γ , which is defined below. They proved the time local well-posedness
for s > −5/8 and 0 � a > −1/2 with βγ < 0. There is a gap between these lower bounds of s and
the critical value of the KdV equation −3/4 when βγ > 0. In these papers, bilinear estimates plays
an important role. We have refined the bilinear estimate (see, Proposition 3.2) to obtain the following
theorem, which includes all results mentioned above.

Theorem 1.1. Let γ �= 0, β = +1 or −1 and ϕ ∈ Hs,a
γ . If s > −a/2 − 3/4 and 0 � a � −1, then (1.1) is time

locally well-posed. Moreover, we assume |γ | < Γ and −1/2 > a � −1. Then, the lifetime (i.e. the size of the
existence time of the solution) depends only on s, a, Γ and ‖ϕ‖Hs,a

γ
.

The definition of Hs,a
γ for s ∈ R and a � 0 is as follows:

Hs,a
γ = {

u ∈ S ′ ∣∣ ‖u‖Hs,a
γ

< +∞}
,

‖u‖Hs,a = ∥∥〈ξ〉s〈γ ξ−1〉−a
û(ξ)

∥∥,

γ
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where 〈·〉 = 1 + | · | and û = Fxu denote the Fourier transform with respect to x variable. Obviously,
we have

Hs,a
γ = Hs ∩ Ḣa when s � a,

Hs,a
γ ⊃ Hs ∩ Ḣa when s < a,

and

Hs,a
γ = Hs when a = 0.

Remark 1.1. When a = −1, the assumption on s in Theorem 1.1 is s > −1/4. When a = 0, the lower
bound of s of the assumption in Theorem 1.1 is −3/4, which is equal to the critical value of the KdV
equation. Since we cannot apply the Miura transform for the case γ �= 0, it seems difficult to prove
the time local well-posedness with s = −3/4.

The Ostrovsky equation has the L2 conservation law and the following a priori estimates.

Proposition 1.2. Let u be a solution of (1.1). Then, for −1 � a � 0, we have∥∥u(·, t)
∥∥2

L2 = ‖ϕ‖2
L2 , (1.2)

sup
0�t�T

∥∥u(·, t)
∥∥2

Ḣ−1 � C
(‖ϕ‖2

Ḣ−1 + T 4/3|γ |4/3‖ϕ‖10/3
L2

)
, (1.3)

sup
0�t�T

∥∥u(·, t)
∥∥2

H0,a
γ

� C
(‖ϕ‖2

H0,a
γ

+ T 4/3|γ |2‖ϕ‖10/3
L2

)
. (1.4)

By (1.4), we can extend the time local solutions in Theorem 1.1 to time global ones.

Theorem 1.3. Let γ �= 0, β = +1 or −1 and ϕ ∈ Hs,a
γ . If s � 0 and −1 � a � 0, then (1.1) is time globally

well-posed.

In [15], Isaza and Mejia proved a priori estimate by I-method and obtained the time global well-
posedness of (1.1) in Hs with s > −3/10 for both βγ > 0 and βγ < 0. However, the time global
well-posedness in Hs,a

γ with s < 0 and a < 0 is still open.
We next consider the convergence of the solutions when γ → 0. Let un and v be the solutions of

the following equations:{
∂t un − β∂3

x un + un∂xun = γn∂
−1
x un, (x, t) ∈ R × [0,∞),

un(x,0) = ϕn(x), x ∈ R,
(1.5)

{
∂t v − β∂3

x v + v∂x v = 0, (x, t) ∈ R × [0,∞),

v(x,0) = ψ(x), x ∈ R.
(1.6)

In [25], Liu and Varlamov proved the following proposition.

Proposition 1.4. Let s > 3/2, ψ = ϕn ∈ Hs ∩ Ḣ−1 and T > 0. Then,

sup
0�t�T

∥∥v(t) − un(t)
∥∥

L2 → 0,

when γn → 0.
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In this proposition, there is a gap of regularity between the convergence of the solutions and the
assumption on the initial data. Our aim is to obtain a result similar to this proposition under more
natural assumption, namely, the initial data are in L2. The main tool of the proof of Proposition 1.4 is
the L2 inequality for wn := v − un as follows:

∥∥wn(T )
∥∥2

L2 − ∥∥wn(0)
∥∥2

L2 � C

(∣∣∣∣∣
T∫

0

∫
w2

n∂x v dx dt

∣∣∣∣∣ +
∣∣∣∣∣γn

T∫
0

∫
wn∂

−1
x un dx dt

∣∣∣∣∣
)

.

| ∫ w2
n∂x v dx| is bounded by ‖wn‖2

L2‖v‖H3/2+ε by the Sobolev embedding. This is the reason why we
need the assumption s > 3/2 in Proposition 1.4. To overcome this difficulty, we combine a time local
bilinear estimate and a priori estimates and we obtain the following theorem.

Theorem 1.5. Let β = +1 or −1, ψ ∈ L2 , ϕn ∈ L2 ∩ Ḣ−1 , Γ > 0, M > 0 and T > 0. Assume that |γn| � Γ ,
‖ψ‖L2 < M and ‖ϕn‖H0,−1

γn
< M. Then, we have

sup
0�t�T

∥∥v(t) − un(t)
∥∥

L2 � C0
(‖ψ − ϕn‖L2 + |γn|‖ϕn‖Ḣ−1 + |γn|5/3‖ϕn‖5/3

L2

)
(1.7)

for the solutions of (1.5)–(1.6), where C0 depends only on Γ , T and M.

Corollary 1.6. Let β = +1 or −1, ψ ∈ L2 , ϕn ∈ L2 ∩ Ḣ−1 and T > 0. Then, we have

sup
0�t�T

∥∥v(t) − un(t)
∥∥

L2 → 0

for the solutions of (1.5)–(1.6), when

‖ψ − ϕn‖L2 → 0, γn‖ϕn‖Ḣ−1 → 0, γn → 0.

Remark 1.2. In Theorem 1.5 and Corollary 1.6, ψ is not necessary to be in Ḣ−1 and ‖ϕn‖Ḣ−1 is not
necessary to be bounded.

In general, it seems difficult to apply the Fourier restriction norm method to this kind of limit
problem because the Fourier restriction norm depends on the linear part of the equation which in-
clude the parameter γ . In our problem, the Fourier restriction norm X s,a,b

β,γ defined below depends
on γ . However, we prove a bilinear estimate which is uniform with respect to γ when −1/2 > a � −1
(see, Proposition 3.2). Moreover, from Lemma 2.2, we have uniform estimate as follows:

‖u‖
Y s,b

β

� ‖u‖
Xs,a,b

β,γ

for −a � b � 0. These are the crucial points of our proof.
In Section 2, we give some notations and preliminary lemmas. In Section 3, we prove Theorem 1.1.

In Section 4, we prove Proposition 1.2 and Theorem 1.5.
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2. Notations and preliminary lemmas

Throughout this paper C > 0 denotes various constants depending only on s, a, b, b′ and Γ , not
depending on γ . C0, C1, C2, . . . are constants which may depend on γ and other parameters. The
notation P � Q denotes the estimate P � C Q . We use P ∼ Q to denote P � Q � P .

We define the Fourier restriction norms for the Ostrovsky equation and the KdV equation as fol-
lows:

∥∥u(x, t)
∥∥

Xs,a,b
β,γ

= ∥∥Vβ,γ (−t)u(x, t)
∥∥

Hb
t Hs,a

γ

= ∥∥〈ξ〉s〈γ ξ−1〉−a〈
τ + βξ3 + γ ξ−1〉bũ(ξ, τ )

∥∥
L2
ξ,τ

,

∥∥u(x, t)
∥∥

Y s,b
β

= ∥∥Uβ(−t)u(x, t)
∥∥

Hb
t Hs

x

= ∥∥〈ξ〉s〈τ + βξ3〉bũ(ξ, τ )
∥∥

L2
ξ,τ

,

where Vβ,γ (t) = exp{tβ∂3
x + tγ ∂−1

x } and Uβ(t) = exp{tβ∂3
x }. ũ = Fx,t u denotes the Fourier transform

with respect to t and x variables. We define the X s,a,b
β,γ space and the Y s,b

β space as follows:

Xs,a,b
β,γ = {

u ∈ S ′(R2) ∣∣ ‖u‖
Xs,a,b

β,γ
< +∞}

,

Y s,b
β = {

u ∈ S ′(R2) ∣∣ ‖u‖
Y s,b

γ
< +∞}

.

We can easily check that the X s,a,b
β,γ space is continuously embedded in Ct(R : Hs,a

γ ) and the Y s,b
γ space

is continuously embedded in Ct(R : Hs) when b > 1/2. Put

ûlow = û||ξ |�10|γ |, ûhigh = û||ξ |�|γ |/10,

ûl = û||ξ |�11|γ |, ûh = û||ξ |�9|γ |.

Since 〈γ ξ−1〉 ∼ 1 and 〈τ + βξ3 + γ ξ−1〉 ∼ 〈τ + βξ3〉 for |ξ | � |γ |/10, we have the following lemma.

Lemma 2.1. For any s, a, b ∈ R and u ∈ Y s,b
β , we have

‖uhigh‖Y s,b
β

� ‖uhigh‖Xs,a,b
β,γ

� ‖uhigh‖Y s,b
β

� ‖u‖
Y s,b

β

.

We can easily prove the following lemma by the triangle inequality.

Lemma 2.2. Let s ∈ R and −a � b � 0. Then, for any function u ∈ X s,a,b
β,γ , we have

‖u‖
Y s,b

β

� ‖u‖
Xs,a,b

β,γ
.

The following lemma is a variant of the bilinear estimate proved by Isaza and Mejia in [14].
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Lemma 2.3. Let β = +1 or −1, min{2b − 1/2,5/8} � b′ � b > 1/2. Then, for any u, v ∈ X0,0,b
β,γ , we have

∥∥∂x(uv)
∥∥

X0,0,b′−1
β,γ

� C1‖u‖
X0,0,b

β,γ
‖v‖

X0,0,b
β,γ

,

where C1 > 0 may depend on b, b′ and γ .

Proof. The case γ = 1 follows from Lemma 1.1 and Lemma 1.2 with s = 0 in [14]. The case γ �= 1 fol-
lows by rescaling τ ′ = |γ |3/4τ , ξ ′ = |γ |1/4ξ because 〈τ +βξ3 +γ ξ−1〉 = 〈|γ |3/4|τ ′ +βξ ′3 + ξ ′−1|〉. �

We define smooth cut-off functions ρ(t), ρt0 (t) ∈ C∞ such that

ρ(t) =
{

1, for |t| � 1,

0, for |t| > 2,
ρt0 = ρ(t/t0).

The following lemmas are basic tools of the Fourier restriction norm method. For the proofs, see
e.g. [3,11,19].

Lemma 2.4. Let β = +1 or −1, γ ∈ R and s,a,b ∈ R. Then, for any function f ∈ Hs,a
γ , we have

∥∥ρ(t)Vβ,γ (t) f
∥∥

Xs,a,b
β,γ

� ‖ f ‖Hs,a
γ

and for any function f ∈ Hs, we have

∥∥ρ(t)Uβ(t) f
∥∥

Y s,b
β

� ‖ f ‖Hs .

Lemma 2.5. Let β = +1 or −1, γ ∈ R, s,a ∈ R, 1/2 < b < b′ � 1 and 0 < t0 < 1. Then, for any function
F ∈ X s,a,b

β,γ , we have

∥∥∥∥∥ρt0(t)

t∫
0

Vβ,γ (t − t′)F (t′)dt′
∥∥∥∥∥

Xs,a,b
β,γ

� tb′−b
0 ‖F‖

Xs,a,b′−1
β,γ

and for any function F ∈ Y s,b
β , we have

∥∥∥∥∥ρt0(t)

t∫
0

Uβ(t − t′)F (t′)dt′
∥∥∥∥∥

Y s,b
β

� tb′−b
0 ‖F‖

Y s,b′−1
β

.

Lemma 2.6.

(i) Let 0 � r < p + q − 1 and r � min{p,q}. Then, for any l, m ∈ R, we have

∞∫
−∞

1

〈x − l〉p〈x − m〉q
dx � C2

〈l − m〉r
,

where C2 depends only on p, q and r.
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(ii) Let p > 1/2. Then, for any l, m ∈ R, we have

∞∫
−∞

1

〈x − l〉p|x − m|1/2
dx � C3

〈l − m〉1/2
,

where C3 depends only on p.

The following argument was originally used in [19].

Lemma 2.7. For a subset Ω ⊂ R4 , we define the characteristic function χΩ as follows:

χΩ(τ , ξ, τ1, ξ1) =
{

1, for (τ , ξ, τ1, ξ1) ∈ Ω,

0, for (τ , ξ, τ1, ξ1) /∈ Ω

and we put

˜FΩ(u, v) = |ξ |
∫
R2

χΩ ũ(τ − τ1, ξ − ξ1)ṽ(τ1, ξ1)dτ1 dξ1.

If we have

sup
τ ,ξ

|ξ |2〈ξ〉2s〈γ ξ−1〉−2a

〈τ + βξ3 + γ ξ−1〉2(1−b′)

∫
R2

χΩ

〈ξ1〉−2s〈γ ξ−1
1 〉2a

〈τ1 + βξ3
1 + γ ξ−1

1 〉2b

× 〈ξ − ξ1〉−2s〈γ (ξ − ξ1)
−1〉2a

〈τ − τ1 + β(ξ − ξ1)3 + γ (ξ − ξ1)−1〉2b
dτ1 dξ1 � M2 (2.8)

or

sup
τ1,ξ1

〈ξ1〉−2s〈γ ξ−1
1 〉2a

〈τ1 + βξ3
1 + γ ξ−1

1 〉2b

∫
R2

χΩ

|ξ |2〈ξ〉2s〈γ ξ−1〉−2a

〈τ + βξ3 + γ ξ−1〉2(1−b′)

× 〈ξ − ξ1〉−2s〈γ (ξ − ξ1)
−1〉2a

〈τ − τ1 + β(ξ − ξ1)3 + γ (ξ − ξ1)−1〉2b
dτ dξ � M2 (2.9)

for a constant M > 0, then we have

∥∥FΩ(u, v)
∥∥

Xs,a,b′−1
β,γ

� M‖u‖
Xs,a,b

β,γ
‖v‖

Xs,a,b
β,γ

. (2.10)

Proof. (i) We first consider the case that (2.8) holds. Put

G(τ , ξ) = 〈ξ〉s〈γ ξ−1〉−a〈
τ + βξ3 + γ ξ−1〉bũ(τ , ξ),

H(τ , ξ) = 〈ξ〉s〈γ ξ−1〉−a〈
τ + βξ3 + γ ξ−1〉b ṽ(τ , ξ).

By the Schwartz inequality, we have
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∣∣ ˜FΩ(u, v)
∣∣2 � |ξ |2

∫
R2

χΩ

〈ξ1〉−2s〈γ ξ−1
1 〉2a

〈τ1 + βξ3
1 + γ ξ−1

1 〉2b

〈ξ − ξ1〉−2s〈γ (ξ − ξ1)
−1〉2a

〈τ − τ1 + β(ξ − ξ1)3 + γ (ξ − ξ1)−1〉2b
dτ1 dξ1

×
∫
R2

∣∣G(τ − τ1, ξ − ξ1)
∣∣2∣∣H(τ1, ξ1)

∣∣2
dτ1ξ1.

Therefore, we obtain

∥∥FΩ(u, v)
∥∥2

Xs,a,b′−1
β,γ

� M2
∫
R4

∣∣G(τ − τ1, ξ − ξ1)
∣∣2∣∣H(τ1, ξ1)

∣∣2
dτ1ξ1 dτ dξ

� M2‖G‖2
L2
τ ,ξ

‖H‖2
L2
τ ,ξ

� M2‖u‖2
Xs,a,b

β,γ

‖v‖2
Xs,a,b

β,γ

.

(ii) We next consider the case that (2.9) holds. By the duality argument, (2.10) is equivalent to

∫
R2

˜FΩ(u, v)w̃ dτ dξ � M‖u‖
Xs,a,b

β,γ
‖v‖

Xs,a,b
β,γ

‖w‖
X−s,−a,1−b′

β,γ

. (2.11)

The left-hand side is bounded by

∫
R4

|ξ |χΩ ũ(τ − τ1, ξ − ξ1)ṽ(τ1, ξ1)w̃(τ , ξ)dτ dξ dτ1 dξ1

�
∥∥∥∥∫

R2

|ξ |χΩ ũ(τ − τ1, ξ − ξ1)w̃(τ , ξ)dτ dξ

∥∥∥∥
X−s,−a,−b

β,γ

‖v‖
Xs,a,b

β,γ
.

By a similar argument as in (i), from (2.9), we have

∥∥∥∥∫
R2

|ξ |χΩ ũ(τ − τ1, ξ − ξ1)w̃(τ , ξ)dτ dξ

∥∥∥∥
X−s,−a,−b

β,γ

� M‖u‖
Xs,a,b

β,γ
‖w‖

X−s,−a,1−b′
β,γ

.

Thus, we obtain (2.11). �
3. Bilinear estimates and time local well-posedness

The following bilinear estimate was proved by Kenig, Ponce and Vega in [19].

Proposition 3.1. Let β = +1 or −1 and min{b + 1/4 + s/3,1} � b′ � b > 1/2. Then, for any u, v ∈ Y s,b
β , we

have

∥∥∂x(uv)
∥∥

Y s,b′−1
β

� ‖u‖
Y s,b

β

‖v‖
Y s,b

β

. (3.12)

The following bilinear estimate plays an important role in the present paper.
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Proposition 3.2. Let β = +1 or −1, |γ | � Γ , 0 � s � max{−a/2 + b′/2 − 1,b′ − 5/4}, 0 � a � −1 and
min{b + 1/4 + s/3,2b − 1/2,5/8} � b′ � b > 1/2. Then, for any u, v ∈ X s,a,b

β,γ , we have

∥∥∂x(uv)
∥∥

Xs,a,b′−1
β,γ

� C4‖u‖
Xs,a,b

β,γ
‖v‖

Xs,a,b
β,γ

, (3.13)

where C4 > 0 depends only on s, a, b, b′ and Γ when −1/2 > a � −1, and may depend not only on s, a, b
and b′ , but also γ when 0 � a � −1/2.

Proof. Without loss of generality, we can assume ũ � 0 and ṽ � 0. By the Plancherel theorem, the
left-hand side of (3.13) is equal to

∥∥FR4(u, v)
∥∥

Xs,a,b′−1
β,γ

, (3.14)

where FΩ(u, v) is defined in Lemma 2.7. We divide the region R4 into six parts:

A1 = {
(τ , ξ, τ1, ξ1) ∈ R4

∣∣ min
{|ξ1|, |ξ |, |ξ − ξ1|

}
� |γ |/10

}
, (3.15)

A2 = {
(τ , ξ, τ1, ξ1) ∈ R4

∣∣ max
{|ξ1|, |ξ |, |ξ − ξ1|

}
� 11|γ |}, (3.16)

A3 = {
(τ , ξ, τ1, ξ1) ∈ R4

∣∣ |ξ | � 10|γ |, |ξ1| � |γ |/10
}
, (3.17)

A4 = {
(τ , ξ, τ1, ξ1) ∈ R4

∣∣ |ξ | � 10|γ |, |ξ − ξ1| � |γ |/10
}
, (3.18)

A5 = {
(τ , ξ, τ1, ξ1) ∈ R4

∣∣ |ξ | � |γ |/10, |ξ1| � 10|γ |}, (3.19)

A6 = {
(τ , ξ, τ1, ξ1) ∈ R4

∣∣ |ξ | � |γ |/10, |ξ − ξ1| � 10|γ |}. (3.20)

By symmetry, we have only to consider A1, A2, A3 and A5. We first consider the region A1. From
Lemma 2.1 and Proposition 3.1, we have

∥∥F A1(u, v)
∥∥

Xs,a,b′−1
β,γ

�
∥∥∂x(uhigh vhigh)

∥∥
Y s,b′−1

β

� ‖uhigh‖Y s,b
β

‖vhigh‖Y s,b
β

� ‖uhigh‖Xs,a,b
β,γ

‖vhigh‖Xs,a,b
β,γ

� ‖u‖
Xs,a,b

β,γ
‖v‖

Xs,a,b
β,γ

.

We next consider the region A2. From Hölder’s inequality and Sobolev’s inequality, we have

∥∥F A2(u, v)
∥∥

Xs,a,b′−1
β,γ

� ‖ul vl‖L2
t,x

� ‖ul‖L4
t,x

‖vl‖L4
t,x

� ‖u‖
Xs,a,b

β,γ
‖v‖

Xs,a,b
β,γ

.

We next consider the region A3. In A3, we have

〈ξ〉s〈γ ξ−1〉−a � 〈ξ1〉s〈γ ξ−1
1

〉−a〈ξ − ξ1〉s〈γ (ξ − ξ1)
−1〉−a

.

Therefore, from Lemma 2.3, we have

∥∥F A3(u, v)
∥∥

Xs,a,b′−1 � C1‖u‖
Xs,a,b ‖v‖

Xs,a,b ,

β,γ β,γ β,γ
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where C1 may depends on b, b′ and γ . When −a � b, from Lemma 2.2, we have

∥∥F A3(u, v)
∥∥

Xs,a,b′−1
β,γ

�
∥∥∂x(uh vlow)

∥∥
Y s,b′−1

β

� ‖uh‖Y s,b
β

‖vlow‖
Y s,b

β

� ‖u‖
Xs,a,b

β,γ
‖v‖

Xs,a,b
β,γ

,

where implicit constants do not depend on γ . Next, we consider A5. In A5, we have

〈
τ + βξ3 + γ ξ−1〉 ∼ 〈

τ + γ ξ−1〉,〈
τ1 + βξ3

1 + γ ξ−1
1

〉 ∼ 〈
τ1 + βξ3

1

〉
,〈

(τ − τ1) + β(ξ − ξ1)
3 + γ (ξ − ξ1)

−1〉 ∼ 〈
(τ − τ1) + β(ξ − ξ1)

3〉,
〈ξ〉s〈γ ξ−1〉−a|ξ |〈ξ − ξ1〉−s〈γ (ξ − ξ1)

−1〉a〈ξ1〉−s〈γ ξ−1
1

〉a � |γ |−a〈ξ1〉−2s|ξ |a+1.

We divide A5 into two parts as follows:

A51 = {
(τ , ξ, τ1, ξ1) ∈ A5

∣∣ 3|ξ |2|ξ1|2 � 10|γ |}, (3.21)

A52 = {
(τ , ξ, τ1, ξ1) ∈ A5

∣∣ 3|ξ |2|ξ1|2 � 10|γ |}. (3.22)

When Ω = A51, from Lemma 2.6, the left-hand side of (2.9) is bounded by

|γ |−2a〈ξ1〉−4s

〈τ1 + βξ3
1 〉2b

∫
B

|ξ |2a+2

〈τ1 + γ ξ−1 − β(ξ − ξ1)3〉2(1−b′) dξ

� |γ |−2a〈ξ1〉−4s
∫
B

|ξ |2a+2

〈γ ξ−1 − 3βξξ2
1 〉2(1−b′) dξ, (3.23)

where

B = {
ξ ∈ R

∣∣ |ξ | � min
{|ξ1|−1|γ |1/2, |γ |}}.

Here, we consider the following two cases:
(i) βγ < 0. In this case, we have 〈γ ξ−1 − 3βξξ2

1 〉 � max{|γ ||ξ |−1, |ξ ||ξ1|2}. If |ξ1| � 1, then (3.23)
is bounded by

|γ |−2a〈ξ1〉−4s

C |ξ1|−1|γ |1/2∫
−C |ξ1|−1|γ |1/2

|ξ |2a+2

(|ξ ||ξ1|2)2(1−b′) dξ � |γ |−a+b′+1/2|ξ1|−4s−2a+2b′−5 � 1,

because s � −a/2 + b′/2 − 5/4. If |ξ1| � 1, then (3.23) is bounded by

|γ |−2a

C |γ |∫
−C |γ |

|ξ |2a+2

(|γ ||ξ |−1)2(1−b′) dξ � |γ |−2a+2b′−2

C |γ |∫
−C |γ |

|ξ |2a−2b′+4 dξ � 1.
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(ii) βγ > 0. We put x = γ ξ−1 − 3βξξ2
1 . Then, we have

∣∣∣∣dξ

dx

∣∣∣∣ =
∣∣∣∣ 1

−γ ξ−2 − 3βξ2
1

∣∣∣∣ � |γ |−1|ξ |2.

Therefore, (3.23) is bounded by

∫
B

J (γ , ξ, ξ1)|γ |
〈γ ξ−1 − 3βξξ2

1 〉2(1−b′)|γ ξ−1 − 3βξξ2
1 |ε |ξ |2 dξ

� sup
ξ∈B

J (γ , ξ, ξ1)

∫
R

1

〈x〉2(1−b′)|x|ε dx � sup
ξ∈B

J (γ , ξ, ξ1),

where 2b′ − 1 < ε � 4s + 2a + 4 and

J (γ , ξ, ξ1) = |γ |−2a−1〈ξ1〉−4s|ξ |2a+4
∣∣γ ξ−1 − 3βξξ2

1

∣∣ε .
By a simple calculation, we have

sup
ξ∈B

J (γ , ξ, ξ1) � |γ |−2a−1+ε〈ξ1〉−4s|ξ |2a+4−ε � 1.

From (i) and (ii), we obtain (3.23) is bounded by C .
We next consider A52. We put

M = max
{∣∣τ + βξ3 + γ ξ−1

∣∣, ∣∣τ1 + βξ3
1 + γ ξ−1

1

∣∣, ∣∣(τ − τ1) + β(ξ − ξ1)
3 + γ (ξ − ξ1)

−1
∣∣}.

From (3.19) and (3.22), we have

∣∣ξξ2
1

∣∣ � 10|γ |
3|ξ | � 100

3
, |ξ1| � 10|γ | � 100|ξ |.

Therefore, by the triangle inequality, we obtain

M �
∣∣ − βξ3 − γ ξ−1 + βξ3

1 + γ ξ−1
1 + β(ξ − ξ1)

3 + γ (ξ − ξ1)
−1

∣∣/3

�
∣∣ξξ2

1

∣∣ − ∣∣ξ2ξ1
∣∣ − |γ |

3|ξ | − |γ |
3|ξ1| − |γ |

3|ξ − ξ1|
�

(
8
∣∣ξξ2

1

∣∣ − 1
)
/10. (3.24)

Thus, we have

M �
7|ξξ2

1 |
10

� 7|γ |
3|ξ | � 70

3
, M � 7000

∣∣ξ3
∣∣. (3.25)

We divide A52 into three parts as follows:



3174 K. Tsugawa / J. Differential Equations 247 (2009) 3163–3180
A521 = {
(τ , ξ, τ1, ξ1) ∈ A52

∣∣ M = ∣∣τ + βξ3 + γ ξ−1
∣∣},

A522 = {
(τ , ξ, τ1, ξ1) ∈ A52

∣∣ M = ∣∣τ1 + βξ3
1 + γ ξ−1

1

∣∣},
A523 = {

(τ , ξ, τ1, ξ1) ∈ A52
∣∣ M = ∣∣(τ − τ1) + β(ξ − ξ1)

3 + γ (ξ − ξ1)
−1

∣∣}.
By symmetry, we have only to consider A521 and A522. We first consider A521. In A521, from (3.25),
we have

∣∣τ + 3βξ3/4
∣∣ �

∣∣τ + βξ3 + γ ξ−1
∣∣ − ∣∣ξ3

∣∣/4 − |γ ||ξ |−1 � M. (3.26)

From Lemma 2.6, the left-hand side of (2.8) with Ω = A521 is bounded by

|γ |−2a|ξ |2a+2

〈τ + βξ3 + γ ξ−1〉2(1−b′)

∫
R2

χA521 |ξ1|−4s

〈τ1 + βξ3
1 〉2b〈τ − τ1 + β(ξ − ξ1)3〉2b

dτ1 dξ1

� K

∫ |3βξ3 + 4τ |1/2|ξ |1/2

〈τ + 3βξξ1(ξ − ξ1)〉2b
dξ1, (3.27)

where

K = sup
(τ ,ξ,τ1,ξ1)∈A521

|γ |−2a|ξ |2a+3/2|ξ1|−4s

〈τ + βξ3 + γ ξ−1〉2(1−b′)|3βξ3 + 4τ |1/2
.

From (3.25) and (3.26), we have

K � |γ |−2a
( |ξ ||ξ1|2

M

)−2s

|ξ |2s+2a+3/2M−2s+2b′−5/2 � 1

when s � −a − 3/4 and

K � |γ |2s+3/2
( |ξ ||ξ1|2

M

)−2s( |γ |
|ξ |M

)−2s−2a−3/2

M−4s−2a+2b′−4 � 1

when s < −a − 3/4 because 0 � s � max{−a/2 + b′/2 − 1,b′ − 5/4}.
We put x = τ + 3βξξ1(ξ − ξ1). Then, we have

ξ1 = ξ

2
± 1

2β

√
3ξ3 + 4β(τ − x)

3ξ
,∣∣∣∣dξ1

dx

∣∣∣∣ = 1

|3ξ(ξ − 2ξ1)| = 1

|3ξ |1/2|3βξ2 + 4τ − 4x|1/2
.

Therefore, from Lemma 2.6, (3.27) is bounded by

∫ |3βξ3 + 4τ |1/2

〈x〉2b|3βξ3 + 4τ − 4x|1/2
dx � 1.
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We next consider A522. From Lemma 2.6, the left-hand side of (2.9) with Ω = A522 is bounded by

|γ |−2a|ξ1|−4s

〈τ1 + βξ3
1 + γ ξ−1

1 〉2(1−b′)

∫
χA522

|ξ |2a+2

〈τ − τ1 + β(ξ − ξ1)3〉2b〈τ + γ ξ−1〉2b
dτ dξ

� L

∫ |3β(ξ − ξ1)
2 + γ ξ−2|

〈−τ1 + β(ξ − ξ1)3 − γ ξ−1〉2b
dξ, (3.28)

where

L = sup
(τ ,ξ,τ1,ξ1)∈A522

|γ |−2a|ξ1|−4s|ξ |2a+2

〈τ1 + βξ3
1 + γ ξ−1

1 〉2(1−b′)|3β(ξ − ξ1)2 + γ ξ−2| .

Since |τ1 + βξ3
1 + γ ξ−1

1 | � |ξξ2
1 | and |3β(ξ − ξ1)

2 + γ ξ−2| � |ξ1|2 in A522, we have

L �
(|γ |/|ξ |)−2a(|ξ ||ξ1|2

)−2s+2b′−3|ξ |2s+3.

Therefore, from (3.25), we have L � (|γ |/|ξ |)−2a−2s−3(|ξ ||ξ1|2)−2s+2b′−3|γ |2s+3 � 1 because −2s +
2b′ − 3 � 0 and −2a − 2s − 3 � 0. Here, we put x = −τ1 + β(ξ − ξ1)

3 − γ ξ−1. Then, we have

∣∣∣∣dξ

dx

∣∣∣∣ = 1

|3β(ξ − ξ1)2 + γ ξ−2| .

Therefore, (3.28) is bounded by

∫
1

〈x〉2b
dx � 1. �

Now, we prove Theorem 1.1. Precisely speaking, we have the following proposition.

Proposition 3.3. Assume that γ �= 0, β = +1 or −1 and ϕ ∈ Hs,a
γ . Let s > −a/2 − 3/4, 0 � a � −1, b > 1/2

and b be sufficiently close to 1/2. Then, (1.1) is time locally well-posed and the lifetime of the solution t0
satisfies

t0 �
〈
C4‖ϕ‖Hs,a

γ

〉−1/ε

for some ε � 1, where C4 is defined in Proposition 3.2. Moreover, the solution is in C([0, t0] : Hs,a
γ ) ∩ X s,a,b

β,γ

and satisfies the following estimates:

sup
0�t�t0

‖u‖Hs,a
γ

� ‖ϕ‖Hs,a
γ

,

‖u‖
Xs,a,b

β,γ
� ‖ϕ‖Hs,a

γ
.

The proof of this proposition follows from the standard argument of the Fourier restriction norm
method. Therefore, we mention only the outline of the proof. For more detail, see e.g. [3,11].
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Proof. We consider the following map:

N(u) = ρ(t)Vβ,γ (t)ϕ + ρt0(t)

2

t∫
0

Vβ,γ (t − t′)∂x
(
u2)dt′.

Put Xr = {u ∈ X s,a,b
β,γ | ‖u‖

X s,a,b
β,γ

� r‖ϕ‖Hs,a
γ

}. We shall prove that N is a map from Xr into Xr for suffi-

ciently large r > 0. From Lemma 2.4, we have

∥∥ρ(t)Vβ,γ (t)ϕ
∥∥

Xs,a,b
β,γ

� ‖ϕ‖Hs,a
γ

.

From Lemma 2.5, we have

∥∥∥∥∥ρt0(t)

2

t∫
0

Vβ,γ (t − t′)∂x
(
u2)dt′

∥∥∥∥∥
Xs,a,b

β,γ

� tb′−b
0

∥∥∂x
(
u2)∥∥

Xs,a,b′−1
β,γ

.

Therefore, from Proposition 3.2, we have

∥∥N(u)
∥∥

Xs,a,b
β,γ

� C
(‖ϕ‖Hs,a

γ
+ C4tb′−b

0 ‖u‖2
Xs,a,b

β,γ

)
.

We take r > 2C and 0 < tε0 < min{(2CC4r‖ϕ‖Hs,a
γ

)−1,1} where ε = b′ − b. Then, for u ∈ Xr , we have

∥∥N(u)
∥∥

Xs,a,b
β,γ

< r‖ϕ‖Hs,a
β

.

We can easily check that N is a contraction map, too. Thus, we obtain the existence of the solution by
the fix point argument. The remaining estimate follows from the well-known embedding inequality:

sup
t

‖u‖Hs,a
γ

� ‖u‖
Xs,a,b

β,γ
. �

In the same manner, we can prove the following proposition from Proposition 3.1. This result was
originally proved by Kenig, Ponce and Vega in [19].

Proposition 3.4. Assume that γ = 0, β = +1 or −1 and ϕ ∈ Hs. Let s > −3/4, b > 1/2 and b be sufficiently
close to 1/2. Then, (1.1) is time locally well-posed and the lifetime of the solution t1 satisfies

t1 �
〈‖ϕ‖Hs

〉−1/ε

for some ε � 1. Moreover, the solution is in C([0, t1] : Hs) ∩ Y s,b
β and satisfies the following estimates

sup
0�t�t1

‖u‖Hs � ‖ϕ‖Hs ,

‖u‖
Y s,b

β

� ‖ϕ‖Hs .
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4. A priori estimates and weak rotation limit

We first prove Proposition 1.2.

Proof. By the density argument, without loss of generality, we can assume u is sufficiently smooth,
u, ∂xu, ∂2

x u → 0 as |x| → ∞ and û vanishes at the origin ξ = 0. Calculating

T∫
0

∫ (
∂t u − β∂3

x u + u∂xu − γ ∂−1
x u

) · u dx dt = 0,

we obtain (1.2). Calculating∫
∂−1

x

(
∂t u − β∂3

x u + u∂xu − γ ∂−1
x u

) · ∂−1
x u dx = 0,

we have

1

2
∂t

∥∥u(·, t)
∥∥2

Ḣ−1 � γ

∫
u2∂−1

x u dx.

By the Schwarz and the Sobolev inequalities, the right-hand side is bounded by

γ ‖u‖2
L2

∥∥∂−1
x u

∥∥
L∞ � γ ‖ϕ‖5/2

L2 ‖u‖1/2
Ḣ−1 .

Thus, we obtain (1.3). We put

P̂ u = |γ |−a|ξ |aû(ξ)
∣∣|ξ |�|γ |.

Calculating ∫
P
(
∂t u − β∂3

x u + u∂xu − γ ∂−1
x u

) · P u dx = 0,

we obtain∫
∂t P u · P u dx − β

∫
P∂3

x u · P u dx + 1

2

∫
P∂xu2 · P u dx = γ

∫
P∂−1

x u · P u dx.

The second term of the left-hand side and the right-hand side vanish. The third term is bounded by∥∥u2
∥∥

L1

∥∥P 2∂xu
∥∥

L∞ � ‖u‖2
L2

∥∥P 2∂xu
∥∥1/2

L2

∥∥P 2∂xu
∥∥1/2

Ḣ1 � ‖u‖2
L2 |γ |3/2‖P u‖1/2

L2 ‖u‖1/2
L2 .

Here, we used

| P̂∂x| � |γ |−a|ξ |1+a
∣∣|ξ |�|γ | � |γ |.

Therefore, we have

∂t‖P u‖2
2 � |γ |3/2‖ϕ‖5/2

2 ‖P u‖1/2
2 .
L L L
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Therefore, we obtain

sup
0�t�T

∥∥P u(·, t)
∥∥3/2

L2 � ‖Pϕ‖3/2
L2 + C T |γ |3/2‖ϕ‖5/2

L2 . (4.29)

Since

∥∥u(·, t)
∥∥

H0,a
γ

�
∥∥P u(·, t)

∥∥
L2 + ∥∥u(·, t)

∥∥
L2 ,

we have (1.4) from (1.2) and (4.29). �
We next prove Theorem 1.5.

Proof. Let un be the solution of (1.5) obtained in Proposition 3.3 and v be the solution of (1.6) ob-
tained in Proposition 3.4, namely, un and v satisfy the following integral equations:

un = ρ(t)Vβ,γn (t)ϕn + ρt0(t)

2

t∫
0

Vβ,γn (t − t′)∂x
(
u2

n

)
dt′,

v = ρ(t)Uβ(t)ψ + ρt1(t)

2

t∫
0

Uβ(t − t′)∂x
(

v2)dt′,

where t0, t1 is the lifetimes obtained in Propositions 3.3, 3.4. By density argument, we have only
to prove estimate (1.7) for sufficiently smooth solutions. Since un satisfies (1.5) on t ∈ [0, t0], the
following equation holds on t ∈ [0, t0]:

un(t) = Uβ(t)ϕn + 1

2

t∫
0

Uβ(t − t′)
{
∂x

(
u2

n

) + γn∂
−1
x un

}
dt′.

Put wn = un − v . Then, for 0 � t < min{t0, t1}, wn satisfies the following integral equation:

wn(t) = Uβ(t)wn(0) + 1

2

t∫
0

Uβ(t − t′)
{
∂x

(
wn(un + v)

) + γn∂
−1
x un

}
dt′.

We put

μn = ρ(t)Uβ(t)wn(0) + ρt2(t)

2

t∫
0

Uβ(t − t′)
{
∂x

(
wn(un + v)

) + γn∂
−1
x un

}
dt′

for 0 < t2 < min{t0, t1}/2. Then, it follows that wn = μn on t ∈ [0, t2]. From Lemma 2.5, for b > 1/2,
we have
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∥∥∥∥∥ρt2(t)

t∫
0

Uβ(t − t′)γn∂
−1
x un dt′

∥∥∥∥∥
Y 0,b

β

=
∥∥∥∥∥ρt2(t)

t∫
0

Uβ(t − t′)ρ2t2(t
′)γn∂

−1
x un dt′

∥∥∥∥∥
Y 0,b

β

� t1−b
2 |γn|

∥∥ρ2t2∂
−1
x un

∥∥
Y 0,0

β

� t1−b
2 ‖ρ2t2‖L2

t
sup

0�t�2t2

|γn|
∥∥un(t)

∥∥
Ḣ−1

x

� t3/2−b
2 sup

0�t�2t2

|γn|
∥∥un(t)

∥∥
Ḣ−1

x
.

Therefore, in the same manner as the proof of Proposition 3.3, we obtain

‖μn‖Y 0,b
β

�
∥∥wn(0)

∥∥
L2 + tε2‖wn‖Y 0,b

β

(‖un‖Y 0,b
β

+ ‖v‖
Y 0,b

β

)
+ t3/2−b

2 sup
0�t�2t2

|γn|
∥∥un(t)

∥∥
Ḣ−1

x

from Proposition 3.1 and Lemmas 2.4, 2.5. We have ‖un‖
Y 0,b

β

� ‖un‖
X0,−1,b

β,γn
� ‖ϕn‖H0,−1

γn
from Proposi-

tion 3.3 and Lemma 2.2 and we have ‖v‖
Y 0,b

β

� ‖ψ‖L2 from Proposition 3.4. We take t2 > 0 such that

tε2 M is sufficiently small. Then, we obtain

sup
0�t�t2

∥∥wn(t)
∥∥

L2 � ‖μn‖Y 0,b
β

�
∥∥wn(0)

∥∥
L2 + t3/2−b

2 sup
0�t�2t2

|γn|
∥∥un(t)

∥∥
Ḣ−1

x
.

Fix T > 1. Then, from a priori estimate (1.3), we obtain

sup
0�t�t2

∥∥wn(t)
∥∥

L2 �
(∥∥wn(0)

∥∥
L2 + |γn|‖ϕn‖Ḣ−1 + T 2/3|γn|5/3‖ϕn‖5/3

L2

)
.

In the same manner, we obtain

sup
jt2�t�( j+1)t2

∥∥wn(t)
∥∥

L2 �
(∥∥wn( jt2)

∥∥
L2 + |γn|‖ϕn‖Ḣ−1 + T 2/3|γn|5/3‖ϕn‖5/3

L2

)
for 0 < ( j + 1)t2 � T and j ∈ Z. Note that we can take the same size of t2 > 0 in this process because
we have a priori estimates (1.2) and (1.4). Finally, we obtain

sup
0�t�T

∥∥wn(t)
∥∥

L2 � C0
(∥∥wn(0)

∥∥
L2 + |γn|‖ϕn‖Ḣ−1 + T 2/3|γn|5/3‖ϕn‖5/3

L2

)
,

where C0 depends only on Γ , T and M . �
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