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Abstract--In this paper some group-theoretical methods are discussed, which may be used to study both 
the hyperfine fields on nuclei of crystals, and the interaction of the nuclear resonant radiation with these 
crystals. Several types of hypertine fields structures are considered. They are: the structure formed by the 
magnetic fields on nuclei, the electric field gradients structure and the combined one. It is shown, that 
the application of colour groups and tensor representations of space groups is not suitable for the study 
of the structures considered. Tensor representation also makes it possible to determine a set of possible 
reflections in M6ssbauer diffraction patterns. 

In this paper we consider the group-theoretical methods, which may be used for the study both 
the hyperfine (HF) fields in crystals, and the interaction of the nuclear resonant radiation with 
them. 

Nuclear resonant spectroscopy and diffraction enable us to investigate the structures formed by 
a crystal magnetic field and an electric field gradient (EFG) in the points of the orbit of a crystal 
space group, which are occupied by the M6ssbauer isotope atoms. Further, we shall call them the 
(HF) fields structures. Their symmetry differs from the space symmetry for a crystal and can be 
studied with the help of some group-theoretical methods. 

One of these methods is the application of the colour groups [1]. Colour groups were introduced 
for the description of the subjects, which possess some local physical properties besides the property 
of the spatial symmetry. (Local properties are the properties in the points of the space group orbit.) 
Traditionally the colour groups are used for the description of symmetry of the magnetic crystals. 
A symmetry of the HF magnetic fields structures is similar to a symmetry of the structures, formed 
by the atomic magnetic moments, so the colour groups may be used for its study. Usually G ~q) and 
G ~w) colour groups are utilized for this purpose. These groups are constructed in the following way 
[2] (according to Ref. [3] G ~w) has G<~p ) and G(~¢ ) forms) 

G(W)= WG ~_P,,,G =(P ®P ® . . . ® P ) ® G ,  

G (q) = QG ~_ Q ® G, 

where G is the classical symmetry groups, P and Q are the permutations groups. 
Nuclear resonant methods enables us to study not only the magnetic fields in cyrstals, but also 

the EFG tensors 
d2tp 

( ~ i ~ X j  r = r s 

(~ is the electric field potential) in the points occupied by the M6ssbauer isotope nuclei. The EFG 
structures are not colour in itself from Q--symmetry point of view. The distribution function of 
charges, which cause the EFG existence, is invariant under the transformations of the space group 
G, so in the crystallographically equivalent points of the unit cell these tensors have the same value, 
and the directions of their main axes are connected with each other with the help of g ~ G 
transformations. 

It was shown in Ref. [4], that the EFG structures show their colour properties in the M6ssbauer 
diffraction experiments. The observation of the extra quadrupole reflections in the M6ssbauer 
diffraction patterns gives the evidence of the colour symmetry of the EFG structure. So, the 
symmetry of the EFG structures essentially differs from the magnetic one, which is colour in itself 
and shows its colour properties under diffraction of slow neutrons and resonant ~-quanta. It was 
shown in Ref. [4], that we study in the diffraction experiments the symmetry of the enlarged system: 
crystal + radiation. It is this system, which becomes colour when the EFG tensors exist on the 
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nuclei. To describe this symmetry it is necessary to use G ~> groups of Belov without colour 
translations. For example, the colour group, corresponding to the EFG structure in TeO2 single 
crystal is P4t4)2t2)2. 

Consideration of the combined structure of the HF fields, i.e. both the magnetic field and the 
EFG tensor on nuclei deserves the particular interest. Nuclei of the M6ssbauer isotope interact with 
the two fields simultaneously, so the combined structure shows itself not as the superposition of 
two individual structures. If the main axes of the EFG tensors and the magnetic field vectors on 
some crystallographically equivalent nuclei are orientated in different ways in respect to each other, 
their eigenstates and eigenvectors do not coincide. In Ref. [5] the combined HF structure was 
considered from the point of view of colour symmetry. In this approach p or q operations of G ~p) 
or G (q) groups change an angle 0 between the magnetic field vector and the EFG main axes. It was 
shown, that G~W~) groups must be used. For example, the combined HF structure in a crystal ZrFe2 
is described by the group t2 1) (3,1 (2, 1) (Fd 3tmjE<H~>m<,ll>)[j 2241. The colour operations are interpreted in a 
q-sense, because they change not only the atoms coordinates, but the angle 0 too: 

g(q) riO0) = r(0 + ao), 

where A0 = 70°31 ' for p ~ 1 and A0 = 0  ° for p = 1. p numbers the atoms in the tops of the 
tetrahedron. 

Groups of multiple antisymmetry [6] also may be used for the description of the combined HF 
structures. This way is not suitable, because these groups may be reduced to colour groups [7]. 

The combined HF structure may be considered as the EFG structure in the magnetic field, 
supposing the magnetic field to be the external influence, which decreases the symmetry of the EFG 
structure in classical sense. However, the colour symmetry of this widen system does not decrease. 

The symmetry of the combined HF structures shows itself in a different way in M6ssbauer 
diffraction experiments. In this case the amplitudes of the resonant scattering of M6ssbauer 
radiation corresponding to those nuclei, which have the equal nuclear eigenstates may not be equal 
to each other. On account of this inequality colour groups must be used. For example, the 
diffraction symmetry of the combined HF structure in a crystal ZrFe2 is described with the help 
of the group Fd~2)3°)m <2). 

It is shown in Ref. [8], that the inequality of the sets of nuclear eigenstates corresponding to the 
crystallographically equivalent atoms may lead to the occurrence of extra reflexes in M6ssbauer 
diffraction patterns. These reflexes are absent if only the magnetic field or the EFG tensor exist 
in the nuclei. In Ref. [8] the M6ssbauer diffraction pattern, corresponding to a crystal ZrFe2 was 
considered. ZrFe: is a ferromagnetic, in which the EFG main axes are directed along the third order 
axes of a crystal. The scattering amplitude for the reflections 0k0 (k = 2n) in proportional to 
F(H) ~ 4i(f~ - f2  +f3 -f4) ,  where f~ are the amplitudes of resonant scattering of the M6ssbauer 
radiation of the nuclei forming the tetrahedra. F(02n0) is equal to zero, if the nonresonant 
scattering of the M6ssbauer radiation or the scattering in the presence only the magnetic field on 
nuclei take place. The nuclear resonant absorption spectra in this case are the surperpositions of 
two structures with the different splitting of the resonant lines. One of these structures corresponds 
to the nuclei with 0 = 0 °, another to the nuclei with 0 = 70°31 '. In Ref. [8] it was shown, that if 
the difference between the resonant energy values ElM- E~ (E~ corresponds to the nuclei with 
0 = 0 °, E~----to the others) is more than the width of the resonant line, the M6ssbauer diffraction 
patterns have to contain the reflexes 0k0, h00, 001; k(h, l)= 2n. 

Another type of combined reflections was considered in Ref. [9]. In some cases the different 
scattering amplitudes f~ correspond to the nuclei with the same splitting of the nuclear levels, so 
they are not equivalent in respect of the M6ssbauer diffraction. In Ref. [9] the possibility of the 
combined reflexes observation in the M6ssbauer diffraction pattern of KFeF4 single crystal was 
considered. 

If Ref. [10] just one more type of the HF structures with colour symmetry was considered, It 
is the EFG tensors structure in the crystals with a spatial modulation. Nuclear magnetic resonance 
(NMR) was used in Ref. [10] as an experimental method of investigation. It was shown, that an 
EFG structure is also modulated in these crystals. If a spatial modulation is incommensurate, the 
EFG tensors in the centres of a crystal lattice differ from each other. In this work the conception 
of a colour modulation cell was introduced. Its length coincides with a modulation wavelength. 



Symmetry in the nuclear solid state physics 659 

The authors have shown the element of the basic structure to be conserved in the colour symmetry 
sense. The calculations were made for the family of crystals K2 SeO4. Before the phase transition 
the symmetry of the EFG structure was described by the group P2~/c 2~/m 2~/n. After the transition 

2 (2)/C 21/m (2) 2~2)/r/. this group transforms to P~31+~ ~ , 
The application of the colour symmetry groups is not the only way of describing the structures, 

which possess the local physical properties with certain symmetry. The alternative methods are the 
superspace groups [1 l, 12] and the space group representation method [3, 13]. 

Superspace groups were constructed for the description of the modulated structures. These 
groups consist of the elements 

gs = (gE, g,) = ({RE/VA, {R,I It}) E E(3) ® E(d0), 

which act in a space with 3 + do dimensions. The index E corresponds to the external "geometric" 
space, I denotes the values in the internal space of the atomic displacements. The electron's density 
in these crystals is not invariant under the elements of the space group G, but it is invariant under 
the elements gs: p0(r) = p0(gstr). 

In Ref. [14] the superspace groups of symmetry were compared with the colour goups and their 
principal equivalence was shown. However, in each individual case one of these approaches may 
be preferable. When we describe the HF  fields structure, we cannot give to gt operations such a 
clear physical interpretation, as in a case of modulated structures. So in this case an application 
of colour groups is more preferable. 

In Ref. [3] the group-theoretical approach was developed, in which the irreducible represent- 
ations of  space groups are utilized for the description of complex structures. The permutational, 
mechanic and magnetic representations were constructed. The main difference between them is a 
character of  the basic functions. Scalar functions correspond to the permutational representation, 
vector functions to the mechanic representation and pseudovector to the magnetic one. All these 
representations are reducible and they may be expanded into a set of the irreducible representations 
of a space group. This method was applied in Refs [3, 13] to the consideration of phase transitions 
and to some problems of  magnetic neutronography. It is well known, that neutron scattering in 
crystals is described by a vector function F(H), so the magnetic representation may be used for 
a study of F(H) properties. It was shown in Ref. [3] that F(H) may be represented in the following 
way: 

F(H) = ~ FL(H) E exp[- i(H - kL)Zn] , 
L n 

FL(H) '- ~ C[ exp(-iHrj)fi(H)S (~qj), 
2,j 

where s(kvlj) are the basic functions of the magnetic representation, C[ are the mixing coefficients, 
kL is a vector of the magnetic structure, H = k - k0 is a vector of scatting, ko and k being the wave 
vectors of the incident and the scattered radiations. 

The magnetic representation of space groups certainly may be used for a study of HF magnetic 
structures on nuclei. As for EFG structures, we must utilize a tensor representation of a space group 
for its description. Some expressions for calculating the characters and the basic functions of this 
representation are given in Ref. [13]. In Ref. [15] it was shown, that the EFG tensor in the point 
of the space group orbit may be represented as: 

~b(rj) = ~ C~(o(kvlj), 

where ~b(kvlj) are the basic functions of the tensor representation corresponding to k = 0 wave 
vector. 

In contradiction to magnetic neutronography Mrssbauer radiation scattering in the presence of 
HF  field on nuclei has a tensor character, not depending on the kind of  HF structure. In Ref. [16] 
it was shown, that a permittivity tensor formalism enables us to describe both transmission and 
diffraction of  X- and ),-rays in crystals. The permittivity tensor may be represented as: 

%(k, ko, o )  = ~ E~.H)(k, o~)6 (k - ko - H), 
H 
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where E~ n) are the diffraction components of the tensor. The polarizability X0 ffi (4n) -I (~o- 60) is 
connected with the scattering amplitude with the help of the expression 

F(k, e, k0, e0) ~ e/* X~n)(k, ko, co )ej, 

where e0, e are the polarization vectors of the incident and the scattered radiation. We have 
shown [17], that a proper representation from vg.n) may be constructed in a presence of the HF 
magnetic fields on nuclei as following: 

~M.(H) = ~ exp(_iHr:)CaClSM(kvfj).SU(kvlj). 
~;,'Lj 

This approach was utilized in Ref. [17] for the consideration of the peculiarities of the M6ssbauer 
diffraction patterns of the crystals with a garnet type, which magnetic structure has k = 0 wave 
vector. 

The representation method is suitable for considering of M6sshauer diffraction in crystals with 
EFG on nuclei. In this case the ;(m tensors have a form: 

Z (n) = ~ C] ~ (~* I j )exp(-  iHr:), 
,lvj 

where ~ (~lj)are the tensor basic functions. 
The application of the irreducible representations of space groups for a study of HF fields 

structures is possible due to isomorphism of colour and classical groups. The eolour groups 
correspond to the permutational representation of space groups, because any colour may be 
identified with a number of a point of the space group orbit. So the eolour groups and the 
representational methods are interrelated. Nevertheless the representation method is more prefer- 
erable for the study of the HF fields structures, because, it allows to carry out some concrete 
calculations. 

Utilization of tensor representation may apparently be the most useful for the consideration of 
M6ssbaur diffraction patterns of crystals, when the combined HF structures or the nonaxial EFG 
attend on the nuclei. In these cases the calculations of the scattering amplitude is enough of a 
difficult problem, because the eigenvectors of the nuclear Hamiltonian have to be a mixing of the 
eigenvectors corresponding to certain magnetic quantum numbers. However, a tensor represent- 
ation may be constructed easily in all the considered cases. Due to this representation we can state 
the possibility of some reflexes existence even when the EFG structures on the nuclei are not well 
known. 

KFeF4 [9] and YIG [19] were proposed to be the possible objects for the search of the combined 
reflections. Now some experimental investigations of the M6ssbauer diffraction in the single 
crystals Fe3BO6 are carded out. These crystals have D~ symmetry and the antiferromagnetic 
structure. The nuclei of the M6ssbauer isotope Fe 57 occupy 8(d) and 4(c) positions in a unit cell. 
In Ref. [18] some additional lines were observed in the energy spectra corresponding to the reflexes 
OOl(l = 2n + 1). The existence of fhese lines may he caused by the combined HF fields structure 
on the nuclei of Fe3 BO6. If the EFG would be absent, these reflexes must be purely nuclear 
magnetic reflections. In this case the observed lines have to be absent. It is interesting to study this 
crystal to observe some more effects, for example the combined reflections under T < Tu and the 
quadrupole reflections under T > TN. 

Using the approach considered above we have analysed the possibility of the quadruple 
reflections occurrence in the M6ssbauer diffraction pattern of Fe3 BO6 not attaining the data on 
the EFG structure, which is not well known yet. The calculations of the tensor modes show the 
possible extinctions of the quadrupole reflexes h00, 0k0, 001; h(k, 1) = 2n + 1 and existence the 
reflexes Okl(k + 1 = 2n + 1). 

Thus the utilization of the group-theoretical approaches leads not only to the better under- 
standing of the observed phenomena, but in some cases simplifies the theoretical calculations. 

REFERENCES 

1. A. V. Shubnikov and V. A. Koptsik, Symmetry in Science and Art. Nauka, Moscow (1972). 



Symmetry in the nuclear solid state physics 661 

2. V. A. Koptsik and I. N. Kotzev, On the theory and classification of colour symmetry groups. Reprint of OIYaI P4-8067, 
P4-8068, Dubna (1974). 

3. Yu. A. Izyumov, V. E. Naysh and R. P. Ozerov, Neutronography of Magnetics. Atomizdat, Moscow (1981). 
4. A. V. Kolpakov, E. N. Ovchinnikova and R. N. Kuz'min, Symmetry of the structure of the electric field gradients in 

crystals. Kristallografiya 20, 221-225 (1975). 
5. A. V. Kolpakov, E. N. Ovchinnikova and R. N. Kuz'min, Symmetry of the hypcrfine interactions structures on atomic 

nuclei. Kristallografiya 22, 519-524 (1977). 
6. A. F. Palistrant and A. M. Zamorzayev, On the groups of symmetry and antisymmetry of layers. Kristallografiya 8, 

166-173 (1963). 
7. A. M. Zamorzayev, On the groups of quasisymmetry (P-symmetry). Kristallografiya 12, 819-825 (1967). 
8. A. V. Kolpakov, E. N. Ovchinnikova and R. N. Kuz'min, On the occurrence of the combined reflections in M6ssbauer 

diffraction. Vest. Mosc. Univ. phys. astr. 19, 28-32 (1978). 
9. A. V. Kolpakov, E. N. Ovchinnikova and R. N. Kuz'min. Reflections of a new type in the M6ssbauer diffraction 

pattern. Phys. star. 93(b) 511-514 (1979). 
10. I. P. Aleksandrova, Yu. I. Moskvitch, Z. Grande and A. I. Kriger, Quadrupole effects in NMR spectra of the spatially 

modulated structures. JETP 85, 1335-1348 (1983). 
i 1. P. M. de Wolff, The pseudo-symmetry of modulated crystal structures. Acta Crystallogr. A30, 777-785 (1974). 
12. A. Janner and T. Janssen, Symmetry of incommensutare crystal phases. Inst. Ther. Phys. Univ. Nijmegen, Netherlands 

(1981). 
13. Yu. A. Izyumov and V. N. Siromyatnikov, Phase Transitions and Crystal Symmetry. Nauka, Moscow (1984). 
14. V. A. Koptsik, In The Objective Laws of the Development of Composite Systems, pp. 152-212. Nauka, Leningrad (1980). 
15. E. N. Ovchinnikova, G. N. Lomidze and R. N. Kuz'min, Using of tensor field representation of space groups for the 

study of the EFG tensor structures in crystals. Fizika Metall. 61, 483~,87 (1986). 
16. A. V. Kolpakov, B. A. Bushuyev and R. N. Kuz'min, The permittivity of crystal for X-rays frequency band. Usp.fiz. 

Nauk. 126, 480-513 (1978). 
17. E. N. Ovchinnikova and R. N. Kuz'min, Group-theoretical approach to the study of M6ssbauer diffraction patterns. 

Magnetic structures. Fizika Metall. 54, 212-217 (1982). 
18. H. Winkler, R. Eisberg, E. Alp, R. Ruffer and E. Gerdau. Pure nuclear reflexes and combined hyperfine interactions 

in YIG. Z. Phys. 1149, 331-341 (1983). 
19. I. G. Tolpekin, P. P. Kovalenko, V. G. Labushikin, E. N. Ovchinnikova, A. R. Sarkisov and E. V. Smirnov, 

Laue-diffraction of M6ssbauer radiation in F% BO6 single cyrstal near the spin-reorientation transition. JEPT 43, 
474-476 (1986). 


