
Discrete Mathematics 106/107 (1992) 11-18

North-Holland

11

Local search in coding theory

Emile H.L. Aarts
Philips Research Laboratories, P. 0. Box 80. Ooo, 5600 JA Eindhoven, Netherlands
Eindhoven University of Technology, P. 0. Box 513, %OV MB Eindhoven, Netherlands

Peter J.M. van Laarhoven
McKinsey & Company, Amtel344, 1017 AS Amsterdam, Netherlands

Received 17 December 1991

Revised 29 January 1992

Abstract

Aarts, E.H.L. and P.J.M. van Laarhoven, Local search in coding theory, Discrete Mathemat-

ics 106/107 (1992) 11-18.

We briefly review the application of local search to a special class of coding problems: covering

and packing. To use local search techniques, covering and packing problems are viewed as

combinatorial optimization problems. The advantage of local search is that it can be applied

without the use of deep combinatorial arguments. However, the required computation times

can be quite large.

1. Introduction

We consider the special class of coding problems known as covering and

packing. In these problems we are given a set of items V and the question is to

find a set W* c V, such that

l W* is of minimum cardinality and for each item in V there is at least one

item in W* such that their ‘distance’ is at most a given value (covering), or

l W* is of maximum cardinality and the ‘distance’ between any two items in

W* is at least a given value (packing).

Clearly, in some sense these problems can be viewed as each other’s dual. In

coding theory, items are often words of a code and the distance is usually given

by the Hamming distance between two words.

Traditionally, covering and packing problems have been solved by using

combinatorial arguments; for an overview see [6]. Here, we present results that

have been obtained by formulating these problems as combinatorial optimization

Correspondence to: E.H.L. Aarts, Eindhoven University of Technology, P.O. Box 513, 5600 MB
Eindhoven, Netherlands.

0012-365X/92/$05.00 0 1992 - Elsevier Science Publishers B.V. All rights reserved

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82201401?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

12 E. H. L. Aarts, P.J.M. van Laarhoven

problems and handling them by optimization techniques such as simulated
annealing and genetic algorithms.

Before we discuss the problems in more detail, we introduce the following
notations. V”, is the set of all n-tuples x = (x,, . . . , x,) with xi E iZk =

(0, I, . . . , k - 1). The Hamming distance d&, y) between two n-tuples x, y E
Vz is defined as the number of entries in which the two n-tuples differ. The
Hamming weight w&) of an n-tuple x E Vi is defined as the number of entries
of x different from 0, i.e., w&) = dN(x, 0), where 0 E Vi is the n-tuple with all
entries equal to 0.

A k-ary code W of length n is a subset of Vz; the elements of W are usually
called code words. For x E Vi, we define the sphere of radius R around x by
B&Z) = {y E Vi 1 dH(x, y) c R}. If R = 1, the sphere is also called a rook domain
and it is denoted by B(x).

We now formulate the following problems.
(a) Let W be a covering by rook domains of Vz, i.e., W c V; and

K = UxeW B(x). Find o(n, k), i.e., the cardinality of the smallest covering by
rook domains of V”,. Note that this implies that for any y E V”, there is at least
one x E W, such that dH(x, y) G 1.

For k = 3, this covering problem is known as the football pool problem for the
following reasons. With an entry of a football pool one forecasts the results of n
football matches. If one wishes the guarantee of winning the first prize, one
obviously has to submit 3” entries. To have the guarantee of winning the second
prize, one has to submit a set of entries such that for any set of results there is at
least one entry that differs for at most one match in the full set of results. Note
that this amounts to a set of entries that is a covering by rook domains of the set
of all possible results given by V4. Thus a(n, 3) corresponds to the smallest set
of entries that guarantees winning the second prize in a football pool of II
matches.

(b) Let W be a k-ary (n, d)-code, i.e., W c V”, and d&, y) 2 d for all
x, y E W, x fy. Find Ak(n, d), i.e., the cardinality of a largest k-ary (n, d)-code.

This packing problem is known as the problem of constructing an error-
correcting or channel code, due to the fact that up to d/2 transmission errors can
be corrected if an (n, d)-code is used in a communication channel.

(c) Let W be a k-ary (n, d, w)-code, i.e., a k-ary (n, d)-code in which all code
words have Hamming weight w. Find Ak(n, d, w), i.e., the cardinality of a largest

k-ary (n, d, w)-code.
This packing problem is known as the problem of constructing a constant

weight error-correcting code.
To formulate the above problems as combinatorial optimization problems, we

recall that combinatorial optimization problems can be formalized as a pair (9, f),
where Y denotes a set of solutions and f : 9’ --, R a cost function that assigns a
real-valued number to each solution in 9’. Evidently, as (91 can be very large, the
elements in 9 are not explicitly given but are specified by a compact representation

Local search in coding theory 13

from which they can be computed with some algorithm. The problem in combinatorial
optimization is to find a solution i* E Y for which f(i*) is optimal.
It is now straightforward to formulate each of the aforementioned coding
problems as combinatorial optimization problems. For instance, the problem of con-
structing an error-correcting code can be formulated as follows (see problem (b)).

LetY={W(W’ 1s a k-ary (n, d)-code} , and f(W) = 1 WI for all W E 3’. Find a
W” E Y that maximizes f

To enable the use of local search techniques we, however, need a slightly
different formulation. This and other local search related items are addressed in
the following sections.

The organization of the remainder of the paper is as follows. Section 2 briefly
discusses some aspects of local search in combinatorial optimization. Section 3
discusses the application of local search to the coding problems given above. The
paper concludes with some final remarks given in Section 4.

2. Local search

Many combinatorial optimization problems have been proved to be NP-hard,
which implies that it is unlikely that there exist algorithms that can solve each
instance of such a problem to optimality within a computation time that is
bounded by a polynomial in the size of the instance. Here the size of an instance
refers to a number that is polynomially related to the size of the encoding used to
store the compact representation of 9 mentioned in Section 1. As a consequence
of the NP-hardness, one often resorts to approximation algorithms that find
high-quality approximate solutions within acceptable computation times.

Local search constitutes a well-known class of approximation algorithms. The
use of such techniques presupposes, in addition to the definition of the pair
(Y,f), a neighbourhood structure and a transition mechanism. A neighbourhood
structure is a mapping X: Y* 2y, which assigns to each solution i E Y a
neighbourhood X(i) c 9, which is a set of solutions that are ‘close’ to i in some
sense. A transition mechanism is a set of rules that determines the iteration
process among neighbouring solutions. Roughly speaking, one can view local
search as a walk on a directed graph, whose nodes are given by the elements
in Y and whose arcs connect two neighbouring solutions; the transition mechanism
then determines the walk that should eventually lead to good final solutions.

Iterative improvement is a simple example of a local search algorithm that can
be described as follows. Given a start solution, generate a sequence of trials,
where in each trial a current solution is replaced by a neighbouring solution with
better cost. The algorithm stops if a solution is found whose cost is at least as
good as the cost of all its neighbours. Such a solution is called a local optimum.
The major advantage of iterative improvement is its general applicability; a
start solution and a neighbourhood structure are usually straightforward to

14 E. H. L. Aarts. P. J. M. van Laarhoven

define. A drawback is the fact that in general no guarantees can be given with
respect to the cost of the local optimum that is found by the algorithm and that
the cost value can be far from optimal since the algorithm stops at the first local
optimum that is found. To overcome this disadvantage, whilst maintaining the
advantage of the generally applicable local search paradigm, a number of new
transition mechanisms have been proposed in recent years, many of which have
led to impressive results. Two of them, namely simulated annealing and genetic
local search, have been shown to be successful in coding and are therefore
discussed in more detail here.

2.1. Simulated annealing

Simulated annealing is a generalization of iterative improvement in the sense
that in addition to cost-improving, also cost-deteriorating transitions are made.
More precisely, given two solutions i, j E 9, with j E N(i) and f(j) a?(i), then, in
the case of minimization, a transition from i to j can be made with nonzero
probability. A frequently used expression for the probability is given by (again in
the case of minimization)

P{i-+ j 1 j E X(i)} = exp -
(

f(i)-f(i)
> c ’

where c E Iw+ is some control parameter. Note that the probability decreases for
increasing values of the cost difference f(j) -f(i), as well as for decreasing values
of c. The algorithms starts with a large value of c, which is gradually decreased in
the course of the algorithm’s execution to become zero in the end. So initially,
cost-increasing transitions are frequently made, whereas in the end we have again
iterative improvement. The basic idea of simulated annealing is gleaned from
nature, more precisely, from the physical annealing process; see Kirkpatrick et al.

[31.
A major advantage of simulated annealing is that under relatively mild

conditions the algorithm can be proved to find asymptotically, i.e., for c 4 0,
optimal solutions with probability 1. In practice, the asymptoticity region cannot
be reached, nevertheless the algorithm has been successfully applied to problems
in a wide variety of application areas, yielding high-quality solutions, but often at
the cost of substantial amounts of running times. For more details see Van
Laarhoven and Aarts [4].

2.2. Genetic local search

Another approach to improve upon iterative improvement is given by the class
of genetic local search algorithms. Again the basic idea is gleaned from nature
leading in this case to a combination of iterative improvement with recombination
mechanisms and population genetics in biology; see Mtihlenbein et al. [7].

Instead of iterating among single solutions, genetic local search algorithms
continuously try to improve a population of solutions. To this end two
neighbourhood structures are used. The improvement neighbourhood structure is

Local search in coding theory 15

used to generate a neighbouring solution of a single solution, as in iterative
improvement. The recombination neighbourhood structure is used to generate a
solution from a set of solutions, as in nature where two parents produce offspring.
The general idea of genetic local search is best explained by the following

scheme.
Step 1. Initialize: Construct an initial population of Iz solutions.
Step 2. Improve: Use iterative improvement to replace the n solutions in the

population by II local optima.
Step 3. Recombine: Augment the population by adding m offspring solutions.

The population size now equals n + m.
Step 4. Improve: Use iterative improvement to replace the m offspring

solutions by m local optima.
Step 5. Select: Reduce the population to its original size by selecting the IZ best

solutions from the current population.
Step 6. Evolute: Repeat Steps 3-5 until a stop criterion is satisfied.
Evidently, an important step is the recombination, since there one must try to

exploit the structure present in the available local optima.
As with simulated annealing, genetic local search has been applied with success

to a large class of problems. In the next section we discuss some of the successes
obtained in coding theory.

3. Local search for covering and packing

3.1. Covering by simulated annealing

Van Laarhoven et al. [5] describe an application of simulated annealing to the
football pool problem, i.e., they compute upper bounds on the value of a(n, 3)
for different values of IZ. They use the following problem formulation. Let

Y={W\W~v/;and lWl=a} and f(W)=~{V3\x~wB(x))~.

Find a W* E Y that minimizes fi
If the solution to this problem is a code W, for which f(W) = 0, then W is a

covering of Vy by rook domains and cr(n, 3) s a. The above problem formulation
allows the use of extremely simple neighbourhood structures. Given a code
W E 9, then its neighbourhood consists of all codes W’ E 9’ that can be obtained
from W by deleting a code word x E W and adding a code word y E V;\ W. Van
Laarhoven et al. [5] have used these neighbourhoods in a simulated annealing
algorithm and were able to improve the previous best values of ~(6, 3), ~(7, 3),
and ~(8, 3), from 79, 216, and 567, respectively, to 73, 186, and 486, respectively,
To obtain the latter improvement, also combinatorial arguments were needed in
conjunction with the annealing approach. The computation times used to

16 E. H. L. Aarts, P.J. M. van Laarhouen

obtain these results were in the range of several minutes for the smaller instances
up to a few hours for the large ones.

3.2. Packing by simulated annealing

El Gamal et al. [2] describe an application of simulated annealing to the
problem of finding good binary constant weight codes, i.e., they compute lower
bounds on A,(n, d, w) for different values of n, d, and w. They use the following
problem formulation, which is slightly different from the one given in Section 1.
Let

Y={WJWeV&JWj= a and for all x E W: wH(x) = w} and

f(W) = 2 c [dH(x, Y)]-~ for all W E 9.
xew yeW,yfx

Find a W* E 9’ that minimizes fi
In other words, the set of solutions is restricted to constant weight codes of

length n and cardinality a, and the cost function is chosen to favour codes with
large distances between the code words. If a solution to this problem is a code
W* for which dH(x, y) 3 d, for all n, y E W *, x # y, then W* is a binary
(n, d, w)-code and A2(n, d, w) 3 a. One of the reasons to use this alternative
formulation is that it allows the use of an extremely simple neighbourhood
structure. Given a code W E 9, then its neighbourhood consists of all codes
W’ E Y that can be obtained from W by taking one of the code words x E W and
swapping one component xi from 1 to 0, and another component xi from 0 to 1.
Evidently, the resulting code W’ is again in 9’.

El Gamal et al. [2] use these neighbourhoods in a simulated annealing
algorithm and report that several good codes have been found with their
approach. They found a (23,10,7)-code of size 18, a (23,10,8)-code of size 28,
and a (24,10,8)-code of size 33, which all improve the previously known best
codes. For some codes the obtained lower bounds are still far off from the
corresponding theoretical upper bounds. For instance, 68 is an upper bound for
A,(24, 10, 8). The computation times used to compute these codes are in the
order of several minutes up to a few hours.

3.3. Packing by genetic local search

Vaessens et al. [8] describe an application of genetic local search to the
problem of constructing good ternary (n, d)-codes, i.e., they compute lower
bounds on A,(n, d) for different values of n and d. In this case, the improvement
neighbourhood of a given ternary (n, d)-code W is given by all ternary
(n, d)-codes W’ that can be obtained from W by adding one code word x E Vg\ W

to W. Furthermore, x should satisfy the condition dH(x, y) 2 d for all y E W, in
order for W’ to be an (n, d)-code. The recombination neighbourhood of two
ternary (n, d)-codes WI and W, is given by all ternary (n, d)-codes W’ for which

W’ = {x E W, 1 d&x, z) =z D - d} U {x E W, 1 d&x, z) 2 D}

Local search in coding theory 17

or

W’ = {X E w,) d”(X, 2) == D - d} u {x E WI) f&(x, 2) 2 D}

with arbitrary code words z E V; and integers D, 0 s D s n + d.

In their paper, Vaessens et al. [8] give a table of A,(n, d) bounds for n c 16.
Several of the best found lower bounds were obtained with a genetic local search
algorithm operating along the lines sketched above. The computation times
needed to find these results in some cases could mount up to a few days.

4. Concluding remarks

The results discussed in this paper illustrate the successful use of rather simple
approaches such as local search to difficult problems as covering and packing.
They demonstrate that these approaches, which can be viewed as clever
approximate enumerations of the set of solutions, are viable alternatives to the
more traditional combinatorial construction techniques that are used to handle
these problems. The search for better lower and upper bounds remains a
challenging subject in combinatorics, since the gap between the two is in many
cases still quite large. We mention two possible directions to extend this work.
On the one hand, one could try to use combinatorial arguments in order to
construct more complicated neighbourhoods which then might further improve
the present results. On the other hand, local search techniques could be used to
construct special classes of codes which can then be further used to study the
combinatorial structure of other more complicated codes, as in fact is done to
obtain the rook domain covering of V,” by Van Laarhoven et al. [5].

Finally, we must admit that there are also examples of problems in coding
theory for which local search so far fails. For instance, Beenker et al. [l] report
on an extensive numerical study in which they investigated the performance of
several methods for the problem of finding binary sequences with maximal
autocorrelation coefficients. One of their conclusions was that the local search
techniques they applied could not improve upon the more traditional approaches.

References

Ill

PI

r31

141

C.F.M. Beenker, T.A.C.M. Claasen and P.W.C. Hermens, Binary sequences with maximally flat

amplitude spectrum, Philips J. Res. 40 (1985) 289-304.

A. El Gamal, L.A. Hemachandra, I. Shperling and V.K. Wei, Using simulated annealing to

design good codes, IEEE Trans. Inform. Theory 33 (1987) 116-123.

S. Kirkpatrick, C.D. Gelatt Jr and M.P. Vecchi, Optimization by simulated annealing, Science

220 (1983) 671-680.
P.J.M. van Laarhoven and E.H.L. Aarts, Simulated Annealing: Theory and Applications (Reidel,

Dordrecht, 1987).

18 E. H. L. Aarts, P.J. M. van Laarhoven

(51 P.J.M. van Laarhoven, E.H.L. Aarts, J.H. van Lint and L.T. Wille, New upper bounds for the

football pool problem for 6, 7 and 8 matches, J. Combin. Theory Ser. A 52 (2) (1989) 304-312.

[6] J.H. van Lint, Introduction to Coding Theory (Springer, New York, 1982).

[7] H. Miihlenbein, M. Gorges-Schleuter and 0. Kramer, Evolution algorithms in combinatorial

optimization, Parallel Comput. 7 (1988) 65-85.

[S] R.J.M. Vaessens, E.H.L. Aarts and J.H. van Lint, Genetic algorithms in coding theory: a table

for A,@, d), Philips Research Laboratories, manuscript, M.S.16.373.

