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The potential of Landsat data processing to provide continental scale 30 m products has been demonstrated by
the NASA Web-enabled Landsat Data (WELD) project. The integration of a recent MODIS based Landsat atmo-
spheric correction algorithm into the WELD processing is described and demonstrated by application to
12 months of conterminous United States (CONUS) Landsat 7 ETM+ data. A large volume assessment of the at-
mospheric correction is presented considering approximately 53 million 30 m pixel locations sampled system-
atically across the CONUS for December 2009 to November 2010. Monthly 30 m reflectance and derived
normalized difference vegetation index (NDVI) data are assessed comparing the top of atmosphere (TOA) and
the MODIS-based atmospherically corrected surface reflectance values with respect to spectral, temporal, land
cover, and a per-pixel atmospheric correction quality storage scheme. The mean CONUS absolute difference be-
tween surface and TOANDVI expressed as a percentage of the surfaceNDVIwas 28% and the surface NDVIwas on
average 0.1 greater than the TOA NDVI for “vegetated” surfaces. The mean difference between surface and TOA
reflectance (surface minus TOA) increased monotonically with increasing surface reflectance. On average the
change from a negative to a positive mean difference occurred when the surface reflectance was 0.36, 0.22,
0.17, 0.14, 0.07, and 0.02 for Landsat ETM+ reflective bands 1, 2, 3, 4, 5, and 7 respectively. These values are of
interest as they depict the average CONUS Landsat ETM+ surface reflectance values where the atmosphere
has on average no impact and provide the average boundary values for positive and negative atmospheric con-
tributions to ETM+TOA reflectance. The CONUSmean absolute differences between surface and TOA reflectance
expressed as percentages of the surface reflectance were 45%, 22%, 12%, 6%, 5%, and 13% for Landsat ETM+bands
1, 2, 3, 4, 5 and 7 respectively.

© 2013 The Authors. Published by Elsevier Inc. Open access under CC BY-NC-SA license.
1. Introduction

The potential of Landsat data processing to provide systematic conti-
nental scale products has been demonstrated by theNASAWeb-enabled
Landsat Data (WELD) project that has generated 30 m composited
Landsat weekly, monthly, seasonal and annual mosaics of the contermi-
nous United States (CONUS) and Alaska (Roy et al., 2010; WWW1). The
most recent WELD products provide top of atmosphere (TOA) reflec-
tance for each of the six reflective wavelength Landsat 7 Enhanced The-
matic Mapper plus (ETM+) bands (WWW2). Surface reflectance, i.e.,
TOA reflectance corrected for atmospheric effects, is needed to derive
consistent geophysical and biophysical products because the impact of
. Open access under CC BY-NC-SA lice
atmospheric gases and aerosols on optical wavelength radiation is vari-
able in space and time. Systematic atmospheric correction of Landsat
data at continental scale is challenging because of the large Landsat
data volume. A number of atmospheric correction methodologies have
been developed but those using radiative transfer algorithms and atmo-
spheric characterization data provide the most potential for automated
large area application. For example, the MODIS reflective wavelength
bands are atmospherically corrected using the 6SV radiative transfer
code to generate global daily and 8-day surface reflectance products
since 2000 (Justice et al., 2002; Vermote, El Saleous, & Justice, 2002).
Recently, the accuracy of two radiative transfer based Landsat atmo-
spheric corrections algorithms, the Landsat Ecosystem Disturbance
Adaptive Processing System (LEDAPS) algorithm (Masek et al., 2006)
and a MODIS-based Landsat atmospheric correction algorithm (Ju,
Roy, Vermote, Masek, & Kovalskyy, 2012), was assessed by a compari-
son of atmospherically corrected Landsat ETM+ subsets with ETM+
surface reflectance derived independently using the 6SV radiative
transfer code parameterized with AERONET sun-photometer retrievals
(Ju et al., 2012). The MODIS-based algorithm was more accurate than
nse.
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the LEDAPS for all the Landsat ETM+ bands except the green band,
where the results for the two methods were comparable, and the blue
bandwhere both the LEDAPS andMODIS-based atmospheric correction
methods performed less reliably (Ju et al., 2012).

This paper demonstrates the operationalization of the MODIS-based
Landsat atmospheric correction algorithm integrated into the WELD
processing chain. It iswell established that although validation exercises,
such as reported by Ju et al. (2012), provide product accuracy informa-
tion, only examination of a large spatial and temporal product sample
will enable characterization of product performance (Roy et al., 2002).
A comprehensive product characterization comparing more than
50 million 30 m pixels extracted from one year of monthly CONUS
30 m TOA and surface reflectance WELD processed Landsat ETM+
data is presented to provide a quantitative assessment of the impact of
the atmospheric correction on the Landsat 7 ETM+ bands. The impact
on the derived normalized difference vegetation index (NDVI) is also
considered as it is one of the most commonly used remote sensing
indices.

The WELD Landsat 7 ETM+ data processing used to generate
monthly CONUS TOA reflectance products is first described and then
the MODIS-based atmospheric correction implementation, including
an atmospheric correction product per-pixel quality storage scheme, is
described. The analysis methodology is described considering spectral,
temporal, land cover and quality aspects of differences imposed by the
atmospheric correction. The results are followed by concluding remarks
including the implications for atmospheric correction of global Landsat
data using this approach.

2. Data and pre-processing

2.1. Landsat ETM+ input data

Landsat 7 ETM+datawere obtained from theU.S. Geological Survey
Earth Resources Observation and Science (EROS) Center Landsat ar-
chive. Landsat data are nominally processed to a Level 1 terrain
corrected (L1T) level defined in GeoTIFF format in the Universal Trans-
verse Mercator (UTM) map projection. All the Landsat ETM+ L1T data
over the CONUS with cloud cover ≤80% were obtained for the period
December 2009 to November 2010, a total of 8116 Landsat L1T scenes.
As the purpose of this study is to demonstrate and characterize the
CONUS wide atmospheric correction, a high 80% cloud cover threshold
was used; this is also the cloud cover threshold used to select the L1T
data used to generate the CONUS WELD products (available at
WWW2). The month of February 2010 had the fewest scenes (479) and
August 2010 the greatest number of scenes (884)which is due to season-
al CONUS cloud variability at the time of Landsat overpass (Ju & Roy,
2008). Each Landsat L1T scene is approximately 180 km by 170 km and
because of the ETM+ scan line corrector (SLC) failure has 22% missing
pixels occurring in a repeating along-scan stripe pattern (Markham,
Storey, Williams, & Irons, 2004).

Only L1T data were used to reduce the impact of misregistration er-
rors, particularly on the WELD temporally composited products (Roy,
2000; Roy et al., 2010). The CONUS L1T geolocation error is b30 m
even in areas with substantial terrain relief (Lee, Storey, Choate, &
Hayes, 2004). The reflective band calibration uncertainty for Landsat 7
ETM+ is 5% (Markham & Helder, 2012). All six 30 m reflective Landsat
ETM+ wavelength bands were used: blue (band 1: 0.45–0.52 μm),
green (band 2: 0.53–0.61 μm), red (band 3: 0.63–0.69 μm), near-
infrared (band 4: 0.78–0.90 μm), and two middle-infrared (bands 5
and 7: 1.55–1.75 μm and 2.09–2.35 μm).

2.2.WELD Landsat pre-processing, projection, and compositing intomonth-
ly tile products prior to atmospheric correction

The Landsat ETM+ L1T data were processed using the Version 1.5
WELD processing algorithms (Roy et al., 2010, 2011). This processing
first converts the digital numbers in each L1T acquisition to top of atmo-
sphere (TOA) reflectance and derived pixel values, then projects the
data into a continental projection in fixed Earth-located tiles, and then
applies a per-pixel temporal compositing algorithm to select the best
Landsat observation within the product compositing period (weekly,
monthly, seasonal, annual). For this study 12 monthly composites de-
fined for each month from December 2009 to November 2010 were
generated.

For each Landsat L1T acquisition the TOA reflectance for the six re-
flective ETM+bands, the TOA brightness temperature for the two ther-
mal bands, bit packed band saturation information, the TOANormalized
Difference Vegetation Index (NDVI), defined as the near-infraredminus
the red reflectance divided by their sum (Tucker, 1979), and two cloud
masks were generated. The cloudmaskswere the heritage Landsat pro-
ject automatic cloud cover assessment algorithm (ACCA) (Irish, Barker,
Goward, & Arvidson, 2006) and a decision tree cloud mask algorithm
that generally performs better than ACCA for Landsat ETM+ over the
CONUS (Roy et al., 2010). The data were projected from UTM coordi-
nates to the Albers Equal Area projection defined with standard paral-
lels and central meridians used by the USGS EROS National Land Cover
Database product (Homer, Huang, Yang, Wylie, & Coan, 2004). The
Landsat pixels were allocated to the Albers coordinate system using
the inverse gridding approach that is geometrically equivalent to
nearest neighbor resampling (Wolfe, Roy, & Vermote, 1998). The
projected data were defined in the standard 501 WELD CONUS tiles of
5000 × 5000 30 m Landsat pixels (Roy et al., 2011).

Compositing procedures were applied independently on a per-pixel
basis to the gridded Albers WELD processed data sensed over the same
area in each month (Roy et al., 2010). The Version 1.5 WELD composit-
ing algorithm incorporates the heritage maximumNDVI andmaximum
brightness temperature compositing criteria as clouds and aerosols
typically depress NDVI and brightness temperature over land (Cihlar,
Manak, & D' Iorio, 1994; Holben, 1986; Roy, 1997). Importantly, the
WELD compositing was applied before atmospheric correction because
(i) the atmospheric correction is imperfect (Ju et al., 2012) and (ii) be-
cause in this way only the composited gridded WELD pixel values
need to be atmospherically corrected rather than every pixel in every
input Landsat L1T acquisition. In the compositedmonthly tiled products
the day of year that each 30 m pixel was sensed on and the number of
Landsat observations considered in the month were stored (Roy
et al., 2011). To support the subsequent atmospheric correction, an
index value (0, 1, … 255) to the input L1T filename that each
composited pixel was selected from was stored (illustrated bottom
left, Figs. 1 and 2). The index values were stored with the corre-
sponding L1T filename and L1T acquisition scene center solar view
and azimuth angle in the tile product metadata.

3. MODIS-based Landsat atmospheric correction

3.1. Atmospheric correction overview and validation summary

The MODIS-based atmospheric correction methodology and valida-
tion is described in detail in Ju et al. (2012). The Landsat 7 ETM+ TOA
reflectance are atmospherically corrected using the 6SV radiative trans-
fer code (Kotchenova et al., 2006) with contemporaneous MODIS Terra
derived atmospheric characterization data. The algorithm works be-
cause both sensors are in the same polar orbit, with Landsat ETM+ ob-
servations occurring approximately 25 minutes before MODIS Terra
nadir observations. TheMODIS Terra derived atmospheric characteriza-
tion data are defined over the CONUS for each day in 0.05° × 0.05° grid
cells. The aerosol optical thickness at 550 nm, and the aerosol type (low
absorption smoke, high absorption smoke, polluted urban, and clean
urban types) are derived dynamically from the MODIS shortwave visi-
ble ocean and land bands using an improved non-linear version of the
Kaufman et al. (1997) dense dark vegetation methodology (Vermote
& Kotchenova, 2008). The water vapor is derived directly from the



Fig. 1. Illustration ofMODIS-based Landsat atmospheric correction for a 5000 × 5000 30 m pixel tile, north shore of Lake Superior (WELD tile h21v02), July 2010monthly composite gen-
erated from two Landsat ETM+ acquisitions sensed 16 days apart on July 9th and 25th 2010 with scene center solar zenith angles of 31.23° and 33.82° respectively. Top left: Top of at-
mosphere (TOA) true color red (0.63–0.69 μm), green (0.53–0.61 μm) and blue (0.45–0.52 μm), reflectance; top right: MODIS-based atmospherically corrected equivalent, shown with
exactly the same red, green and blue display stretch parameters as the illustrated TOA data; bottom left: Input L1T filename index, white = July 9th 2010 and gray = July 25th 2010;
bottom right: atmospheric correction quality indicator — the number of natural neighbor interpolated MODIS 0.05° atmospheric correction coefficients (blue = 0, green = 1,
orange = 2, yellow = 3, red = 4).
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MODIS near-infrared water vapor bands (typical accuracy 5–10%)
(Vermote & Kotchenova, 2008), atmospheric pressure at sea level is de-
fined by NCEP/NCAR 6-hourly Reanalysis data, and NCEP ozone is de-
rived from NASA NOAA Total Operational Vertical Sounder (TOVS)
ozone retrievals (typical accuracy 0.02 cm·atm). Sea level atmospheric
pressure is adjusted to surface level using a one arc-second resolution
ASTER digital elevation model by multiplying the sea level pressure
with the negative exponent of the quotient of the digital elevation and
an 8000 m scale height (Vermote & Saleous, 2006).

The MODIS-based Landsat atmospheric correction algorithm was
validated by a comparison of 10 km × 10 km 30 m atmospherically
corrected Landsat ETM+ subsets with surface reflectance derived inde-
pendently using the 6SV radiative transfer code parameterized with
AERONET sun-photometer retrievals (Dubovik et al., 2002; Holben
et al., 1998). A total of 95 subsets located across the CONUS and sensed
at different times of the year under different atmospheric conditions
were used for the validation (Ju et al., 2012). The mean absolute resid-
uals between AERONET corrected surface reflectance and the MODIS-
based atmospherically corrected reflectance, expressed as percentages
of the mean AERONET surface reflectance, were 13.5%, 5.7%, 4.2%, 2.0%,
1.0% and 1.6% for the Landsat ETM+ blue (0.45–0.52 μm), green
(0.53–0.61 μm), red (0.63–0.69 μm), near-infrared (0.78–0.90 μm),
and the two middle-infrared bands (1.55–1.75 μm and 2.09–2.35 μm)
respectively (Ju et al., 2012).
3.2. Atmospheric correction implementation integrated into the
WELD processing

All the pixels selected by the compositing process from the same
Landsat 7 ETM+ L1T acquisition were atmospherically corrected in
each 5000 × 5000 pixel WELD tile using the procedure described
below. The procedure was repeated for the different sets of pixels se-
lected from different L1T acquisitions until all the pixels in the tile
were corrected.

3.2.1. Landsat spectral band atmospheric correction coefficient computation
TheMODIS derived 0.05° × 0.05° atmospheric characterization data

for the day that the Landsat L1T data were sensed on were used to gen-
erate CONUS 0.05° × 0.05° maps of atmospheric correction coefficients.
The following four atmospheric correction coefficients were defined for
each Landsat ETM+ reflective wavelength band: ρatm, Td, Tu, and satm,
where ρatm is the atmospheric intrinsic reflectance, Td is the downward
atmospheric transmission in the direction of light propagation from the
TOA to the surface, Tu is the upward atmospheric transmission in the di-
rection of light propagation from the surface to the sensor, and satm is
the atmospheric spherical albedo (Ju et al., 2012). The coefficients
were generated using pre-computed 6SV look up tables populated by
forwardmodeling the 6SV code. The look up tables were parameterized
by ETM+ spectral band number, aerosol optical thickness, surface



Fig. 2. Detail of Fig. 1, illustrating 500 × 600 30 m pixel subsets extracted from the south west corner of Fig. 1. The Landsat ETM+ scan line corrector gaps are clearly evident. Only two
temporally overlapping Landsat ETM+ acquisitions sensed 16 days apart were composited in this WELD tile and the majority of the pixels were selected from the July 25th 2010 (gray,
bottom left) rather than the July 9th 2010 acquisition (white, bottom left). In this subset the July 9th 2010 acquisitionwas primarily cloudy (white stripes, top row) andmany of theMODIS
0.05° atmospheric correction coefficients were interpolated (blue = 0, green = 1, orange = 2, yellow = 3, red = 4; bottom right).
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atmospheric pressure, and the solar and view geometry. The solar ze-
nith and azimuth for the Landsat L1T scene center were used with a
3.5° view zenith angle (i.e. half way from nadir to the ETM+ swath
edge) as for the LEDAPS code (Masek et al., 2006). Ozone, water vapor
other gas absorptions were calculated using empirical fits based on
6SV forward modeling.

The four 0.05° × 0.05° atmospheric correction coefficients were gen-
erated for each Landsat L1T acquisition day and solar geometry for all the
CONUS. Typically about 50% of the CONUS 0.05° × 0.05° grid cells have
no atmospheric characterization data and hence no atmospheric correc-
tion coefficients. This is due to clouds at the time ofMODIS Terra overpass
and so the amount ofmissing data varieswith location and season. To re-
solve this issue the gaps in each of the CONUS 0.05° × 0.05° atmospheric
correction coefficients were filled by natural neighbor interpolation. The
natural neighbor interpolation approach can handle irregular and sparse
data, requires no tuning parameters, and the interpolated values are
guaranteed to be within the range of the samples used (Sibson, 1981).
The natural neighbor interpolation was performed independently for
each of the four atmospheric correction coefficients across all the
CONUS 0.05° × 0.05° grid cells to preserve the original atmospheric
correction coefficient values where they were defined and to interpolate
any missing 0.05° grid cell values (Ju et al., 2012).

3.2.2. Surface reflectance computation
The location of each 30 m tile pixel was projected into the

0.05° × 0.05° CONUS atmospheric correction coefficient data de-
rived for that pixel's Landsat L1T acquisition day and solar geometry.
The atmospheric correction coefficient values at the projected
30 m pixel location were derived by bilinear interpolation of the
four neighboring 0.05° × 0.05° grid cell values (Ju et al., 2012). The
surface reflectance for each Landsat ETM+ reflective wavelength
band was then computed as:

ρs ¼
ρTOA

=c1−c2
� �

=c3

ρTOA=c1−c2
� �

=c3
� �

c4 þ 1
ð1Þ

where ρs and ρTOA are the surface and TOA reflectance respectively
(nominal range 0–1), and c1 = Td, c2 = ρatm/Td, c3 = Tu, and c4 = satm
are the atmospheric correction coefficients (Ju et al., 2012). The surface

image of Fig.�2
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Normalized Difference Vegetation Index (NDVIs) was derived as the
near-infrared minus the red surface reflectance divided by their sum.
3.2.3. Atmospheric correction quality indicator computation
The Landsat atmospheric correction is expected to be less accurate at

locations where there were missing MODIS atmospheric characteriza-
tion data, i.e., at locations where natural neighbor interpolated MODIS
atmospheric characterization values were used. Consequently, as in Ju
et al. (2012), a count of how many (0–4) of the four 0.05° atmospheric
correction coefficient pixels that were natural neighbor interpolated
was stored for each 30 m pixel to provide an atmospheric correction
quality indicator.
3.3. Atmospheric correction implementation illustrative results

Fig. 1 illustrates example TOA Landsat 7 ETM+ visible wavelength
reflectance and corresponding MODIS-corrected Landsat surface reflec-
tance for a single monthly 5000 × 5000 30 m WELD tile (top row).
This particular example was selected as it includes only two Landsat
ETM+ L1T acquisitions sensed 16 days apart (on July 9th and July
25th) and so the results are simpler to interpret than for other tile exam-
ples where more and laterally overlapping L1T acquisitions were
processed. In addition, this example is representative of typical condi-
tions where the Landsat L1T acquisitions and the CONUS MODIS
0.05° × 0.05° atmospheric characterization data are cloud contami-
nated at different locations (Ju & Roy, 2008; Roy, Lewis, Schaaf,
Devadiga, & Boschetti, 2006). Moreover, these data show spatial var-
iability in the compositing selection of different Landsat L1T acquisi-
tions and in the atmospheric correction quality indicator (bottom
row).

The impact of the atmospheric correction on the TOA reflectance is
obvious visually (Fig. 1, top row). Adjacent 30 m pixelsmay be selected
by the compositing algorithm from different Landsat acquisitions. This
is evident in the bottom left of Fig. 1 that shows the input L1T filename
index and illustrates that across the tile the composited pixels were se-
lected from the two L1T acquisitions in a variable way. This variation is
dependent upon the degree of cloudiness of the two Landsat acquisi-
tions and on the efficacy of the compositing algorithm. The bottom
right of Fig. 1 shows the atmospheric correction quality indicator i.e., a
count of howmany of the four 0.05° atmospheric correction coefficient
pixels used to atmospherically correct each 30 m pixel were natural
neighbor interpolated. For this example most 30 m pixels had four
0.05° interpolated values (red) and their atmospheric correction is
expected to be less reliable than the pixels with fewer interpolated
values. Only a minority of pixels had no interpolated atmospheric cor-
rection coefficients (blue) and these tend to be away from cloudy loca-
tions as clouds preclude the MODIS Terra atmospheric characterization
data retrievals.

Fig. 2 illustrates a 500 × 600 30 m pixel subset of Fig. 1. The Landsat
ETM+ scan line corrector (SLC) gaps are clearly evident at this scale. A
fill value is defined (black in Figs. 1 and 2)where therewere no L1T data
sensed over themonth. Themajority of the pixels in the subset were se-
lected by the compositing algorithm from the July 25th acquisition
(gray, bottom left) rather than from the July 9th acquisition (white, bot-
tom left). Where there were clouds in both acquisitions or in the only
sensed acquisition a cloudy pixel was selected by the compositing algo-
rithm (evident by the white stripes in the TOA and surface reflectance,
top row). The majority of the 30 m pixels used several interpolated
MODIS 0.05° atmospheric correction coefficients (non-blue colors, bot-
tom right) and are related to clouds (most obviously for the pixels
selected from the July 9th acquisition). As adjacent 30 m pixels may
be selected from different L1T acquisitions their atmospheric correction
quality indicator values may be quite different (evident by the red
stripes along the bottom of each SLC-off gap, bottom right).
4. Analysis methodology

TheMODIS-based atmospheric correctionmethodologywas applied
independently to each 5000 × 5000 30 m pixel CONUS tile and for each
of the 12 monthly periods. The resulting TOA and surface reflectance
data were compared following the MODIS land product quality assess-
ment approach (Roy et al. 2002) by first undertaking a qualitative syn-
optic visual assessment and then a quantitative examination of a large
data sample. Spectral, temporal, land cover, and quality, aspects of dif-
ferences imposed by the atmospheric correction were examined.

4.1. Qualitative analysis

Qualitative visual comparison of the TOA and MODIS-corrected
Landsat surface reflectance was first undertaken by examination of
CONUS true color (red, green, blue reflectance) images. Because the
CONUS covers approximately 11,000,000,000 30 m land pixels only
CONUS images with a reduced spatial resolution could be displayed.
Browse CONUS images with a spatial resolution of approximately
150 m were generated by selecting within spatially adjacent non-
overlapping 5 × 5 30 m pixel windows the pixel with the median red
reflectance and the corresponding blue and green reflectance values
for that pixel. In this way, the reflectance for the same pixel was obtain-
ed which produced a more coherent true color reflectance browse than
selecting the median reflectance values for each visible band wave-
length independently (Roy et al., 2010). The red reflectance was used
as the “master” in the selection process since it is less sensitive to atmo-
spheric contamination than the shorter wavelength blue and green re-
flectance bands (Ju et al., 2012; Ouaidrari & Vermote, 1999). CONUS
browse images were generated independently using the TOA and
MODIS-corrected surface reflectance.

4.2. Quantitative analysis

4.2.1. Data sampling
Pixels were sampled every 40 rows and 40 columns across each

CONUS monthly composited tile, and only the non-missing pixel
values extracted (for example, missing pixels are shown as black in
Figs. 1 and 2). The reflectance derived from saturated radiance is
unreliable and so the saturated spectral values were discarded. Landsat
7 ETM+ saturation can occur in any of the reflective bands, typically
when pixels contain illuminated thick cumulonimbus cloud, illuminated
snow, or sunglint over water (Bindschadler et al., 2008; Cahalan et al.,
2001; Dowdeswell & Mcintyre, 1986). Cloudy pixels were discarded
using a conservative cloud screening by considering cloudy pixels as
those labeled as cloudy in either the ACCA or the decision tree cloud
masks. We note that neither cloud mask is perfect and cloudy pixels
and sub-pixel cloudsmay remain (Roy et al., 2010) and evenwith cloudy
pixel removal, aerosol properties near clouds can be different than far
from clouds (Tackett & Di Girolamo, 2009), and together may result in
residual atmospheric correction errors (Kaufman, 1987; Ouaidrari &
Vermote, 1999).

4.2.2. Sample out of range analysis
Thepercentage of sample datawith surface reflectance ρs

λð Þand sur-
face NDVI (NDVIs) falling out of nominal theoretical limits was quanti-
fied. Atmospherically corrected pixels may have values outside their
theoretical limits, i.e. ρs

λ N 1 or ρs
λ b 0 and NDVIs N 1 or NDVIs b −1,

due to “over correction” by the atmospheric correction algorithm,
Landsat calibration errors, and due to instrument artifacts not accom-
modated for by the Landsat calibration (Ju et al., 2012; Markham &
Helder, 2012; Roy et al., 2010). In addition, ρs

λ may be greater than 1
for a surface that reflects in the satellite observation direction more
strongly than a Lambertian surface (Schaepman-Strub, Schaepman,
Painter, Dangel, & Martonchik, 2006).
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4.2.3. Sample scatterplot analysis
Scatter plots of the MODIS-based atmospherically corrected surface

versus TOA reflectance, and similarly for the derived surface and TOA
NDVI, were generated considering all 12 months of sample data. The
overall relationship between the surface and TOA values was character-
ized statistically for each reflective band and for the NDVI using reduced
major axis (RMA) linear regression. The RMA rather than conventional
ordinary least squares regression was used as it allows for both the de-
pendent and independent variables to have error (Cohen,Maiersperger,
Gower, & Turner, 2003) which is required as Landsat atmospheric cor-
rection errors are non-negligible (Ju et al., 2012) and the TOA reflec-
tance contains 5% calibration errors (Markham & Helder, 2012).

Multiple scattering of reflected radiation between the surface and
the atmosphere introduces a dependency between the surface reflec-
tance and the atmospheric contribution to the TOA reflectance
(Kaufman & Sendra, 1988; Tanre, Herman, & Deschamps, 1981). To ex-
plore the dependence of the atmospheric correctionwith surface reflec-
tance, summary statistics of the difference between the surface and TOA
reflectance were derived over contiguous surface reflectance ranges. At
any given 30 m pixel the difference between the MODIS-based atmo-
spherically corrected surface and TOA reflectance may be defined as:

Δρi;λ ¼ ρs
i;λ−ρTOA

i;λ ð2Þ

where ρs
i;λ and ρTOA

i;λ are the MODIS-based atmospherically corrected
surface and TOA reflectance respectively and Δρi,λ is their difference
for Landsat reflective band λ for some sampled pixel i. To explore the
dependence of the atmospheric correction with surface reflectance,
the mean and standard deviation of the difference between the surface
and TOA reflectance, were derived over 100 contiguous surface reflec-
tance ranges from 0 to 1 as:

Δρλ;k ¼
Xnλ;k
i¼1

Δρi;λ

 !,
nλ;k ð3Þ

σΔρλ;k
¼

Xnλ;k

i¼1

Δρi;λ−Δρλ;k

� �,
nλ;k−1

 !1
2

ð4Þ

for k = 1, 2, 3 … 100 where each k describes the set of pixels where
k−1
100 ≤ρs

i;λb
k

100 and where Δρλ;k and σΔρλ;k
are the mean and standard

deviation of the difference between the surface and TOA reflectance
respectively considering nλ,k sampled pixel locations for Landsat
band λ. The number of 30 m pixels nλ,k typically varies with Landsat
band λ because the degree of Landsat saturation varies among bands.
ThemeasuresΔρλ;k andσΔρλ;k

were computed using all 12 months of
sample data and plotted against the k = 1, 2, 3 … 100 contiguous
surface reflectance ranges.

4.2.4. Sample TOA to surface mean and relative absolute difference analysis
The mean absolute difference between the surface and TOA was de-

rived to quantify the average magnitude of the atmospheric correction
for each reflective wavelength band as:

Δ
�� ��ρλ ¼

Xnλ

i¼1

Δρi;λ

�� �� !
=nλ ð5Þ

where Δ
�� ��ρλ is the mean absolute difference between the surface and

TOA reflectance considering nλ sampled 30 m pixel locations for
Landsat band λ, and Δρi,λ is defined as Eq. (2).

In addition, in order to be able to inter-compare Δ
�� ��ρλ between

spectral bands, that can have very different reflectance magnitudes
for the same scene components, for example, healthy vegetation
has low red reflectance and high near-infrared reflectance, the
mean reflectance normalized absolute percentage difference was
derived as:

Δ
�� ���ρλ ¼ Δ

�� ��ρλXnλ
i¼1

ρs
i;λ
,

nλ

0
BBBBBBBBB@

1
CCCCCCCCCA
100 ð6Þ

where Δ
�� ��ρλ is the mean absolute difference between the surface

and TOA reflectance (Eq. (5)), considering nλ sampled 30 m pixel
locations for Landsat band λ and ρS

i;λ is the MODIS-based atmo-
spherically corrected surface reflectance respectively for sampled
pixel i. The measures Δ

�� ��ρλ and Δ
�� ���ρλ were computed using all

12 months of sample data. Similarly, the differences between the
surface NDVI and TOA NDVI were also quantified as above.

4.2.5. Sample atmospheric correction quality analysis
The quantitative analyses were repeated using only “good” quality

30 m atmospherically corrected pixels defined as those pixels comput-
ed using no natural neighbor interpolated MODIS 0.05° atmospheric
correction coefficients. In this way the impact of the quality of the
MODIS-based Landsat atmospheric correction captured by the 0.05°
MODIS atmospheric correction coefficient interpolation count (Figs. 1
and 2, bottom right) was examined.

4.3. Temporal land cover based analysis

As surface and atmospheric conditions change seasonally a temporal
analysis was undertaken to compare the monthly TOA and MODIS-
corrected surface reflectance and derived NDVI. Time series of LEDAPS
atmospherically corrected WELD 30 m NDVI have shown good corre-
spondence with flux tower derived NDVI (Kovalskyy, Roy, Zhang, & Ju,
2011). In this study however rather than examine a small number of
30 mdata overflux towers, a large number of CONUSpixelswere exam-
ined over bare ground and forest classified pixels. A CONUS Land Cover
Land Cover Change (LCLCC) product that includes a 30 m classification
of maximum Tree Crown cover (0–100%) and minimum Bare Ground
(0–100%) cover was used to define these two classes. Pixels with
b50% bare groundand N50% tree crown coverwere considered as forest,
and pixelswith N50% bare ground and b50% tree crown coverwere con-
sidered as bare ground. In this way a total of 852,608,105 bare ground
and 2,329,985,614 forest CONUS 30 m pixels were defined and are il-
lustrated in Fig. 3. The CONUS LCLCC product was generated from
5 years (2006 to 2010) of WELD products (Hansen et al., 2013) using
high spatial resolution training data and supervised regression tree clas-
sification approaches based on the approaches described in Hansen,
Stehman, and Potapov (2010) and Hansen et al. (2011), and is available
at WWW3.

Pixels were sampled every 20 rows and 20 columns across each
CONUS monthly composited tile, and if the pixel was forest or bare
ground the value was extracted. Cloudy and saturated pixel values
were discarded as described in Section 4.2.1. The forest pixels include
deciduous and coniferous tree species and the bare ground pixels in-
clude both bare soil and impermeable urban areas. This broad spatial
definition and any classification errors will introduce within-class vari-
ability. Consequently, both themean and standard deviation of the TOA
and surface reflectance and derived NDVI were computed for each of
the 12 monthly products for these two classes.



Fig. 3. CONUS Forest (green) and Bare Ground (orange) locations derived from the 30 m
5-year (2006 to 2010) WELD Land Cover Land Cover Change (LCLCC) product (Hansen
et al., 2013). In this illustration each pixel is generalized from 5 × 5 30 m Landsat pixels
to provide an approximate spatial resolution of 150 m. The forest 150 m pixels are
those where the majority of the 25 30 m LCLCC pixels falling within contiguous 5 × 5
30 m pixel subgrids are labeled as N50% forest and b50% bare ground, similarly the bare
ground 150 m pixels are labeled as those where themajority of the 25 30 m LCLCC pixels
are labeled as N50% bare ground and b50% forest. The red vector shows the northern and
the southern border of the CONUS. All the WELD tiles including those illustrated falling
north and south of the border are considered; a total of 852,608,105 30 m Bare Ground
pixels and 2,329,985,614 Forest 30 m pixels.

Fig. 5.MODIS based atmospheric correction of the CONUS WELD July 2010 true color re-
flectance shown in Fig. 4 and illustrated and with the same “honest” contrast stretch.
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5. Results

5.1. Qualitative results

Figs. 4 and 5 show the July monthly TOA and MODIS-corrected sur-
face visible reflectance browse images respectively that were generated
by WELD processing 851 Landsat ETM+ scenes. The same “honest”
contrast stretch was used for both figures, showing the three visible
bands with the same red, green and blue display stretch parameters.
The large black gaps in the two figures are where there were no L1T
data with cloud cover ≤80% and so were not processed. Qualitatively
the TOA reflectance (Fig. 4) and surface reflectance (Fig. 5) appear
quite different with less visual contrast in the TOA reflectance and a
Fig. 4. Topof atmosphere true color reflectance, red (0.63–0.69 μm), green (0.53-0.61 μm)
and blue (0.45–0.52 μm), CONUSWELDmonthly composite, July 2010. Product composed
of 851 Landsat ETM+ scenes with cloud cover≤80%, Albers Projection. An “honest” con-
trast stretch is used, showing the three visible bands with exactly the same red, green and
blue display stretch parameters. A browse image is displayed where each pixel is general-
ized from 5 × 5 30 m Landsat pixels to provide an approximate spatial resolution of
150 m.
more blue appearancedue to the impact of the atmosphere at the visible
wavelengths. This is also seen at higher resolution for the single tile re-
sults illustrated in the top rows of Figs. 1 and 2. The July 2010 browse is
illustrated as July is the middle of the summer and nominally captures
CONUS peak vegetation conditions.

Fig. 6 shows histograms of the CONUS July red, green, blue, and near-
infrared TOA and MODIS-corrected surface reflectance. The histograms
were computed from about 5.5 million 30 m pixels sampled every 40
rows and 40 columns across the CONUS. The surface blue, green and
red reflectance histogram peak values are 0.07, 0.03 and 0.015 smaller
than the TOA blue, green and red reflectance peaks respectively. This
is expected due to the greater atmospheric effects at shorter wave-
lengths associated primarily with aerosol scattering (Kaufman, 1989).
After atmospheric correction the red and blue reflectance histogram
peaks becomemore similar to each other and the green reflectance his-
togram peak is greater than either which is expected given that in July
the CONUS is dominated by green vegetation. The NIR histogram is
more complex than the visiblewavelength histograms andhas a bimod-
al shape. The near-zero NIR reflectance histogram peak is associated
with water bodies (lakes, rivers, coastal waters) and the surface NIR
peak is about 0.01 smaller than the TOANIR peak. The histogramNIR re-
flectance values characteristic of soil surfaces (NIR reflectance approxi-
mately 0.1 to 0.3) occur less frequently for the surface than the TOANIR
reflectance. Conversely, the histogram NIR reflectance values charac-
teristic of vegetated surfaces (NIR reflectance greater than approxi-
mately 0.35) occur more frequently for the surface than the TOA
NIR reflectance. The impact of the atmospheric correction on the
TOA NIR reflectance is due primarily to correction for water vapor
absorption (Kaufman, 1989). For all four spectral bands illustrated in
Fig. 6 there are some atmospherically corrected pixels with negative re-
flectance, predominantly over water; this effect also occurs in the
MODIS surface reflectance product (Vermote et al., 2002) and is quanti-
fied in Section 5.2.1.

Fig. 7 shows histograms of the NDVI derived from the July TOA and
MODIS-corrected 30 m surface reflectance. The surface NDVI has a
greater dynamic range than the TOA NDVI and the NDVI histogram
peak is nearly 0.1 higher (peak at 0.88) than the TOA NDVI (peak at
0.77) which has been observed and modeled by other researchers
(Holben, 1986; McDonald, Gemmell, & Lewis, 1998). Atmospheric ef-
fects generally reduce NDVI but are complex and vary as a function of
factors including the degree of aerosol and water vapor contamination
and the vegetation cover and soil brightness (Holben, 1986; Huete,
1988; Kaufman & Tanre, 1992; Liu & Huete, 1995; McDonald et al.,
1998; Miura, Huete, Yoshioka, & Holben, 2001). For surfaces with low
red and near-infrared reflectance the NDVI is particularly sensitive to
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Fig. 6.Histograms of the top of atmosphere (dashed line) and theMODIS-corrected surface (solid line) blue (0.45–0.52 μm), green (0.53–0.61 μm), red (0.63–0.69 μm), and near-infrared
(0.78–0.90 μm) Landsat reflectance extracted from the CONUSWELD July 2010 monthly products illustrated in Figs. 4 and 5 respectively. Data extracted by sampling regularly every 40
rows and 40 columns anddiscarding all cloudy and saturated 30 mWELDpixels. A total of 5,495,934 (blue), 5,496,248 (green), 5,495,835 (red), and 5,494,317 (near-infrared) 30 m pixels
considered. Histogram X-axis bin widths of 0.005 reflectance.
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atmospheric correction and calibration errors because of the NDVI ratio
formulation (Verstraete & Pinty, 1996). The histogram NDVI values
characteristic of “non-vegetated” surfaces, i.e., within approximately
−0.1 to 0.1, occur more frequently for the surface NDVI than the TOA
NDVI. This is associated with low red and near-infrared reflectance
over water bodies. Over many CONUS water bodies the atmospheric
correction reduced both the red and near-infrared TOA reflectance
(Fig. 6) but with greater reductions in the red rather than the near-
Fig. 7. Histograms of the NDVI derived from the top of atmosphere (dashed line) and the MO
monthly products illustrated in Figs. 4 and 5 respectively. Data extracted by sampling regularly
A total of 5,494,113 30 m pixels considered. Histogram X-axis bin widths of 0.015 NDVI.
infrared and consequently the surface NDVI was increased relative to
the TOA NDVI.

The differences illustrated in Figs. 6 and 7 reflect surface and atmo-
spheric variations across the CONUS and the efficacy of the MODIS-
based atmospheric correction. However, histogram based analyses do
not provide insights on the impact of the atmosphere on specific pixel
values or land cover conditions and this is investigated quantitatively
in Sections 5.2 and 5.3 respectively.
DIS-corrected surface (solid line) reflectance extracted from the CONUS WELD July 2010
every 40 rows and 40 columns and discarding all cloudy and saturated 30 mWELD pixels.
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Table 2
The same as Table 1 but considering only “good” quality 30 m atmospherically corrected
pixels.

Landsat
ETM+
reflective
band or
NDVI

Number of
30 m pixel
values
considered

Percentage (%) of pixels
with surface reflectance or
NDVI less than nominal
theoretical lower limit
(i.e. ρs

λ b 0, NDVI s b −1)

Percentage (%) of pixels
with surface reflectance or
NDVI greater than nominal
theoretical upper limit
(i.e. ρs

λ N 1, NDVI s N 1)

1 19,681,590 0.0336 0.0004
2 19,681,595 0.0015 0
3 19,680,851 0.0032 0
4 19,681,723 0.0007 0
5 19,679,934 0.0142 0
7 19,681,575 0.0611 0
NDVI 19,680,848 0.0004 0.0032
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5.2. Quantitative 12 month results

5.2.1. Data sample and out of range analysis results
The spatial sampling every 40 rows and 40 columns across the 501

CONUS WELD tiles and the cloud and saturation filtering provided
more than 53 million 30 m pixels with TOA and corresponding surface
reflectance values (Table 1).When only “good” quality 30 m atmospher-
ically corrected pixels were considered, defined as those pixels comput-
ed using no natural neighbor interpolated MODIS 0.05° atmospheric
correction coefficients, there weremore than 19.6 million pixel sampled
(Table 2). This amount of data was assumed to be sufficiently compre-
hensive to characterize 12 months of CONUS surface and atmospheric
variations.

Tables 1 and 2 also summarize the percentage of pixels with out of
range surface reflectance and surface NDVI considering all the data
and only the “good” quality data respectively. The percentage of pixels
with surface reflectance greater than the nominal theoretical upper
limit (i.e.,ρs

λ N 1) is negligible (less than 0.1%) for both the “good” qual-
ity and all the data. However, the percentage of pixels with surface re-
flectance less than the nominal theoretical lower limit (i.e., ρs

λ b 0)
varies from about 0.4% (green reflectance) to about 1.5% (Landsat
ETM+ band 7) when all the data are considered and is only negligible
when considering the “good” quality data. These percentages although
quite small may have considerable impact on applications that use the
atmospherically corrected data. The percentage of pixels with surface
NDVI outside nominal theoretical limits is about 0.3% (NDVIs b −1)
and 0.2% (NDVIs N 1) when considering all the data but is negligible
for the “good” quality data. The unusually high and low NDVI values
occur over coastal and inland waters when the surface red and near in-
frared reflectance is close to zero. The difference between the results in
Table 1 (all data) and Table 2 (good quality data) indicates the efficacy
of the count the number of natural neighbor interpolated MODIS 0.05°
atmospheric correction coefficients as a 30 m Landsat atmospheric cor-
rection quality indicator.

5.2.2. Sample scatterplot results
Fig. 8 shows scatter plots of the TOA and MODIS-corrected surface

reflectance for all the reflective bands and also the NDVI extracted
from the 12 months of CONUS WELD monthly products (more than
53 million pixel values, Table 1). The frequency of occurrence of the re-
flectance values per band is shownwith a color scale for illustrative pur-
poses. The majority of the pixels have reflectance associated with
vegetation and soil surfaces and a relative minority have higher reflec-
tance associated with sub-pixel and residual cloud contamination and
also with snow and ice which were not removed from the analysis.
The dotted lines show 1:1 lines superimposed for reference and the
solid lines show reduced major axis (RMA) linear regression fits. For
all the spectral bands the RMA regression intercepts are close to zero
and the slopes (Table 3) are greater than unity because Rayleigh and
Table 1
The number of 30 m pixel values extracted every 40 rows and 40 columns from the 501
CONUS WELD tiles for each of 12 monthly products, discarding all cloudy and saturated
pixels, and the percentage of pixels with MODIS-based atmospherically corrected surface
reflectance and NDVI values outside nominal theoretical limits.

Landsat
ETM+
reflective
band or
NDVI

Number of
30 m
pixel
values

Percentage (%) of pixels
with surface reflectance or
NDVI less than nominal
theoretical lower limit
(i.e. ρs

λ b 0, NDVI s b −1)

Percentage (%) of pixels
with surface reflectance or
NDVI greater than nominal
theoretical upper limit
(i.e. ρs

λ N 1, NDVI s N 1)

1 53,081,229 0.4761 0.0303
2 53,315,086 0.3680 0.0709
3 53,163,464 0.6726 0.0583
4 53,689,479 0.9271 0.0465
5 53,696,317 1.0619 0
7 53,713,611 1.4587 0
NDVI 53,158,943 0.2814 0.2074
aerosol backscatter into the sensor adds to the TOA signal at low surface
reflectance ranges and aerosol absorption attenuates the TOA signal at
higher surface reflectance (Ju et al., 2012; Kaufman & Sendra, 1988;
Tanre et al., 1981). Similarly, the NDVI slope is 1.1 with a 0.03 intercept
because, as discussed above with respect to Fig. 7, the atmosphere gen-
erally reduces NDVI. The surface NDVI for a relative minority of pixels is
very different from the TOANDVI (differences greater than 0.5) and this
is examined in detail below.

Fig. 9 illustrates the mean and standard deviation of the difference
between the surface and TOA reflectance (Eqs. (3) and (4)) defined
over 100 contiguous surface reflectance ranging from 0 to 1, and also
for the difference between the surface and TOA NDVI defined over 100
contiguous surface NDVI ranging from −1 to 1. The number of pixels
in each illustrated range is shown (open circles) and varies from more
than 16.8 million pixels (224), occurring at wavelengths corresponding
predominantly to the reflectance of vegetated surfaces, to relatively
fewer highly reflective pixel values associated with bright soils, snow,
ice and sub-pixel and residual cloud. Table 4 summarizes the minimum
and maximum mean and standard deviation differences over the 100
contiguous surface reflectance and surface NDVI ranges illustrated in
Fig. 9.

The impact of the MODIS-based atmospheric correction is quite ap-
parent in Fig. 9 and Table 4. The mean difference between the surface
and TOA reflectance (Fig. 9, solid circles) increases monotonically with
increasing surface reflectance, from negative differences at low surface
reflectance changing to positive differences at higher reflectance. The
change from a negative to a positive mean difference occurs when the
surface reflectance is about 0.36, 0.22, 0.17, 0.14, 0.07, and 0.02 for reflec-
tive bands 1, 2, 3, 4, 5, and 7 respectively and illustrates the dependency
between the surface reflectance and the atmospheric contribution to the
TOA reflectance (Kaufman & Sendra, 1988; Tanre et al., 1981). Atmo-
spheric impacts are greatest at the shorter Landsat ETM+wavelengths.
On average, the blue surface reflectance is about 0.08 smaller than the
TOA reflectance at low blue surface reflectance and about 0.14 greater
than the TOA reflectance at high blue surface reflectance. Landsat
ETM+ band 5 reflects the least impact with surface reflectance on aver-
age about 0.002 smaller than the TOA reflectance at low band 5 surface
reflectance and about 0.05 greater than the TOA reflectance at high
band 5 surface reflectance. The standard deviation of the difference be-
tween the surface and TOA reflectance (vertical lines, Fig. 9) also in-
creases generally monotonically with increasing surface reflectance.

The NDVI results summarized in Fig. 9 and Table 4 are more compli-
cated than the red and near-infrared reflective wavelength results be-
cause of the non-linear NDVI red and near-infrared ratio formulation.
On average the surface NDVI is about 0.1 greater than the TOA NDVI
for much of the “vegetated” surface NDVI range from about 0.2 to
about 0.8. The surface NDVI is greater than the TOA NDVI for “non-veg-
etated” surface NDVI in the range of about −0.1 to 0.1, which is also
clearly apparent in the single month July histogram (Fig. 7). The



Fig. 8. Scatter plots ofMODIS based atmospherically correctedWELD surface reflectance andderivedNDVI (Y-axis) versus top of atmosphere (TOA) equivalents (X-axis). Data extracted by
sampling regularly every 40 rows and 40 columns from across every WELD CONUS atmospherically corrected and TOA reflectance composite and discarding all cloudy and saturated
WELD pixels. Data from all 12 monthly composites, December 2009 to November 2010, considered. A total of more than 53 million 30 m pixel values per band (Table 1). The solid
lines show reduced major axis (RMA) orthogonal regression fits of these data. The dotted lines are 1:1 lines superimposed for reference. The frequency of occurrence of pixels with the
same reflectance is illustrated by colors shaded with a log2 scale from 0 (white), 30 (green, log2(5) = 25 = 32), 1000 (orange, 210 = 1024), and N32,000 (purple, 215 = 32,768).

442 D.P. Roy et al. / Remote Sensing of Environment 140 (2014) 433–449
standard deviation of the differences is relatively high in the near zero
NDVI range and reflects that water and other surfaces with near zero
red and near-infrared reflectance provide unreliable NDVI (Verstraete
Table 3
Slopes and intercepts of the reducedmajor axis (RMA) linear regression fits of theMODIS-
corrected surface reflectance and TOA reflectance data illustrated in Fig. 8 and the number
of 30 m pixel values extracted by sampling regularly every 40 rows and 40 columns from
all 12 monthly WELD products and discarding all cloudy and saturated WELD pixels.

Landsat ETM+ reflective
band or NDVI

RMA
slope

RMA
intercept

Number of 30 m pixel values
considered

1 1.2843 −0.0944 53,081,229
2 1.3134 −0.0557 53,315,086
3 1.2046 −0.0301 53,163,464
4 1.1050 −0.0142 53,689,479
5 1.0612 0.0023 53,696,317
7 1.1329 0.0001 53,713,611
NDVI 1.0956 0.0299 53,158,943
& Pinty, 1996). Near-zero surface NDVI is particularly sensitive to any
“over correction” by the atmospheric correction algorithm and any
Landsat calibration errors. The greatest impact of the atmosphere on
theNDVI occurs for surfaceNDVI close to the upper and lowerNDVI the-
oretical limits. The mean difference between the surface and TOA NDVI
is−0.63when the surface NDVI is−1 and 0.57when the surface NDVI
is 1.0. However these unusually high and low NDVI values only occur
over coastal waters when the surface red and near infrared reflectance
are close to zero.

Fig. 10 shows the results as illustrated in Fig. 8 but derived consider-
ing only “good” quality 30 m atmospherically corrected pixels defined
as pixels with surface reflectance computed using no natural neighbor
interpolated MODIS 0.05° atmospheric correction coefficients. This re-
duced the more than 53 million non-cloud and unsaturated reflectance
values per band for the 12 months (Table 1) to about 19.6 million
“good” quality 30 m pixel values per band (Table 2). Despite this reduc-
tion in sample size, the RMA regression slopes are greater than one and
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Fig. 9.Mean (solid circles) ± one standard deviation (error bars) of the spectral differences betweenMODIS based atmospherically corrected reflectanceWELD surface and top of atmo-
sphere (TOA) reflectance (left Y-axis) for contiguous 0.01 surface reflectance ranges (X-axis). The results for NDVI derived from the surface and TOA red and near-infrared reflectance are
also shown. The number of 30 m pixel values considered (log2 scale) is shown by the open circles (right Y-axis). Data the same as illustrated in Fig. 8, i.e., extracted by sampling regularly
every 40 rows and 40 columns from across everyWELD CONUS atmospherically corrected and TOA reflectance composite and discarding all cloudy and saturatedWELD pixels. Data from
all 12 monthly composites considered. A total of more than 53 million 30 m pixel values per band (Table 1).

Table 4

Summary of the range of the 100mean Δρλ;k
� �

and standard deviation σΔρλ;k

� �
reflectance

differences between the MODIS based atmospherically corrected WELD surface reflec-
tance and top of atmosphere reflectance, and similarly derived NDVI, that are illustrated
in Fig. 9.

Landsat ETM+
reflective band
or NDVI

Minimummean
difference

Maximummean
difference

Minimum
standard
deviation
difference

Maximum
standard
deviation
difference

1 −0.081 0.142 0.0056 0.0272
2 −0.047 0.210 0.0031 0.0315
3 −0.025 0.159 0.002 0.0242
4 −0.013 0.075 0.0028 0.0188
5 −0.002 0.053 0.0017 0.0104
7 −0.001 0.127 0.0022 0.0159
NDVI −0.629 0.573 0.0298 0.3838
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the intercepts close to zero (Table 5) and are similar to those computed
using all the data (Table 3). Comparing Figs. 8 and 10 it is apparent that
considering only “good” quality pixels removed many pixels with high
reflectance. This was because “good” quality pixels tend to be away
from cloudy locations as clouds preclude the MODIS Terra atmospheric
retrievals (Figs. 1 and 2) and are less likely to include residual and sub-
pixel clouds that were not detected by the two 30 m WELD cloud
masks.

Fig. 11 and Table 6 show the same results as illustrated in Fig. 9 and
Table 4 but derived considering only the “good” quality 30 m atmo-
spherically corrected pixels. The range of the mean and standard devia-
tion reflectance and NDVI differences (Eqs. (3) and (4)) is consistently
smaller for all ETM+ bands and for the NDVI when good quality pixels
only are considered. This is expected as the atmospheric correction un-
dertakenwith spatially interpolated atmospheric correction coefficients
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Fig. 10. The same as Fig. 8 but only considering “good” quality 30 m atmospherically corrected pixels computed using no natural neighbor interpolated MODIS 0.05° atmospheric correc-
tion coefficients. A total ofmore than 19.6 million 30 m pixel values per band (Table 2). The solid lines show reducedmajor axis (RMA) orthogonal regressionfits of these data. The dotted
lines are 1:1 lines superimposed for reference.

444 D.P. Roy et al. / Remote Sensing of Environment 140 (2014) 433–449
is less likely to be reliable and also because the good quality pixels are
less likely to be close to clouds or to include residual and sub-pixel
clouds that were undetected by the two 30 m WELD cloud masks.
Table 5
Slopes and intercepts of the reducedmajor axis (RMA) linear regression fits of theMODIS-
corrected surface reflectance and TOA reflectance data illustrated in Fig. 10 (i.e., consider-
ing only “good” quality 30 m atmospherically corrected pixels) and the number of
30 m pixel values extracted by sampling regularly every 40 rows and 40 columns from
all 12 monthly WELD products and discarding all cloudy and saturated WELD pixels.

Landsat ETM+reflective
band or NDVI

RMA slope RMA intercept Number of 30 m pixel
values considered

1 1.2377 −0.0848 19,681,590
2 1.2052 −0.0423 19,681,595
3 1.1276 −0.0210 19,680,851
4 1.0983 −0.0135 19,681,723
5 1.0487 0.0002 19,679,934
7 1.1231 0.0013 19,681,575
NDVI 1.1322 0.0049 19,680,848
5.2.3. Sample TOA to surface mean and relative absolute difference results
Table 7 summarizes the mean magnitude of the difference between

the surface and TOA reflectance andNDVI. Themean absolute difference
between the surface and TOA reflectance ( Δ

�� ��ρλ, Eq. (5)) and the mean

reflectance normalized absolute percentage difference ( Δ
�� ���ρλ, Eq. (6))

are shown for each reflectivewavelength band and for theNDVI. The Δ
�� ��

ρλ values reflect the absolutemagnitude of the differences illustrated in
Figs. 9 and 11 and show greater differences at shorter Landsat wave-
length bands, with the exception of Landsat band 7. This spectral pat-
tern was observed in the CONUS MODIS-based validation results
reported in Ju et al. (2012). The mean reflectance normalized absolute

percentage differences Δ
�� ���ρλ

� �
enable more meaningful comparison

among bands. Considering all 53 million CONUSpixels the Δ
�� ���ρλ values

are 45%, 22%, 12%, 6%, 5%, and 13% for Landsat ETM+bands 1, 2, 3, 4, 5, 7
respectively and 28% for the NDVI. When only “good” quality pixels are
considered the Δ

�� ���ρλ values are reduced compared to considering all
the data, with the exception of the blue band. The Δ

�� ���ρλ values consid-
ering the good quality data are 51%, 19%, 8%, 4%, 5%, and 13% for Landsat
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Fig. 11. As Fig. 9 but only using the data illustrated in Fig. 10 that consider only “good” quality 30 m atmospherically corrected pixels computed using no natural neighbor interpolated
MODIS 0.05° atmospheric correction coefficients. A total of more than 19.6 million 30 m pixel values per band (Table 2).

Table 6

Summary of the range of the 100mean Δρλ;k
� �

and standard deviation σΔρλ;k

� �
reflectance

differences between the MODIS based atmospherically corrected WELD surface reflec-
tance and top of atmosphere reflectance, and similarly derived NDVI, that are illustrated
in Fig. 11 (i.e., considering only “good” quality 30 m atmospherically corrected pixels).

Landsat ETM+
reflective band
or NDVI

Minimummean
difference

Maximummean
difference

Minimum
standard
deviation
difference

Maximum
standard
deviation
difference

1 −0.072 0.012 0.004 0.015
2 −0.040 0.046 0.002 0.015
3 −0.020 0.036 0.002 0.010
4 −0.010 0.034 0.002 0.011
5 −0.001 0.024 0.001 0.006
7 0.000 0.058 0.001 0.009
NDVI −0.587 0.092 0.014 0.129

Table 7
Themean absolute difference between the surface and TOA reflectance Δ

�� ��ρλand themean
reflectance normalized absolute percentage difference Δ

�� ���ρλ derived from 12 months of
CONUS cloud-free and unsaturated pixels, a total of more than 53 million 30 m pixel
values per band (Table 1) and considering only “good” quality 30 m atmospherically
corrected pixels, a total of more than 19.6 million 30 m pixel values per band (Table 2).

Landsat ETM+
reflective band
or NDVI

Δ
�� ��ρλ Δ

�� ��ρλ derived
considering
only “good”
quality 30 m
atmospherically
corrected pixels.

Δ
�� ���ρλ Δ

�� ���ρλ derived
considering
only “good”
quality 30 m
atmospherically
corrected pixels

1 0.061 0.058 45.5% 50.8%
2 0.027 0.020 21.9% 18.7%
3 0.015 0.008 12.3% 7.7%
4 0.013 0.010 5.7% 4.2%
5 0.009 0.011 5.3% 5.0%
7 0.015 0.018 13.4% 13.2%
NDVI 0.084 0.054 28.1% 14.6%
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ETM+ bands 1, 2, 3, 4, 5, 7 respectively and 15% for the NDVI. Thus on
average for the 12 months of CONUS data considered the surface
NDVI is 28% different from the TOA NDVI when all the data are consid-
ered and is 15% different when only the good quality atmospherically
corrected data are considered.

5.3. Temporal land cover based results

Figs. 12 and13 show time series plots of themonthlymean and stan-
dard deviation of the TOA (filled circles) and surface (open circles) red
and near-infrared reflectance and derived NDVI for the CONUS bare
ground and forest pixels (Fig. 3) respectively. The top and bottom
rows illustrate the summary statistics computed considering all and
only the good quality cloud-free unsaturated data respectively.

The bare ground results (Fig. 12) were computed using more than
1 million to more than 1.9 million 30 m bare ground pixel values per
month (top row) and more than 430,000 to more than 990,000 pixel
values per month when only “good” quality pixels were considered
(bottom row). Themonthly mean surface red and near-infrared surface
reflectance values are higher than the TOA equivalents. This was ob-
served in Figs. 8 and 10 for the majority of the CONUS sampled pixels
with red and near-infrared reflectance similar to themean soil values il-
lustrated in Fig. 12. The winter red and near-infrared reflectance values
have highermeans and standard deviations than in othermonthswhen
all the data are considered (top row)which is associated primarily with
snow over the northern CONUS states. When only good quality data are
considered the snow effects are less apparent (bottom row) because the
majority of the northern CONUS states have above average Winter
cloud cover at the time of Landsat overpass (Ju & Roy, 2008) and so
there are relatively fewer snowy locations encompassed by the good
quality pixels. The monthly mean surface NDVI values are consistently
higher than the TOA NDVI. Considering the good quality data, the min-
imum,mean andmaximummonthly NDVI difference between the TOA
Fig. 12. Summary CONUS statistics (mean ± standard deviation) of top of atmosphere (filled
WELD reflectance and derived NDVI for Bare Ground pixels (orange, Fig. 3). Extracted from th
only non-cloudy non-saturated WELD values at the locations of 30 m bare ground pixels. Th
corrected pixels computed using no natural neighbor interpolated MODIS 0.05° atmospheric c
and surface mean NDVI is 0.005, 0.010, and 0.014 respectively. These
differences are quite small because of low NDVI of bare soil and imper-
meable urban surfaces (mean of the 12 monthly mean TOA and surface
NDVI is 0.131 and 0.142 respectively) which have little temporal
variation.

The forest results (Fig. 13) were computed usingmore than 2.4 mil-
lion to more than 4.6 million 30 m bare ground pixel values per month
(top row) and more than 750,000 to nearly 2.1 million pixel values per
month when only “good” quality pixels were considered (bottom row).
The monthly mean surface red and near-infrared reflectance values are
lower and higher than the TOA equivalents respectively due to the spec-
tral dependence of the atmospheric scattering and absorption (evident
in Figs. 8 to 11). The standard deviation of the monthly red and near-
infrared reflectance and NDVI are quite high reflecting the wide varia-
tion in forest types sampled across the CONUS (Fig. 3). Despite this di-
versity, a CONUS forest phenology is evident similar to that of a
temperate deciduous broad-leaf forest with high NDVI (~0.8) in May–
September and rapid phenological change in the spring (March–April)
and autumn (October–November) (Fisher & Mustard, 2007; Schwartz,
Reed, & White, 2002). As with the bare ground results, the red and
near-infrared reflectance monthly mean and standard deviation values
are greater in the winter months. This is associated with snow, as al-
though evergreen forests may hide snow, deciduous forests shed their
leaves in the winter months to expose underlying soil (Betts, 2000).
Snow increases least the reflectance of vegetated surfaces with high
canopy density and vertical structure (e.g., evergreen forests) and in-
creases most the reflectance of surfaces with sparse and/or short vege-
tation (e.g., bare ground) (Barnes & Roy, 2010; Gao et al., 2005). The
monthly mean surface NDVI values are consistently higher than the
TOANDVI. Considering the good quality data themeanmonthly surface
NDVI is higher than themeanmonthly TOANDVI by 0.100 and themin-
imum and maximum monthly NDVI differences are 0.073 and 0.134
respectively.
circles) and MODIS based atmospherically corrected (open circles) red and near-infrared
e 12 monthly (December 2009 to November 2010) WELD monthly products considering
e bottom row shows the results considering only “good” quality 30 m atmospherically
orrection coefficients.

image of Fig.�12


Fig. 13. Summary CONUS statistics (mean ± standard deviation) of top of atmosphere (filled circles) and MODIS based atmospherically corrected (open circles) red and near-infrared
WELD reflectance and derived NDVI for forest pixels (green, Fig. 3). Extracted from the 12 monthly (December 2009 to November 2010) WELD monthly products considering only
non-cloudy non-saturated WELD values at the locations of 30 m forest pixels. The bottom row shows the results considering only “good” quality 30 m atmospherically corrected pixels
computed using no natural neighbor interpolated MODIS 0.05° atmospheric correction coefficients.
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6. Conclusion

The integration of a recent MODIS based Landsat atmospheric cor-
rection algorithm (Ju et al., 2012) into the Web-enabled Landsat Data
(WELD) processing (Roy et al., 2010) was described and demonstrated
by application to 12 months of conterminous United States (CONUS)
Landsat 7 ETM+ data (8116 ETM+ acquisitions). The algorithm uses
0.05° atmospheric characterization data retrieved from MODIS Terra
to atmospherically correct contemporaneous (same orbit) Landsat 7
ETM+reflectance using the 6SV radiative transfer code. The differences
between top of atmosphere (TOA) and surface Landsat 7 ETM+ reflec-
tance and derived NDVI were quantified with respect to spectral, tem-
poral, land cover, and a per-pixel atmospheric correction quality
storage scheme. A sample of 53 million pixels extracted across the
CONUS and from 12 months of data was considered to capture surface
and atmospheric variability. The major findings of this study are:

• The mean absolute differences between surface and TOA reflec-
tance expressed as percentages of the surface reflectance were
45%, 22%, 12%, 6%, 5%, and 13% for Landsat ETM+ bands 1 (0.45–
0.52 μm), 2 (0.53–0.61 μm), 3 (0.63–0.69 μm), 4 (0.78–0.90 μm),
5 (1.55–1.75 μm) and 7 (2.09–2.35 μm) respectively. This quan-
tifies the average CONUS Landsat ETM+ spectral dependency of
atmospheric scattering and absorption that is particularly large
for the shorter wavelength ETM+ bands.

• The mean difference between surface and TOA reflectance (surface
minus TOA) increased monotonically with increasing surface re-
flectance. On average the change from a negative to a positive
mean difference occurred when the surface reflectance was 0.36,
0.22, 0.17, 0.14, 0.07, and 0.02 for Landsat ETM+ reflective bands
1, 2, 3, 4, 5, and 7 respectively. This illustrates the established de-
pendency between the surface reflectance and the atmospheric
contribution to the TOA reflectance (Kaufman & Sendra, 1988;
Tanre et al., 1981). These values are of interest as they depict the
average CONUS Landsat ETM+ surface reflectance values where
the atmosphere has on average no impact and provide the average
boundary values for positive and negative atmospheric contribu-
tions to ETM+ TOA reflectance.

• The mean absolute difference between surface and TOA NDVI
expressed as a percentage of the surface NDVI was 28%. The surface
NDVI was on average 0.1 greater than the TOA NDVI for the “vege-
tated” surface NDVI range from about 0.2 to about 0.8. These aver-
age CONUS differences are quite large and illustrate the broad
utility of maximum NDVI compositing to select pixels with re-
duced atmospheric effects from satellite time series (Holben,
1986).

• The spectral dependence of atmospheric scattering and absorption
was observed in CONUS monthly forest and bare ground red, near-
infrared and NDVI time series. The mean monthly surface near-
infrared reflectance and NDVI were higher than the TOA equiva-
lents for the CONUS forest and bare ground pixels, and the mean
monthly surface red reflectance was lower and higher than the
TOA red reflectance for the forest and bare ground pixels respec-
tively.

• The atmospheric correction quality storage scheme broadly char-
acterized the quality of the atmospherically data. Good quality
30 m atmospherically corrected pixels were defined as those
pixels computed using no interpolated MODIS 0.05° atmospheric
correction coefficients. The range of the mean and standard devia-
tion reflectance and NDVI differences between TOA and surface
CONUS values was smaller for all Landsat ETM+ bands and for
the NDVI when good quality pixels only were considered. This is
expected as atmospheric correction undertaken with spatially in-
terpolated atmospheric characterization data is less likely to be
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reliable and because good quality pixels are less likely to be close to
clouds or to include residual and sub-pixel clouds that may delete-
riously impact the atmospheric correction (Kaufman, 1987;
Ouaidrari & Vermote, 1999; Tackett & Di Girolamo, 2009).

With the advent of the free U.S. Landsat data policy (Wulder, Masek,
Cohen, Loveland, & Woodcock, 2012) it is now feasible to consider the
generation of global coverage Landsat data sets (Gutman et al., 2008;
Townshend et al., 2012; Tucker, Grant, & Dykstra, 2004) but generated
using all the available Landsat data, for example, global monthly
WELD Landsat data sets composed of data sensed by different sensors
such as Landsat 5 Thematic Mapper (TM) and Landsat 7 ETM+
(Kovalskyy & Roy, 2013). Multiple Landsat sensor data could be fused
by compositing and then the atmospheric correction undertaken in
themanner described in this paper. Further research is needed however
to assess the applicability of the MODIS-based atmospheric correction
algorithm to Landsat 5 TM data as although the Landsat 5 and 7 satel-
lites are in the same orbit they have different overpass times. The
MODIS-based atmospheric correction algorithmassumes that the atmo-
sphere at the time ofMODIS Terra overpass is sufficiently representative
of the atmospheric conditions at the approximately 25 minute earlier
Landsat 7 ETM+ overpass time (Ju et al., 2012). This is a reasonable as-
sumption, except for rapidly moving atmospheres and for dynamic
aerosol events (e.g., due to biomass burning and dust storms), but will
be less valid for Landsat 5 which overpasses about 40 minutes earlier
than MODIS Terra. Finally, we note that the MODIS-based atmospheric
correction method is not applicable to pre-2000 Landsat data when
MODIS Terra was not in orbit and is not applicable to MODIS Aqua
data, available since 2002, because the Aqua satellite is in an afternoon
constellationwith a different orbit to themorning constellation Landsat
5 and 7 and MODIS Terra orbits (Demarest, Good, & Rand, 2001).
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