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• Atmospheric OH reactivity was measured in a rainforest and a megacity.
• Amazon reactivity peaked by day, was isoprene dominated, and anticorrelated to CO2.
• Beijing reactivity peak in rush hour, was dominated by NO2 and correlated with CO2.
• With high daytime reactivity in the rainforest, ozone remains low and constant.
• Despite lower reactivity in megacity air, ozone increased strongly by day.
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a b s t r a c t

The Amazon rainforest in Brazil and the megacity of Beijing in China are two of the most strongly con-

trasting habitats on Earth. In both locations, volatile chemicals are emitted into the atmosphere affecting

the local atmospheric chemistry, air quality and ecosystem health. In this study, the total reactivity in

air available for reaction with the atmosphere’s primary oxidant the OH radical, has been measured di-

rectly in both locations along with individual volatile organic compounds(VOC), nitrogen oxides(NOx),

ozone(O3) and carbon dioxide(CO2). Peak daily OH-reactivity in the Amazon 72 s−1, (min. 27 s−1) was

approximately three times higher than Beijing 26 s−1 (min. 15 s−1). However, diel ozone variation in

Amazonia was small (∼5 ppb) whereas in Beijing ∼70 ppb harmful photochemical ozone was produced

by early afternoon. Amazon OH-reactivity peaked by day, was strongly impacted by isoprene, and an-

ticorrelated to CO2, whereas in Beijing OH-reactivity was higher at night rising to a rush hour peak,

was dominated by NO2 and correlated with CO2. These converse diel cycles between urban and natural

ecosystems demonstrate how biosphere control of the atmospheric environment is subverted by anthro-

pogenic emissions.

© 2015 The Authors. Published by Elsevier Ltd.

This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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The Amazon rainforest is the world’s largest contiguous ecosys-

tem and species rich biome (Pimm et al., 2014; FAO, 2011). Being

over 6 million km2 it is around two thirds the area of the United

States and it plays an important part in the Earth’s hydrological,

energy and carbon cycles (Davidson et al., 2012; Gloor et al., 2012).
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he forest has developed to its present size over the past 55 mil-

ion years (Maslin et al., 2005), and much of it today remains in

pristine state, without direct human influence. In contrast, the

egacity Beijing has grown over several thousand years to a glob-

lly important metropole with an area of ca. 17,000 km2 and an

fficial population of over 21 million people.

The Amazon fulfills its energy requirements directly from

he sun via photosynthesis, assimilating (gross) an estimated
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6.4 Pg yr−1 (based on 30.4 tC ha−1 yr−1 and 8.7 × 108 ha in

998) (Malhi et al., 1998), more than half that of 40.8 Pg yr− 1

y all tropical (Beer et al., 2010). A fraction of this carbon (typi-

ally up to 5%) is re-released by vegetation to the atmosphere as

olatile organic compounds (VOC) (Kesselmeier et al., 2002). These

pecies mix with NOx (NO + NO2) emitted from microbial soil pro-

esses (Behrendt et al., 2014). In contrast Beijing derives its energy

rimarily from the combustion of fossil fuels such as coal, oil and

as, expending circa 206 million tonnes coal equivalent in 2007

Zhang et al., 2014), which equates to ca. 123 tC ha−1 yr−1. Com-

ustion of fossil fuels in power plants, heavy industry and traffic

lso leads to the emission of both NOx and VOC (Parrish et al.,

009). After entering the atmosphere, NOx and VOC are oxidized,

rimarily by the OH radical and to a lesser extent by NO3 and

3. Depending on the ambient NOx and VOC mixing ratios O3

an be generated (Haagen-Smit, 1952) which is harmful to hu-

an health and plants (Jerret et al., 2009; Skarby and Sellden,

984).

In this study we have taken a new holistic approach and di-

ectly measured the OH reactivity of air in Amazonia and Beijing.

H reactivity is the instantaneous total ambient loss frequency of

H radicals (in unit of s−1) derived from the combined reactivity

f all individual species present. This fundamental property of the

tmosphere has been accessible since the development of a direct

easurement method for OH reactivity approximately 15 years ago

Calpini et al., 1999; Kovacs and Brune, 2001) and this optically

ased, laser induced fluorescence technique has been widely ap-

lied since (Ren et al., 2003; Sadanaga et al., 2004; Ingham et al.,

009). Recently a new chemical method for determining in-situ OH

eactivity was reported, termed the comparative reactivity method

CRM) (Sinha et al., 2008). The latter method is based on the de-

ection of a VOC with proton transfer reaction mass spectrome-

ry (PTR-MS) at relatively high concentration. Consequently, the

RM method also has a growing number of practitioners (Nölscher

t al., 2012; Dolgorouky et al., 2012). In order to compare OH reac-

ivity behavior from a pristine biogenic source dominated region

ith a polluted, anthropogenic source dominated environments

e have deployed the CRM PTR-MS OH reactivity system in the

ropical rainforest (September) and in Beijing (August). Data were

aken at approximately the same time of year, height above ground

38 m in the Amazon and 20 m in Beijing) and using the same

easurement technique and data processing method. We compare

he absolute values, diel cycles and chemical composition of the

verall OH reactivity. Finally we contrast the response in ambient

3 to the daytime photooxidation of the reactive compounds in

oth environments.

. Methods

.1. Rainforest site

Measurements were conducted in September 2012 at the Ama-

on Tall Tower Observatory (ATTO) circa 135 km north-east of

anaus (02.14° S, 58.99° W, 120 m above sea level), in Central

mazonia. The area is surrounded by dense, non-flooded upland

orest (terra firme). Air was drawn at 16 L/min through a heated,

nsulated, 3/8′′ (0.953 cm) diameter PTFE Teflon inlet line mounted

t 38.3 m (top of canopy). PTR-MS OH reactivity, PTR-MS VOC,

zone and NO were sampled through the same inlet. Compre-

ensive details of the site are given elsewhere (Andreae et al.,

015).

.2. Beijing site

Measurements were conducted in August 2013 from the

oof laboratory of a 6 story Peking University Campus building
39.98° N, 116.31° E), approximately 20 m above street level. Air

as drawn through an insulated 14.9 m Teflon inlet at 7 Lmin−1

nd a substream was sampled at 200 cm3 min−1 by PTR-MS and

as Chromatograph-Mass Spectrometer (GC–MS). The campus is

ited close to the 4th ring of the city of Beijing some 10 km from

he center and within 500 m of a 5 lane highway.

.3. OH reactivity

In this study we use the comparative reactivity method (CRM)

hich has been described in detail previously (Sinha et al., 2008).

n this method, a reactive molecule (in this case pyrrole, C5H4N),

hich is not normally present in air, is passed through a glass

eactor and its mixing ratio recorded (at ppb levels) with a suit-

ble detector (here PTR-MS). Then, OH radicals are generated in

he glass reactor by a constant light source to react with pyrrole,

rst mixed with clean zero air and then with ambient air con-

aining many other OH reactive species. Comparing the amount

f pyrrole exiting the reactor with zero air and with the ambi-

nt air allows the OH reactivity in ambient air to be determined.

n a sense the air is “provoked” to yield the relevant information

irectly rather than by inference based on many single measure-

ents (Williams, 2008). This method was applied to the OH reac-

ivity measurements in Beijing and Amazonia. It has been shown

hat elevated NO mixing ratios can cause an interference in the

H reactivity measurement. While this was not a problem in the

mazon where NOx levels were low, in Beijing flows were set such

hat the ambient air was diluted with clean zero air and a cor-

ection was applied to all measurements greater than 2 ppb NO

ased on the response of the reactor to changing NO when mea-

uring propene. The CRM method was able to measure OH reac-

ivity down to 3 s−1 estimated by the minimum observable mod-

lation above three times the standard deviation (σ ) of the noise

measured in zero air). The measurement showed good agreement

nd linear response when compared to known amounts of reac-

ivity provided in the form of isoprene, propane and propene via

ompressed gas standards (Air Liquide and Beijing Chengweixin

ases Ltd.). The overall uncertainty in the measurement was 16%

ncluding errors in detector (5%), rate coefficient (14%), gas stan-

ard (5%) and flow dilution (2%).

.4. VOCs

VOCs were measured by PTR-MS (Ionicon, Austria) equipped

ith a quadrupole detector which has been described in detail

lsewhere (Lindinger et al., 1998) In the rainforest, an additional

TR-MS was used to determine ambient mixing ratios of isoprene,

ts photochemical products including MACR + MVK and several

ther species (Yáñez-Serrano et al., 2015). In Beijing, the PTR-MS

ystem was used to monitor OH reactivity and additional VOC

haracterization was provided by a GC–MS system. The VOC GC–

S (SHIMADZU) was coupled to a cryogen free cold trap system

Wuhan Tianhong Instrument Co., Ltd., China). It was calibrated

ith two pressurized standard gases: PAMS 56 NMHCs and TO-15

Linde Electronics and Specialty Gases, China). Full details of the

ystem are given elsewhere (Wang et al., 2014). The PTR-MS sys-

em for VOC in both locations was calibrated using a pressurized

as standard (Apel-Riemer Environmental, stated accuracy 5%) and

verall measurement uncertainty was assessed as <25%.

.5. Ozone, NOx, CO2

The rainforest NO mixing ratio was measured using the chemi-

uminescence technique (NO Chemiluminescence analyzer, model

LD TR-780, Ecophysics, Switzerland), calibration was via a pres-

urized NO standard resulting in an overall uncertainty of <5%.
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Ozone was measured by an UV-absorption technique using a

Thermo Electron 49c analyzer (Thermo, Electron, USA), using

Nafion dryers to minimize effects of changing water vapor con-

centrations. Calibration was achieved using ozone calibration unit

model 146C (Thermo Environmental), giving an overall uncertainty

of 0.5 ppb. Mixing ratios of CO2 were measured by non-dispersive

infrared absorption techniques (Licor-7000, LICOR, Lincoln, USA),

calibrated using pressurized CO2 standards in the range 400–

500 ppm, with an overall uncertainty of <1% In Beijing ozone was

also measured by UV absorption (Thermo Electron 49i) and cal-

ibrated with the model 146C ozone calibrator, giving an overall

uncertainty of 0.5 ppb. NOx was measured by chemiluminesence

(NO–NO2–NOx analyzer, model 42i trace level, Thermo Electron,

USA) and calibrated to a pressurized NO gas standard (Beijing Hua

Yuan Chemical Gas Industry Company, China), gaving an overall

uncertainty of 5%. CO2 measurements were made by an advanced

non-disperse infrared (NDIR) instrument (CO2 analyzer model 410i,

Thermo Electron, USA). Calibration of CO2 was performed weekly

to a pressured CO2 standard gas, overall uncertainty <5%.

2. Results

Fig. 1 shows the diel (24 h) cycle of median OH reactivity for

a) the Amazon rainforest site over 10 days (20th–29th September

2013) and b) the central Beijing site over 17 days (10th–27th Au-

gust 2013). For the rainforest, OH reactivity shows a clear diel cycle

with values increasing from circa 27 s−1 at 06:00 LT (local time)
Fig. 1. a. Median diel cycle of OH reactivity and CO2 for the Amazon. b Median diel cycl

of the data.
p to a maximum of 72 s−1 between 12:00 and 15:00 LT which

orresponds to the maximum light intensity and temperature. Fol-

owing a short duration minimum in OH reactivity around 18:00,

ee Fig. 1a, OH reactivity decreases steadily through the night from

5 to 27 s−1 between 21:00 and 06:00 LT. The values reported here

re comparable to the 2 h section of OH reactivity data measured

ate afternoon in the Suriname rainforest at 50 m, average 53 s−1

Sinha et al., 2008) and to a larger dataset taken in the Borneo

ainforest at 5 m, campaign average noontime maximum 29.1 s−1,

iel variation between 5 and 45 s−1, with a maximum of 83.8 s−1

Edwards et al., 2013). The diel profile of CO2 in the rainforest

s opposite to that of the OH reactivity, as photosynthetic uptake

y day draws the mixing ratios down from 425 ppm to 385 ppm

hile respiration by night serves to return ambient mixing ratios

o the aforementioned peak values shortly before dawn (06:00 LT).

In Beijing, the diel cycle in OH reactivity is converse to that

easured in the rainforest with levels that are 2–3 times lower.

maximum in OH reactivity of circa 27 s−1 is attained between

6:00 and 09:00 LT. Thereafter OH reactivity decreases to below

5 s−1 by 14:00. After 22:00 LT the OH reactivity increases sharply

nd remains between 16 and 26 s−1 through the night. The max-

mum corresponds to both the daily peak in traffic and shallow

arly morning mixed layer. The minimum coincides with the devel-

pment of a deeper mixed layer. The sharp increase in the evening

ccurs with the re-establishment of the nocturnal boundary layer.

he values of OH reactivity in Beijing are comparable to those re-

orted for New York (Ren et al., 2003), which varied from 15 to
e of OH reactivity and CO2 for Beijing. Vertical bars represent the range of 25–75%
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5 s−1 with an average of 19 ± 3 s−1; but lower than data

or Tokyo (Sadanaga et al., 2004), which ranged between 33 and

0 s−1 (15:00–17:00 only). The Beijing data are also closely com-

arable to those from Mexico City (Shirley et al., 2005), where OH

eactivity of ca. 25 s−1 was measured for most of the day, except in

he Mexican rush hour when 120 s−1 was reached. The strong in-

uence of traffic emissions on megacity air composition including

eijing is well established (Parrish et al., 2009). It is worth noting

hat Beijing CO2 shows a similar diel behavior to the Beijing OH

eactivity, being highest at night. Thus the variance of CO2 with

ime-of-day in Beijing matches closely that from the rainforest al-

eit with a smaller amplitude 380 ppm–410 ppm Beijing compared

o 385–425 ppm rainforest. However, while CO2 and OH reactivity

orrelate over the diel cycle in Beijing (r = 0.45), they anticorrelate

n the rainforest (r = −0.86).

Fig. 2 a and b shows the contributions of selected species to

he overall OH reactivity in a) the rainforest and b) Beijing. In

he rainforest, isoprene (2- methyl butadiene) is expected to be a

trong contributor to total OH reactivity due to its strong light and

emperature dependent emissions (Guenther et al., 2006) and its

igh reaction rate coefficient with OH (1 × 10−10 molec cm−3 s−1)

Atkinson et al., 2004). From Fig. 2a it can be seen that both total

H reactivity and the reactivity contribution of isoprene increased

n the morning following first light 06:00 until 12:00 LT. There-

fter, isoprene reactivity decreased from 25 to 18 s−1 (between

2:00 and 05:00; corresponding to mixing ratios of 10.4–7.5 ppb).

t is clear that although isoprene is an important contributor to

he total OH reactivity, there exists significantly more reactivity
ig. 2. The total OH reactivity compared to the contributions of isoprene and NOx

or the Amazon (a) and Beijing (b).
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han is explained by isoprene alone. The oxidation products of iso-

rene (methyl vinyl ketone, methacrolein and isoprene peroxides

easured at protonated mass 71) are also shown in Fig. 2. They

ontribute less than half the OH reactivity than isoprene. This has

een noted previously in the field in rainforests (Edwards et al.,

013), boreal forests (Nölscher et al., 2012), and temperate forests

Di Carlo et al., 2004) though not in single molecule chamber stud-

es (Fuchs et al., 2013; Nölscher et al., 2014). The missing reactivity

as been attributed to both unmeasured primary biogenic emis-

ions and the unmeasured photochemical products of isoprene and

ther emissions (Sinha et al., 2010; Nölscher et al., 2015).

In Beijing, the main contributing species to the total OH re-

ctivity are different to those of the rainforest. High tempera-

ure combustion associated with heavy industry and traffic sources

rovides, via NO emission, a strong source of NO2 which reacts

apidly with OH (1.2 × 10−11 molec cm−3 s−1) (Atkinson et al.,

004). The diel profile of NO2 is shown with total OH reactiv-

ty in Fig. 2b. It can be seen that NO2 is more important than

soprene to the overall OH reactivity in this environment. Aro-

atic compounds also represent a significant source of reactivity

n Beijing (Shao et al., 2009; Wang et al., 2012), and the summed

eactivity contribution from included benzene, toluene, 1,3,5-

rimethylbenzene, 1,2,4-trimethylbenzene, 1,2,3-trimethylbenzene,

thyl benzene, m- and p-xylene, o-xylen, p-diethylbenzene, i-

ropylbenzene, n-Propylbenzene, m-ethyltoluene, o-ethyltoluene,

re also shown in Fig. 2 for comparison.

Fig. 3 shows the behavior of local tropospheric ozone that re-

ults from the specific amounts and composition of OH reactiv-

ty emitted in both locations. In the case of the rainforest, despite

igh measured OH reactivity and likely O3 reactivity through the

resence of isoprenoids, the O3 diel cycle varied relatively little

9–19 ppb). There is slightly increasing ozone by day (06:00 until

5:00) and decreasing, more variable levels by night. In contrast,

eijing shows strong O3 production during the day from less than

0 ppb at 06:00 to peak mean values of nearly 80 ppb from 13:00–

6:00.

. Discussion

Ozone is harmful to both plants and humans (Jerret et al.,

009; Skarby and Sellden, 1984). Here we have examined two

nvironments, rich in life and sensitive to ozone damage, which

ave sharply contrasting impacts on their local ozone levels. Al-

hough the total OH reactivity in Beijing is less than that of the

ainforest, daytime ozone production in the city environment was

n order of magnitude higher. It should be noted that we here

ompare reactivity data using the same measurement and data

ork-up method, from approximately the same time of year

August–September) and from approximately the same height

bove ground (38 m and 20 m).

Key factors contributing to the contrasting ozone behavior

re: the NOx component of the OH reactivity; the OH recy-

ling ability of the main VOC emissions, the timing of the emis-

ions to the atmosphere; and the surrounding surface area. NOx

NO + NO2) catalyzes photochemical ozone formation (Haagen-

mit, 1952) through the reaction of RO2 with NO to RO and

O2, which yields ozone when NO2 photolyzes back to NO (via

+ O2 → O3). The high NO levels in Beijing (median 0–9 ppb)

elative to the rainforest (<1 ppb) are likely the most important

actor in the net ozone production differences observed, since the

hreshold for ozone production (rather than loss) is around 50–

00 ppt NOx. The VOC components of ambient OH reactivity can

lso impact ambient OH directly (and thereby oxidation capac-

ty), depending on the degree to which each species consumes

H during oxidation. Isoprene, the main VOC component mea-

ured by PTR-MS in the rainforest by day (Williams et al., 2001)
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Fig. 3. Diel cycles of median ozone for the Amazon (a) and Beijing (b). Dots mark medians, triangles averages, the boxes the extent of 75–25% of the data and the whiskers

90–10%.
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has been shown to recycle OH efficiently based on field measure-

ments (Lelieveld et al., 2008), on theoretical studies (Peeters et al.,

2009) and on chamber study results (Fuchs et al., 2013). In the

case of Beijing, isoprene is not as important to the overall OH re-

activity as NO2 see Fig. 2. NO2 does not recycle OH in the gas

phase but instead forms nitric acid which is rapidly deposited. Aro-

matic VOC which are abundant in the urban environment (Shao

et al., 2009; Wang et al., 2012) are not thought to recycle OH to

the same extent as isoprene, although considerable uncertainty re-

mains in the underlying mechanisms. Modeling sensitivity studies

show that trimethyl benzene species are significantly more effi-

cient at producing ozone than isoprene under typical continental

conditions (Derwent et al., 1998). Recent measurements of OH in

Beijing indicate there is a source of OH at night (Lu et al., 2014)

although it has not been identified. It is interesting to note that

in the case of isoprene the main first order products when NOx

is present (methacrolein and methyl vinyl ketone) are less reactive

than isoprene itself so that with time the overall OH reactivity de-

creases as has been observed in chambers (Nölscher et al., 2014).

In contrast aromatic species have more reactive first order prod-

ucts so that the OH reactivity provided by carbon in this form will

increase with time.

Another factor in the differing extents of ozone production in

the rainforest and Beijing is the timing of the NOx and VOC emis-

sions to the atmosphere. In the case of the city, fresh NOx and VOC

are co-emitted at daybreak by rush-hour traffic, optimizing the

conditions for ozone production throughout the sunlit part of the

day. In contrast, in the rainforest, NO emissions are relatively weak

and constant through the day as the bacterial soil sources are pri-

marily dependent on the relatively invariant temperature and soil

moisture (Behrendt et al., 2014). While VOC emissions from rain-
orest soils are known to occur, the majority of the rainforest OH

eactivity is found at canopy level by day, similar to isoprene and

onoterpenes (Yáñez.Serrano et al., 2015; Nölscher et al., 2015).

hus the rainforest ecosystem emits NO at low levels continuously

hroughout the day while OH reactivity (decoupled from NO) peaks

y day at the time of maximum vertical mixing, boundary layer

epth, and when the atmosphere’s main oxidant, the OH radical,

s highest. In Beijing, significant nocturnal emission into the shal-

ower nighttime boundary layer causes total OH reactivity to be

ighest by night, again priming ozone production for the following

ay. A final factor in the contrasting ozone behavior is the surface

rea for deposition available in both environments. Uptake of NO2

nd ozone are significantly higher to vegetation surfaces than to

rick and concrete so that trees are being advocated for urban air

uality improvement (Pugh et al., 2012). Strong dry deposition of

xygenated VOC to vegetation has also been reported (Karl et al.,

010).

The impact of human beings on planet Earth has increased

apidly over the past 60 years, and now more than 50% of the hu-

an population lives in cities (Williams and Crutzen, 2013). This

tudy highlights how differently OH-reactive species from the nat-

ral vegetation and anthropogenic city sources impact the local at-

osphere in terms of harmful tropospheric ozone. Despite Beijing

aving three times less maximum OH reactivity, it produces some

en times more harmful photochemical ozone each day. The ap-

arent insensitivity of total OH reactivity as a pollution diagnostic

uggests that it will be more instructive for future pollution con-

rol strategies to use separate NOx- and VOC- reactivities (where

OC reactivity = Total OH reactivity−NOx-reactivity) (Kirchner

t al., 2001). Nonetheless, OH reactivity measurements in cities

an be useful in future to assess the completeness of the emission



J. Williams et al. / Atmospheric Environment 125 (2016) 112–118 117

i

e

l

c

r

r

l

f

s

O

o

t

H

p

i

C

l

n

p

e

e

t

T

l

c

i

t

p

m

a

f

d

h

4

c

s

y

h

a

p

c

c

T

a

h

m

e

t

t

o

A

d

e

a

i

0

F

g

p

S

s

R

A

A

B

B

C

C

C

D

D

D

D

E

F

F

G

G

H

I

nventory (Williams and Brune, 2015). The locations represent two

xtreme cases: from a megacity containing freshly emitted pol-

utants and characterized by a VOC-sensitive ozone production

hemistry, to a NOx-sensitive ozone production chemistry in the

ainforest (Sillman, 1999). The average ratio of VOC reactivity/NOx

eactivity is 47 in the case of the Amazon and 0.6 in Beijing. Fol-

owing the example of the rainforest, city dwellers should there-

ore 1) reduce NOx significantly, 2) decouple NOx and VOC emis-

ions, 3) time emissions to coincide with maximum turbulence and

H, 4) when VOC species are emitted, then OH efficient and low

zone producing species should be preferred, 5) increase deposi-

ion in cities by introducing trees (albeit with low VOC emissions).

owever, reducing NOx can lead to ozone increases, as the ozone

roduced per oxidized NOx (ozone production efficiency per NOx)

ncreases as NOx decreases from urban to rural levels (Pusede and

ohen, 2012). The composition and timing of emissions are closely

inked to current technology and daylight lifestyle preferences. Fi-

ally, introducing trees can also exacerbate photochemical ozone

roduction by increasing VOC in a NOx rich environment (Owen

t al., 2003), though the combined effect of leaf surfaces and BVOC

missions on ozone uptake and decomposition make the estima-

ion of a net effect on ozone challenging (Calfapietra et al., 2013).

he problem of reducing city pollutants is a complex issue with a

ong history. Nonetheless it is worth noting that the forest emits

onsiderably more OH reactivity to the air while sustaining an ox-

dizing environment with relatively invariant low ozone, conducive

o low leaf damage, effective VOC signaling between insects and

lants, and safer DNA transport by pollen. The city uses the at-

osphere merely as an immediate repository for waste products,

t inopportune times and with species (NOx) that catalyze ozone

ormation. As a result atmospheric chemical processes rapidly pro-

uce ozone and other secondary pollutants which are harmful for

uman health and plants (Chan and Yao, 2009).

. Conclusion

In this study we have measured OH reactivity in two starkly

ontrasting environments. The measurements were made using the

ame measurement system, at approximately the same time of

ear and height above ground. They show strongly contrasting be-

avior in amount of OH reactivity, the key contributing species,

nd the diel cycles. The method for measuring OH reactivity em-

loyed here (CRM-PTRMS). Many of the previous measurements

ited here have used LIF techniques, some of which have been re-

ently shown to suffer significant interferences (Mao et al., 2012).

hus characterization with an independent technique is valuable

nd the degree of correspondence reassuring. The data presented

ighlight how the chemistry of the natural atmospheric environ-

ent maintains a low constant ozone level despite being inher-

ntly more reactive to OH. Moreover, it is shown that the introduc-

ion of NOx, even with modest absolute OH reactivity relative to

he rainforest, is sufficient to rapidly produce harmful tropospheric

zone.
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