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INTRODUCTION 

A CODIMESSION one transversally oriented transversally C’ foliation 9 as in the title, has a 

structure classified by one of four topological types, according to the position and to the 

composition of the union U of the leaves of 9 met by a closed transversal. These four types 

can be shown for such foliations on SL x R”. 

The envelope u - U of U. if not empty, is a disconnecting closed subset made of 

closed leaves; the foliations .Fu and Fs respectively induced by F on U and on its com- 

plementary S are glued along i? - U; the leaf space of F,, is SL and the leaf space of 9% is a 

(not Hausdorff) l-manifold with boundary in the meaning of Haefliger-Reeb. 

We study in this work the structure of the foliations F without holonomy on connected 

compact or non-compact manifolds X with fundamental group Z. The foliations considered 

are codimension one, and, say, transversally oriented and transversally Cz foliations; if 

the boundary 8X of X is not empty, the foliation 9 of X is supposed to be tangent to the 

boundary. 

In the particular case of a compact manifold without boundary, Sacksteder proved that 

such a C2-foliation S comes from a submersion onto S’. We gave another proof of this 

property in [2], using a weaker hypothesis and different methods, see also the generalisations 

(i) and (ii) at the end of this introduction. 

Even in the general case, such a foliation admits only proper leaves; furthermore, the 

envelope of every non-closed leaf is a non-empty union of closed leaves met by no trans- 

versal closed curve. In order to allow for example the generalisation (i) of the end of this 

introduction we shall rather consider these properties as a direct application of [2]. 

We first constructed and studied the following four essentially different foliations 

without holonomy on 5” x W x R: 

-9, is just induced from projection to W and has the factors S’ x W as leaves; 3, has no 

closed transversal. 

--@*,a is just induced from projection to S’ and has the factors E?* as leaves; F,,= is defined 

by a submersion onto .Si with connected level sets. 
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-F,,b is the foliation F( lj2) defined in (3) below: Pi,, admits non-closed leaves all con- 

tained in the saturated set of a closed transversal: it can be defined neither by a submersion 

onto S’ nor by a real-valued function. 

-F,,C is the foliation 9(1/3) constructed in (3) below; every leaf of J,,, is closed, but 

there exists a closed transversal meeting only some of its leaves; .FllC cannot be defined by a 

real-valued function nor by a submersion onto Si with connected level sets, only by a sub- 

mersion to Si with disconnected level sets. 

The main result is the following structure theorem: 

THEOREM. Let 9 be a foliation without hoionomy* of a connected mamfold X tcith funda- 

mental group Z. Let us write 

U for the union of the leaves of 9 met by* a closed transversal, 

T for the union of the closed leaves of 9 met by a closed transversal, 

P for the union of the (proper) non-closed leaves of F7 

S for the union of the (closed) leaves of 9 met by no closed transversal. 

Then : 

(i) There are only the four following types for the foliation 9: 

I. The foliation F has no closed transversal; this implies X = S and P = T = 

u=Qr. 

II. The foliation 9 has a closed transversal meeting 

Ha. Every leaf of 9; this implies X = T = U and P = S = 0. 

IIb. A non-closed leaf of 9; this implies I/ = P, T = 0 and S = X - U # 0. 

Ilc. A closed leaf of 9, without meeting every leaf of 9; this implies U = T, 

P=@andS=X-U#@. 

(ii) The leaf space Xv of the foliation 9, induced by .F on U is empty or S’, and the 

canonical projection U -+ Xv is a submersion with connected level sets. 

(iii) The leaf space of the foliation 9, induced by 9 on the submanifold with boundary 

S = X - U is a simply-connected, generally not Hausdorff. l-manifold with boundary 

Xs , in the sense of Haefliger-Reeb[ I]. 

In reading the theorem, one must pay attention to the fact that S (and so X,) may be 

empty or reduced to its boundary. In some explicit examples, S may have only one leaf, 

which has to be considered as the boundary of S. When ZX is not empty, S and X, have a 

non-empty boundary; the same property holds in cases IIb and 11~. 

With the notations of the theorem, the foliations F,, ,FrIa, 9,,, and Fils already 

defined on S’ x R2 are in fact indexed by their type. 

Some preliminary lemmas are given in (1); the structure theorem is proved in (2); in (3) 

we construct the foliations F,,, and F,rC on S’ x R’, we add some remarks for the case 

when X is compact (stability and fibration theorem) and for the existence of seemingly messy 

examples when X is not compact. 

Let us remark that each non-compact manifold X without boundary does admit a 

foliation with closed leaves, which has then no holonomy. It would be interesting to solve 
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the problem of the existence on a given manifold X, of course non-compact and with 

fundamental group for example 2, of foliations of types IIa, IIb and 11~: a foliation of type 

IIc always exists, as kindly communicated by W. P. Thurston. 

These results extend without great modifications: 

(i) To foliations without holonomy of manifolds with fundamental group for example 

Z@ G, when G is finite or without elements of infinite order, and to foliations without 

holonomy satisfying for example the following condition: the subgroup of n,(X) generated 

by the free homotopy classes of all the closed transversals is finite or is Z; 

(ii) To Cl-foliations (and to many C”-foliations; of course to any C’-foliation on 

S’ x W). because the transversality and Poincare-Bendixson properties, which come in only 

via [4] and [5]. are still valid for C’-foliations. 

$1. PRELKvlINARY LEi%lMAS 

In that paragraph, F is a foliation without holonomy on a connected manifold X with 

fundamental group Z. 

LEMMA 1. For every closed transversal t andfor every leaf F, the set t n F is finite. 

Proof. In order to allow generalisation (i) quoted at the end of the introduction, we shall 

rather consider the number d(F, S) defined in [2]. We have F non-trapped and d(F, 9) I 1 

for any leaf F of 9, where we translate “captee” by “trapped “; Lemma 1 is then an 

assertion already given during the proof of Theorem 1 of [2]. 

Let us remark that Lemma 1 was a crucial step in the proof of the Theorem 1 of [2]; 

in fact a (transversally oriented) foliation verifies Lemma 1 if and on/y ifeach leaf of F is 

proper and has an envelope made of closed leaves met by no closed transversal. 

LEMMA 2. Every closed transversal t meets erery leaf of U. 

Proof. Because we defined U as the union of the leaves of 9 met by a closed transversal, 

we just have to prove that two closed transversals t and t’ meet the same set of leaves. As the 

fundamental group of X if Z, there exist integers n and n’, not both zero, such that the 

closed curve t” is freely homotopic to t’“‘. Because F has no holonomy, n and n’ are both 

non-zero [5]; then t” and t’“’ build a simple bounding family [5] in Xand meet the same set of 

leaves, after Theorem 1 of [5] or Corollary 3, Chapter V of 131. In fact we just need here our 

Proposition 2 in the Comptes Rendus, _ 770, A1970, p. 1719. Then t and t’ meet the same set 

of leaves because n and n’ are both non-zero. 

Using Lemmas 1 and 2 we can now prove the following technical lemma: 

LEMMA 3. Any open distinguished neighborhood 3 of the foliation 9 has the following 

properties: 

(z) Two different plaques of F n 3 are separated by a plaque of G n 3 for any leaf G in U. 

(p) If the set of the plaques of F n 3 is not finite, it is countable and has at most two 

accumulation-plaques in 3, which are then respectively the upper and lower bounds of 

Fn 3 in 3. 
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Proof. If F n 3 contains two different plaques P and P’. we can .’ smooth ” a transversal 

arc ri joining P to P’ in 3, into a closed transversal T,~ meeting F: then any leaf meeting A is in 

C’. Lemma 2 implies that I,, and A meet every leaf G of L: this proves (r). Lemma 1 implies 

that rl n Fis finite, this proves that F n 3 is discrete and at most countable. We already saw 

that any plaque in 3 lying between two plaques of F n 3 belongs to a leaf in C’: then an 

accumulation-plaque of F n 3 in 3 does not separate F n 3 because it belongs to a leaf of 

the envelope of F, which is met by no closed transversal after the property recalled in the 

introduction. For the same reason an accumulation-plaque of F n 3 may not lie between 

two other accumulation-plaques of F n 3 in 3; this proves (fl). Lemma 3 implies the following 

three geometrical lemmas : 

LEMMA 4. If U is not empty,. there exists in I/ a closed transcersal meeting erery leaf of 9 

contained in U at exactly one point. 

LEMMA 5. The face of a leaf G which is in the emelope F - F of a leaf F is in the emelope 

R - H of ecery leaf H contained in I/. 

LEMMA 6. A leaf in if - U has only one face in i? - Cf. 

Proof of Lemmas 4-6. There is in CJ a closed transversal t meeting a given leaf F in u 

at exactly one point, after Lemma 1. This closed transversal t meets every leaf G of 9 con- 

tained in c’after Lemma 2. at exactly one point after Lemma 3 and the definition oft. This 

proves Lemma 4. 

For a suitable distinguished neighbourhood 3 meeting the G of Lemma 5, G n 3 is the 

unique accumulation-plaque of F n 3 in 3, after Lemma 3. Furthermore Flies in U. From 

Property (p) of Lemma 3, G n 3 is also the unique accumulation-plaque of H n 3 in 3 for any 

leaf H in L’. This proves Lemma 5. 

Lemma 6 follows directly from the definition of I/ and from Property (2) in Lemma 3. 

$2. PROOF OF THE STRUCTURE THEORE 

Using the notations of the theorem, we may have the four following cases: 

I. U = 0; this gives X = S, P = T = I/ = 0. This happens (only) in case I of the 

theorem. 

IIa. U = X; from Lemma 4, we get T = U, P = 0. Because S = 0, this happens 

(only) in case IIa of the theorem. 

IIb. X # U f: 0. If L’ does contain a non-closed leaf of the foliation. Lemma 5 

implies that every leaf in U is non-closed. Then T = 0. But X - C’ = S # 0 

because there is a leaf having a non-empty envelope. This happens [only) in case 

IIb of the theorem. 

11~. X # U # 0 and U contains only closed leaves. After case IIb, P = 0. Lemma 4 

implies U = T. This happens (only) in case IIc of the theorem. 

These are the only possible cases, and this proves Part (i) of the theorem. Lemma 4 

gives Part (ii) directly. Because of Property (b) in Lemma 3, each distinguished open set 9 in 
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X contains at most two plaques which are not in the interior of S. Then the closed set S is a 

submanifold of X, with boundary if C’ is not empty and not equal to X. Such a 3 meets every 

leaf of .Fs in at most one plaque because .S is X - C’. Then A’, is a l-manifold with boundary 

in the sense of Haefliger-Reeb [l]. Furthermore X, is simply-connected because it is l- 

dimensional and because the transversally oriented g--, has no closed transversal. This proves 

Part (iii). 

$3. REbI;\RKS AND EXAbIPLES 

Remark 3. When X is compact, the closed set S must be also an open set in X, after the 

local stability theorem of Reeb. Because X is connected, we may have either X = U or 

X = S, i.e. only cases I and IIa may occur. The theorem implies then that P is empty, so vve 

get a global stability theorem. 

If U is X, 9 = 9,,. is given by a submersion onto S’ with connected level sets, after 

Part (ii) of the theorem, so we get ajbration theorem. This fibration theorem is due to 

Tischler-Sacksteder-Reeb for the C2-foliations, but is new for Cl-foliations, as well as the 

method of proof. 

If S is X. then X has a non-empty boundary; Part (iii) of the theorem says that the 

connected (Hausdorff) X, is a non-empty simply-connected l-dimensional manifold with 

boundary which is orientable. So X, is I, X is a product A” x / and Y is the product 

foliation up to a topological conjugacy. We have again stability and a fibration theorem, 

Remarks 4.1. In cases IIb and IIc, the leaf space of 9s is generally not connected ; it is 

always with boundary; it may be very complicated and have for example ends in infinite 

number. 

Remarks 4.2. The foliation 4 appears in cases IIb and IIc as glued along the envelope of 

iJ, which is a closed set filled in by closed leaves, from the nice foliations Ft, and Ys in a 

nice manner due to Lemma 6. 

Remarks 4.3. The number of the closed leaves contained in the envelope of U may be 

any integer equal or superior to 1, it may be infinite. Let us also remark that the Theorem 1 

of Chapter III of [3] implies that no leaf of the envelope i? - U of U is compact. The foliation 

Yi;c behaves like a foliation of type IIa, the foliation 9:, like a foliation of type I. 

Remarks 4.4. The leaves of the envelope r/ - U of U may be, all or only some of them, 

with ends in not finite number and with fundamental group without finite presentation. 

From the following foliations 9(r) of the examples below, one can produce new exam- 

ples illustrating all the affirmations of Remarks 4.1, 4.3 and 4.4: 

E.ramples. Let A! be a C” Reeb foliation on S’ x D’, parametrized by (0; p, ‘I-‘), where 

0 5 p 2 l/2 and where Q and Y are defined module 27~. The foliation 9? is Cr-tangent to 

the boundary. Let 9%” be the C”-foliation of S’ x W’ = S’ x D2 - S’ x dD2, parametrized 

by (0, p, Y), where 0 -< p < 1 and where 0 and Y are defined modulo 2n, such that: the 

restriction of 8’ on ((0. p, Y); l/2 2 p < I} has the compact leaves with equation p = C; the 



restriction of W’ on ((0, p, Y); p I I!21 is the foliation ~3’. Let G(r) be the subset of S’ x R” 

consisting of the points (8. p. Y) such that 0 = 0 mod ~TI and 0 < r I p < 1. Let -F(r) be the 

foliation induced by .B’ on S’ x (D’ - ?D’) - G(r). which is homeomorphic to S’ x R*. 

The foliation .7(r) is then a foliation on S1 x R”, which is without holonomy when 

0 < r 2 l/2. The foliation .F( 112) clearly has type IIb, and the foliations .9(r) have type IIc 

when 0 < r <: 1,2. 
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