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Abstract 

Aarts, E.H.L. and P.J.M. van Laarhoven, Local search in coding theory, Discrete Mathemat- 

ics 106/107 (1992) 11-18. 

We briefly review the application of local search to a special class of coding problems: covering 

and packing. To use local search techniques, covering and packing problems are viewed as 

combinatorial optimization problems. The advantage of local search is that it can be applied 

without the use of deep combinatorial arguments. However, the required computation times 

can be quite large. 

1. Introduction 

We consider the special class of coding problems known as covering and 

packing. In these problems we are given a set of items V and the question is to 

find a set W* c V, such that 

l W* is of minimum cardinality and for each item in V there is at least one 

item in W* such that their ‘distance’ is at most a given value (covering), or 

l W* is of maximum cardinality and the ‘distance’ between any two items in 

W* is at least a given value (packing). 

Clearly, in some sense these problems can be viewed as each other’s dual. In 

coding theory, items are often words of a code and the distance is usually given 

by the Hamming distance between two words. 

Traditionally, covering and packing problems have been solved by using 

combinatorial arguments; for an overview see [6]. Here, we present results that 

have been obtained by formulating these problems as combinatorial optimization 
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problems and handling them by optimization techniques such as simulated 
annealing and genetic algorithms. 

Before we discuss the problems in more detail, we introduce the following 
notations. V”, is the set of all n-tuples x = (x,, . . . , x,) with xi E iZk = 

(0, I, . . . , k - 1). The Hamming distance d&, y) between two n-tuples x, y E 
Vz is defined as the number of entries in which the two n-tuples differ. The 
Hamming weight w&) of an n-tuple x E Vi is defined as the number of entries 
of x different from 0, i.e., w&) = dN(x, 0), where 0 E Vi is the n-tuple with all 
entries equal to 0. 

A k-ary code W of length n is a subset of Vz; the elements of W are usually 
called code words. For x E Vi, we define the sphere of radius R around x by 
B&Z) = {y E Vi 1 dH(x, y) c R}. If R = 1, the sphere is also called a rook domain 
and it is denoted by B(x). 

We now formulate the following problems. 
(a) Let W be a covering by rook domains of Vz, i.e., W c V; and 

K = UxeW B(x). Find o(n, k), i.e., the cardinality of the smallest covering by 
rook domains of V”,. Note that this implies that for any y E V”, there is at least 
one x E W, such that dH(x, y) G 1. 

For k = 3, this covering problem is known as the football pool problem for the 
following reasons. With an entry of a football pool one forecasts the results of n 
football matches. If one wishes the guarantee of winning the first prize, one 
obviously has to submit 3” entries. To have the guarantee of winning the second 
prize, one has to submit a set of entries such that for any set of results there is at 
least one entry that differs for at most one match in the full set of results. Note 
that this amounts to a set of entries that is a covering by rook domains of the set 
of all possible results given by V4. Thus a(n, 3) corresponds to the smallest set 
of entries that guarantees winning the second prize in a football pool of II 
matches. 

(b) Let W be a k-ary (n, d)-code, i.e., W c V”, and d&, y) 2 d for all 
x, y E W, x fy. Find Ak(n, d), i.e., the cardinality of a largest k-ary (n, d)-code. 

This packing problem is known as the problem of constructing an error- 
correcting or channel code, due to the fact that up to d/2 transmission errors can 
be corrected if an (n, d)-code is used in a communication channel. 

(c) Let W be a k-ary (n, d, w)-code, i.e., a k-ary (n, d)-code in which all code 
words have Hamming weight w. Find Ak(n, d, w), i.e., the cardinality of a largest 

k-ary (n, d, w)-code. 
This packing problem is known as the problem of constructing a constant 

weight error-correcting code. 
To formulate the above problems as combinatorial optimization problems, we 

recall that combinatorial optimization problems can be formalized as a pair (9, f), 
where Y denotes a set of solutions and f : 9’ --, R a cost function that assigns a 
real-valued number to each solution in 9’. Evidently, as (91 can be very large, the 
elements in 9 are not explicitly given but are specified by a compact representation 
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from which they can be computed with some algorithm. The problem in combinatorial 
optimization is to find a solution i* E Y for which f(i*) is optimal. 
It is now straightforward to formulate each of the aforementioned coding 
problems as combinatorial optimization problems. For instance, the problem of con- 
structing an error-correcting code can be formulated as follows (see problem (b)). 

LetY={W(W’ 1s a k-ary (n, d)-code} , and f(W) = 1 WI for all W E 3’. Find a 
W” E Y that maximizes f 

To enable the use of local search techniques we, however, need a slightly 
different formulation. This and other local search related items are addressed in 
the following sections. 

The organization of the remainder of the paper is as follows. Section 2 briefly 
discusses some aspects of local search in combinatorial optimization. Section 3 
discusses the application of local search to the coding problems given above. The 
paper concludes with some final remarks given in Section 4. 

2. Local search 

Many combinatorial optimization problems have been proved to be NP-hard, 
which implies that it is unlikely that there exist algorithms that can solve each 
instance of such a problem to optimality within a computation time that is 
bounded by a polynomial in the size of the instance. Here the size of an instance 
refers to a number that is polynomially related to the size of the encoding used to 
store the compact representation of 9 mentioned in Section 1. As a consequence 
of the NP-hardness, one often resorts to approximation algorithms that find 
high-quality approximate solutions within acceptable computation times. 

Local search constitutes a well-known class of approximation algorithms. The 
use of such techniques presupposes, in addition to the definition of the pair 
(Y,f), a neighbourhood structure and a transition mechanism. A neighbourhood 
structure is a mapping X: Y* 2y, which assigns to each solution i E Y a 
neighbourhood X(i) c 9, which is a set of solutions that are ‘close’ to i in some 
sense. A transition mechanism is a set of rules that determines the iteration 
process among neighbouring solutions. Roughly speaking, one can view local 
search as a walk on a directed graph, whose nodes are given by the elements 
in Y and whose arcs connect two neighbouring solutions; the transition mechanism 
then determines the walk that should eventually lead to good final solutions. 

Iterative improvement is a simple example of a local search algorithm that can 
be described as follows. Given a start solution, generate a sequence of trials, 
where in each trial a current solution is replaced by a neighbouring solution with 
better cost. The algorithm stops if a solution is found whose cost is at least as 
good as the cost of all its neighbours. Such a solution is called a local optimum. 
The major advantage of iterative improvement is its general applicability; a 
start solution and a neighbourhood structure are usually straightforward to 
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define. A drawback is the fact that in general no guarantees can be given with 
respect to the cost of the local optimum that is found by the algorithm and that 
the cost value can be far from optimal since the algorithm stops at the first local 
optimum that is found. To overcome this disadvantage, whilst maintaining the 
advantage of the generally applicable local search paradigm, a number of new 
transition mechanisms have been proposed in recent years, many of which have 
led to impressive results. Two of them, namely simulated annealing and genetic 
local search, have been shown to be successful in coding and are therefore 
discussed in more detail here. 

2.1. Simulated annealing 

Simulated annealing is a generalization of iterative improvement in the sense 
that in addition to cost-improving, also cost-deteriorating transitions are made. 
More precisely, given two solutions i, j E 9, with j E N(i) and f(j) a?(i), then, in 
the case of minimization, a transition from i to j can be made with nonzero 
probability. A frequently used expression for the probability is given by (again in 
the case of minimization) 

P{i-+ j 1 j E X(i)} = exp - 
( 

f(i)-f(i) 
> c ’ 

where c E Iw+ is some control parameter. Note that the probability decreases for 
increasing values of the cost difference f(j) -f(i), as well as for decreasing values 
of c. The algorithms starts with a large value of c, which is gradually decreased in 
the course of the algorithm’s execution to become zero in the end. So initially, 
cost-increasing transitions are frequently made, whereas in the end we have again 
iterative improvement. The basic idea of simulated annealing is gleaned from 
nature, more precisely, from the physical annealing process; see Kirkpatrick et al. 

[31. 
A major advantage of simulated annealing is that under relatively mild 

conditions the algorithm can be proved to find asymptotically, i.e., for c 4 0, 
optimal solutions with probability 1. In practice, the asymptoticity region cannot 
be reached, nevertheless the algorithm has been successfully applied to problems 
in a wide variety of application areas, yielding high-quality solutions, but often at 
the cost of substantial amounts of running times. For more details see Van 
Laarhoven and Aarts [4]. 

2.2. Genetic local search 

Another approach to improve upon iterative improvement is given by the class 
of genetic local search algorithms. Again the basic idea is gleaned from nature 
leading in this case to a combination of iterative improvement with recombination 
mechanisms and population genetics in biology; see Mtihlenbein et al. [7]. 

Instead of iterating among single solutions, genetic local search algorithms 
continuously try to improve a population of solutions. To this end two 
neighbourhood structures are used. The improvement neighbourhood structure is 
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used to generate a neighbouring solution of a single solution, as in iterative 
improvement. The recombination neighbourhood structure is used to generate a 
solution from a set of solutions, as in nature where two parents produce offspring. 
The general idea of genetic local search is best explained by the following 

scheme. 
Step 1. Initialize: Construct an initial population of Iz solutions. 
Step 2. Improve: Use iterative improvement to replace the n solutions in the 

population by II local optima. 
Step 3. Recombine: Augment the population by adding m offspring solutions. 

The population size now equals n + m. 
Step 4. Improve: Use iterative improvement to replace the m offspring 

solutions by m local optima. 
Step 5. Select: Reduce the population to its original size by selecting the IZ best 

solutions from the current population. 
Step 6. Evolute: Repeat Steps 3-5 until a stop criterion is satisfied. 
Evidently, an important step is the recombination, since there one must try to 

exploit the structure present in the available local optima. 
As with simulated annealing, genetic local search has been applied with success 

to a large class of problems. In the next section we discuss some of the successes 
obtained in coding theory. 

3. Local search for covering and packing 

3.1. Covering by simulated annealing 

Van Laarhoven et al. [5] describe an application of simulated annealing to the 
football pool problem, i.e., they compute upper bounds on the value of a(n, 3) 
for different values of IZ. They use the following problem formulation. Let 

Y={W\W~v/;and lWl=a} and f(W)=~{V3\x~wB(x))~. 

Find a W* E Y that minimizes fi 
If the solution to this problem is a code W, for which f(W) = 0, then W is a 

covering of Vy by rook domains and cr(n, 3) s a. The above problem formulation 
allows the use of extremely simple neighbourhood structures. Given a code 
W E 9, then its neighbourhood consists of all codes W’ E 9’ that can be obtained 
from W by deleting a code word x E W and adding a code word y E V;\ W. Van 
Laarhoven et al. [5] have used these neighbourhoods in a simulated annealing 
algorithm and were able to improve the previous best values of ~(6, 3), ~(7, 3), 
and ~(8, 3), from 79, 216, and 567, respectively, to 73, 186, and 486, respectively, 
To obtain the latter improvement, also combinatorial arguments were needed in 
conjunction with the annealing approach. The computation times used to 
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obtain these results were in the range of several minutes for the smaller instances 
up to a few hours for the large ones. 

3.2. Packing by simulated annealing 

El Gamal et al. [2] describe an application of simulated annealing to the 
problem of finding good binary constant weight codes, i.e., they compute lower 
bounds on A,(n, d, w) for different values of n, d, and w. They use the following 
problem formulation, which is slightly different from the one given in Section 1. 
Let 

Y={WJWeV&JWj= a and for all x E W: wH(x) = w} and 

f(W) = 2 c [dH(x, Y)]-~ for all W E 9. 
xew yeW,yfx 

Find a W* E 9’ that minimizes fi 
In other words, the set of solutions is restricted to constant weight codes of 

length n and cardinality a, and the cost function is chosen to favour codes with 
large distances between the code words. If a solution to this problem is a code 
W* for which dH(x, y) 3 d, for all n, y E W *, x # y, then W* is a binary 
(n, d, w)-code and A2(n, d, w) 3 a. One of the reasons to use this alternative 
formulation is that it allows the use of an extremely simple neighbourhood 
structure. Given a code W E 9, then its neighbourhood consists of all codes 
W’ E Y that can be obtained from W by taking one of the code words x E W and 
swapping one component xi from 1 to 0, and another component xi from 0 to 1. 
Evidently, the resulting code W’ is again in 9’. 

El Gamal et al. [2] use these neighbourhoods in a simulated annealing 
algorithm and report that several good codes have been found with their 
approach. They found a (23,10,7)-code of size 18, a (23,10,8)-code of size 28, 
and a (24,10,8)-code of size 33, which all improve the previously known best 
codes. For some codes the obtained lower bounds are still far off from the 
corresponding theoretical upper bounds. For instance, 68 is an upper bound for 
A,(24, 10, 8). The computation times used to compute these codes are in the 
order of several minutes up to a few hours. 

3.3. Packing by genetic local search 

Vaessens et al. [8] describe an application of genetic local search to the 
problem of constructing good ternary (n, d)-codes, i.e., they compute lower 
bounds on A,(n, d) for different values of n and d. In this case, the improvement 
neighbourhood of a given ternary (n, d)-code W is given by all ternary 
(n, d)-codes W’ that can be obtained from W by adding one code word x E Vg\ W 

to W. Furthermore, x should satisfy the condition dH(x, y) 2 d for all y E W, in 
order for W’ to be an (n, d)-code. The recombination neighbourhood of two 
ternary (n, d)-codes WI and W, is given by all ternary (n, d)-codes W’ for which 

W’ = {x E W, 1 d&x, z) =z D - d} U {x E W, 1 d&x, z) 2 D} 
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or 

W’ = {X E w, ) d”(X, 2) == D - d} u {x E WI ) f&(x, 2) 2 D} 

with arbitrary code words z E V; and integers D, 0 s D s n + d. 

In their paper, Vaessens et al. [8] give a table of A,(n, d) bounds for n c 16. 
Several of the best found lower bounds were obtained with a genetic local search 
algorithm operating along the lines sketched above. The computation times 
needed to find these results in some cases could mount up to a few days. 

4. Concluding remarks 

The results discussed in this paper illustrate the successful use of rather simple 
approaches such as local search to difficult problems as covering and packing. 
They demonstrate that these approaches, which can be viewed as clever 
approximate enumerations of the set of solutions, are viable alternatives to the 
more traditional combinatorial construction techniques that are used to handle 
these problems. The search for better lower and upper bounds remains a 
challenging subject in combinatorics, since the gap between the two is in many 
cases still quite large. We mention two possible directions to extend this work. 
On the one hand, one could try to use combinatorial arguments in order to 
construct more complicated neighbourhoods which then might further improve 
the present results. On the other hand, local search techniques could be used to 
construct special classes of codes which can then be further used to study the 
combinatorial structure of other more complicated codes, as in fact is done to 
obtain the rook domain covering of V,” by Van Laarhoven et al. [5]. 

Finally, we must admit that there are also examples of problems in coding 
theory for which local search so far fails. For instance, Beenker et al. [l] report 
on an extensive numerical study in which they investigated the performance of 
several methods for the problem of finding binary sequences with maximal 
autocorrelation coefficients. One of their conclusions was that the local search 
techniques they applied could not improve upon the more traditional approaches. 
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