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INTRODUCTION

A CODIMENSION one transversally oriented transversally C? foliation & as in the title, has a
structure classified by one of four topological types, according to the position and to the
composition of the union U of the leaves of # met by a closed transversal. These four types
can be shown for such foliations on S' x R?.

The envelope U — U of U, if not empty, is a disconnecting closed subset made of
closed leaves; the foliations %, and % respectively induced by # on U and on its com-
plementary S are glued along U — U; the leaf space of % is S' and the leaf space of #5isa
(not Hausdorff) 1-manifold with boundary in the meaning of Haefliger-Reeb.

We study in this work the structure of the foliations & without holonomy on connected
compact or non-compact manifolds X with fundamental group Z. The foliations considered
are codimension one, and, say, transversally oriented and transversally C? foliations; if
the boundary 0X of X is not empty, the foliation & of X is supposed to be tangent to the
boundary.

In the particular case of a compact manifold without boundary, Sacksteder proved that
such a C2-foliation & comes from a submersion onto S!. We gave another proof of this
property in [2], using a weaker hypothesis and different methods, see also the generalisations
(1) and (ii) at the end of this introduction.

Even in the general case, such a foliation admits only proper leaves; furthermore, the
envelope of every non-closed leaf is a non-empty union of closed leaves met by no trans-
versal closed curve. In order to allow for example the generalisation (i} of the end of this
introduction we shall rather consider these properties as a direct application of {2].

We first constructed and studied the following four essentially different foliations
without holonomy on S! x R x R:

—%  is just induced from projection to R and has the factors S' x R as leaves; &, has no
closed transversal.

—& 11a 15 just induced from projection to S! and has the factors R? as leaves; &, is defined
by a submersion onto S! with connected level sets.
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—F 1 15 the foliation #(1/2) defined in (3) below: #,, admits non-closed leaves all con-
tained in the saturated set of a closed transversal; it can be defined neither by a submersion
onto S! nor by a real-valued function.

—% 1. 1s the foliation Z#(1/4) constructed in (3) below; every leaf of 7. is closed, but
there exists a closed transversal meeting only some of its leaves; 7 ;. cannot be defined by a
real-valued function nor by a submersion onto S' with connected level sets, only by a sub-
mersion to S! with disconnected level sets.

The main result is the following structure theorem:

THEOREM. Let F be a foliation without holonomy of a connected manifold X with funda-
mental group Z. Let us write
U for the union of the leaves of # met by a closed transversal,
T for the union of the closed leaves of F met by a closed transversal,
P for the union of the (proper) non-closed leaves of F,
S for the union of the (closed) leaves of F met by no closed transversal.
Then:

(i) There are only the four following types for the foliation F :

1. The foliation & has no closed transversal; this implies X =S and P =T =
U=¢g.

I1. The foliation F has a closed transversal meeting
Ila. Every leaf of F; this implies X =T =Uand P =S = .
IIb. A non-closed leaf of F ; this implies U =P, T=Z and S = X — U # .
Ilc. A closed leaf of &, without meeting every leaf of % ; this implies U = T,

P=Pand S=X—-U# .

(ii) The leaf space X of the foliation F  induced by F on U is empty or S', and the
canonical projection U — X is a submersion with connected level sets.

(iii) The leaf space of the foliation F s induced by F on the submanifold with boundary
S = X — Ulis a simply-connected, generally not Hausdorff, 1-manifold with boundary
Xs, in the sense of Haefliger—Reeb[l].

In reading the theorem, one must pay attention to the fact that S (and so X) may be
empty or reduced to its boundary. In some explicit examples, S may have only one leaf,
which has to be considered as the boundary of S. When ¢X is not empty, S and X have a
non-empty boundary; the same property holds in cases 1Ib and Ilc.

With the notations of the theorem, the foliations %, %#,,, ¥, and %, already
defined on S! x R? are in fact indexed by their type.

Some preliminary lemmas are given in (1); the structure theorem is proved in (2); in (3)
we construct the foliations &, and % ;. on S! x R?, we add some remarks for the case
when X is compact (stability and fibration theorem) and for the existence of seemingly messy
examples when X is not compact.

Let us remark that each non-compact manifold X without boundary does admit a
foliation with closed leaves, which has then no holonomy. It would be interesting to solve
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the problem of the existence on a given manifold X, of course non-compact and with
fundamental group for example Z, of foliations of types IIa, IIb and Ilc: a foliation of type
IIc always exists, as kindly communicated by W. P. Thurston. '

These results extend without great modifications:

(1) To foliations without holonomy of manifolds with fundamental group for example
Z @ G, when G is finite or without elements of infinite order, and to foliations without
holonomy satisfying for example the following condition: the subgroup of n,(X) generated
by the free homotopy classes of all the closed transversals is finite or is Z;

(ii) To C'-foliations (and to many C°-foliations; of course to any C°-foliation on
S' x R), because the transversality and Poincaré-Bendixson properties, which come in only
via [4] and [5]. are still valid for C'-foliations.

§$1. PRELIMINARY LEMMAS

In that paragraph, # is a foliation without holonomy on a connected manifold X with
fundamental group Z.

LemMA 1. For every closed transcersal t and for every leaf F, the set t N F is finite.

Proof. In order to allow generalisation (1) quoted at the end of the introduction, we shall
rather consider the number d(F, #) defined in [2]. We have F non-trapped and d(F, #) < 1
for any leaf F of %, where we translate ““captée’ by ““trapped’’; Lemma 1 is then an
assertion already given during the proof of Theorem 1 of [2].

Let us remark that Lemma | was a crucial step in the proof of the Theorem 1 of [2];
in fact a (transversally oriented) foliation verifies Lemma 1 if and only if each leaf of & is
proper and has an envelope made of closed leaves met by no closed transversal.

LeMMma 2. Every closed transversal t meets every leaf of U.

Proof. Because we defined U as the union of the leaves of % met by a closed transversal,
we just have to prove that two closed transversals ¢ and ¢ meet the same set of leaves. As the
fundamental group of X if Z, there exist integers n and »’, not both zero, such that the
closed curve 1" is freely homotopic to ™. Because # has no holonomy, n and »n’ are both
non-zero [5}; then #"and ¢ build a simple bounding family [5] in X and meet the same set of
leaves, after Theorem [ of [5] or Corollary 3, Chapter V of [3]. In fact we just need here our
Proposition 2 in the Comptes Rendus, 270, A1970, p. 1719. Then r and ¢’ meet the same set
of leaves because n and »’ are both non-zero.

Using Lemmas | and 2 we can now prove the following technical lemma:
LemMa 3. Any open distinguished neighborhood 3 of the foliation & has the following
properties:

(2) Two different plaques of F n 8 are separated by a plaque of G n 3 for any leaf G in U.

(B) If the set of the plagues of F n 3 is not finite, it is countable and has at most two
accumulation-plagues in 8, which are then respectively the upper and lower bounds of
Fn8ind.



(S8
tJ
39)

C. LAMOUREUX

Proof. If F n 3 contains two different plaques P and P’, we can ** smooth " a transversal
arc A joining P to P’ in 3, into a closed transversal 7, meeting F: then any leaf meeting 4 is in
U. Lemma 2 implies that v, and A meet every leaf G of U this proves (¢). Lemma | implies
that A n Fis finite, this proves that F n 3 is discrete and at most countable. We already saw
that any plaque in 3 lying between two plaques of F m» 3 belongs to a leaf in L': then an
accumulation-plaque of F ~ 3 in 3 does not separate F n 3 because it belongs to a leaf of
the envelope of F, which is met by no closed transversal after the property recalled in the
introduction. For the same reason an accumulation-plaque of F ~ 3 may not lie between
two other accumulation-plaques of F ~ 3 in 3; this proves (). Lemma 3 implies the following
three geometrical lemmas:

LEMMA 4. If U is not empty. there exists in U a closed transversal meeting every leaf of #
contained in U at exactly one point.

LEMMA 5. The face of a leaf G which is in the envelope F — F of a leaf F is in the envelope
H — H of every leaf H contained in U.

LeMMA 6. 4 leaf in U — U has only one face in U — U.

Proof of Lemmas 4-6. There i1s in U a closed transversal ¢t meeting a given leaf Fin U
at exactly one point, after Lemma 1. This closed transversal + meets every leaf G of & con-
tained in U after Lemma 2, at exactly one point after Lemma 3 and the definition of ¢. This
proves Lemma 4.

For a suitable distinguished neighbourhood 3 meeting the G of Lemma 5, G n 8 is the
unique accumulation-plaque of £ n 3 in 3, after Lemma 3. Furthermore F lies in U. From
Property (B) of Lemma 3, G n 3 is also the unique accumulation-plaque of A n 3 in 3 for any
leaf H in U. This proves Lemma 5.

Lemma 6 follows directly from the definition of U and from Property (%) in Lemma 3.

§2. PROOF OF THE STRUCTURE THEOREM
Using the notations of the theorem, we may have the four following cases:
I. U=F; this gives X =S, P=T = U = . This happens (only) in case I of the

theorem.

Ila. U= X; from Lemma 4, we get T = U, P = {J. Because S = J, this happens
(only) in case 1la of the theorem.

IIb. X# U# . If U does contain a non-closed leaf of the foliation. Lemma 3
implies that every leaf in U is non-closed. Then T'= . But X ~U=S# &

because there is a leaf having a non-empty envelope. This happens (only) in case
[Ib of the theorem.

IIc. X # U # & and U contains only closed leaves. After case IIb, P = J. Lemma 4
implies U = T. This happens (only) in case 1Ic of the theorem.

These are the only possible cases, and this proves Part (i) of the theorem. Lemma 4
gives Part (ii) directly. Because of Property () in Lemma 3, each distinguished open set 3 in
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X contains at most two plaques which are not in the interior of S. Then the closed set Sis a
submanifold of X, with boundary if L is not empty and not equal to X. Such a 3 meets every
leaf of # ¢ in at most one plaque because Sis X — U. Then X is a [-manifold with boundary
in the sense of Haefliger~Reeb [1]. Furthermore X is simply-connected because it is 1-
dimensional and because the transversally oriented &5 has no closed transversal. This proves
Part (iii).

§3. REMARKS AND EXAMPLES

Remark 3. When X is compact, the closed set S must be also an open set in X, after the
local stability theorem of Reeb. Because X is connected, we may have either X = U or
X = 8§, i.e. only cases I and I1a may occur. The theorem implies then that P is empty, so we
get a global stability theorem.

If Uis X, & = % is given by a submersion onto S' with connected level sets, after
Part (ii) of the theorem, so we get a fibration theorem. This fibration theorem is due to
Tischler-Sacksteder~Reeb for the C2-foliations, but is new for C!-foliations, as well as the
method of proof.

If S is X, then X has a non-empty boundary; Part (iii) of the theorem says that the
connected (Hausdorff) X5 is a non-empty simply-connected 1-dimensional manifold with
boundary which is orientable. So X is /, X is a product X’ x [/ and # is the product
foliation up to a topological conjugacy. We have again stability and a fibration theorem.

Remarks 4.1. In cases 1Ib and Ilc, the leaf space of & is generally not connected; it is
always with boundary; it may be very complicated and have for example ends in infinite

number.

Remarks 4.2. The foliation & appears in cases IIb and Ilc as glued along the envelope of
U, which is a closed set filled in by closed leaves, from the nice foliations %, and #; in a
nice manner due to Lemma 6.

Remarks 4.3. The number of the closed leaves contained in the envelope of U may be
any integer equal or superior to 1, it may be infinite. Let us also remark that the Theorem 1
of Chapter III of [3] implies that no leaf of the envelope U — U of U is compact. The foliation
F . behaves like a foliation of type Ila, the foliation F like a foliation of type 1.

Remarks 4.4. The leaves of the envelope U — U of U may be, all or only some of them,
with ends in not finite number and with fundamental group without finite presentation.

From the following foliations .# (r) of the examples below, one can produce new exam-
ples illustrating all the affirmations of Remarks 4.1, 4.3 and 4.4:

Examples. Let 2 be a C® Reeb foliation on S' x D?, parametrized by (6; p, V), where
0 < p <1/2 and where 8 and ¥ are defined modulo 2rn. The foliation £ is C*-tangent to
the boundary. Let 2’ be the C*-foliation of S' x R* = S' x D? — S' x ¢D?, parametrized
by (6, p, ¥), where 0 € p < | and where 6 and ¥ are defined modulo 2r, such that: the
restriction of 2" on {(6, p, \¥); 1/2 < p < 1} has the compact leaves with equation p = C; the
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restriction of 2" on {(8, p, \¥); p < 1/2} is the foliation 2. Let G(r) be the subset of §' x R?
consisting of the points (8. p. W) such that # =0 mod 2r and 0 < r < p < 1. Let #(r) be the
foliation induced by Z’ on S! x (D* — éD?) — G(r), which is homeomorphic to S! x R2.

The foliation F(r) is then a foliation on S!' x R?, which is without holonomy when
0 <r < 1j2. The foliation #(1/2) clearly has type 1Ib, and the foliations #(r) have type Ilc
when 0 <r < 1/2.
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