

DISCRETE MATHEMATICS

Discrete Mathematics 214 (2000) 211-219

n and similar papers a<u>t core.ac.</u>uk

Exponents of 2-regular digraphs

Jian Shen

Department of Mathematics and Statistics, Queen's University at Kingston, ON, Canada K7L 3N6

Received 18 August 1997; revised 2 February 1999; accepted 8 February 1999

Abstract

A digraph G is called primitive if for some positive integer k, there is a walk of length exactly k from each vertex u to each vertex v (possibly u again). If G is primitive, the smallest such k is called the exponent of G, denoted by $\exp(G)$. A digraph G is said to be r-regular if each vertex in G has outdegree and indegree exactly r.

It is proved that if G is a primitive 2-regular digraph with n vertices, then $\exp(G) \le (n-1)^2/4 + 1$. Also all 2-regular digraphs with exponents attaining the bound are characterized. This supports a conjecture made by Shen and Gregory. © 2000 Elsevier Science B.V. All rights reserved.

1. Introduction and notation

Let G = (V, E) denote a digraph on *n* vertices. Loops are permitted but no multiple arcs. A $u \to v$ walk in *G* is a sequence of vertices $u, u_1, \ldots, u_p = v$ and a sequence of arcs $(u, u_1), (u_1, u_2), \ldots, (u_{p-1}, v)$ where the vertices and the arcs are not necessarily distinct. A closed walk is a $u \to v$ walk where u = v. A path is a walk with distinct vertices. A cycle is a closed $u \to v$ walk with distinct vertices except for u = v. The length of a walk *W* is the number of arcs in *W*. The *girth g* of *G* is the length of a shortest cycle in *G*. An *r*-*cycle* is a cycle of length *r*. The digraph *G* is said to be *strongly connected* if there exists a path from *u* to *v* for all $u, v \in V$. The *distance* from *u* to *v*, denoted by $d_G(u, v)$ or d(u, v) if *G* is specified, is the minimum *k* for which there is a $u \to v$ walk of length *k*. The *diameter D* of *G* is the maximum d(u, v)among all ordered pairs $u, v \in V$.

The notation $u \xrightarrow{k} v$ (resp. $u \xrightarrow{k} v$) is used to indicate that there is a $u \to v$ walk (resp. no $u \to v$ walk) of length k. A diagraph G is *primitive* if there exists some positive integer k such that $u \xrightarrow{k} v$ whenever $u, v \in V$. The minimum such k is called the *exponent* of G, denoted exp(G). The *local exponent* of G at a vertex $u \in V$, denoted exp(G:u), is

0012-365X/00/\$-see front matter © 2000 Elsevier Science B.V. All rights reserved. PII: S0012-365X(99)00144-2 provi

E-mail address: shen@mast.queensu.ca (J. Shen)

the least integer k such that $u \xrightarrow{k} v$ for each $v \in V$. Much work has been done on finding upper bounds for $\exp(G)$ (see [14,3] for example). The diameter bound in Lemma 1 below was proved recently by Shen [9] and Neufeld [5] independently. Neufeld [5] characterized the case of equality in Lemma 1 with the following class of digraphs.

Let the family $\mathscr{F}_{\mathscr{D}}$ consist of the following digraphs G = (V, E): The vertex set $V = \bigcup_{i=0}^{D} V_i$, where the V_i are pairwise disjoint and $|V_0|=1$. The arc set $E \supset \{(u, v): u \in V_i, v \in V_{i+1}\}$, where addition is taken modulo D + 1, and the remaining arcs in E may be any set of arcs from V_D to V_1 with the following properties: for each vertex $u \in V_D$, (u, w) is an arc for some $w \in V_1$, and for each vertex $v \in V_1$, (w, v) is an arc for some $w \in V_D$.

Lemma 1 (Neufeld [5], Shen [9]). Suppose G is a primitive digraph with diameter D. Then

 $\exp(G) \leq D^2 + 1$

and equality holds if and only if $G \in \mathscr{F}_{\mathscr{D}}$.

We note that if G is a digraph with diameter D and girth g, then $g \leq D + 1$. Consequently, when $g \leq D$, the diameter bound in Lemma 1 is implied by the following lemma.

Lemma 2 (Shen [8,10]). Suppose G is a primitive digraph with diameter D and girth g. Then

$$\exp(G) \leq D + 1 + g(D - 1).$$

A digraph G is said to be *r*-regular if each vertex in G has outdegree and indegree exactly r. A digraph G is said to be vertex-transitive if, for each pair u, v of vertices, there is an automorphism of the digraph that takes u to v. Thus vertex-transitive digraphs are regular. In [12], Shen and Gregory studied the exponents of vertex-transitive digraphs and proved that

$$\exp(G) \leqslant \left\lceil \frac{n}{r} \right\rceil \left(\left\lceil \frac{n}{r} \right\rceil + 1 \right)$$

for all primitive vertex-transitive digraphs G. Based on this result, they raised the following conjecture in the same paper.

Conjecture 1. If G is a primitive r-regular digraph of order n, then

$$\exp(G) \leqslant \left\lfloor \frac{n}{r} \right\rfloor^2 + 1$$

We remark that, by applying two results by Nishimura [6] and Soares [13], respectively, one can obtain a rough upper bound of $3n^2/r^2$ for the exponents of all *r*-regular digraphs of order *n* [12, Theorem 6].

In this paper, it is proved that if G is primitive and 2-regular, then $\exp(G) \le (n-1)^2/4 + 1$. This confirms Conjecture 1 when r = 2. Also all 2-regular digraphs with exponents attaining the above bound are characterized.

2. Main results

Throughout the paper, we always assume that G is a digraph of order n, girth g and diameter D. Let $a_1 < a_2 < \cdots < a_k$ be positive integers such that $gcd(a_1, a_2, \ldots, a_k)=1$. By a result of Schur, it is known that if N is a sufficiently large integer, then for all $n \ge N$ the equation

$$b_1a_1+b_2a_2+\cdots+b_ka_k=n$$

has a solution in non-negative integers $b_1, b_2, ..., b_k$. The least such number N is called the *Frobenius–Schur index* and is denoted $\Phi(a_1, a_2, ..., a_k)$. For k = 2 it is well known that $\Phi(a_1, a_2) = (a_1 - 1)(a_2 - 1)$.

For a fixed positive integer c, let G^c be the digraph with the same vertex set as G and, for each pair w_1, w_2 of vertices, $w_1 \xrightarrow{1} w_2$ in G^c if and only if $w_1 \xrightarrow{c} w_2$ in G. It can be proved that, if G is primitive with diameter D, then G^c is also primitive with diameter at most D [7, Theorem 3.1]. We will repeatedly use this fact in the following lemma.

Lemma 3. Suppose G is primitive and exp(G:u) = D + 1 + g(D - 1). Then

- 1. For any g-cycle $C_g = (w_1, w_2, \dots, w_g)$, the distance from u to C_g is D + 1 g.
- 2. For any g-cycle C_g , there is a vertex v on C_g such that the distance, d(u,v), from u to v is D.
- 3. If $g + 1 \leq D \leq 2g 1$, then the length of a shortest cycle containing u is D + 1.

Proof. The first two statements follow easily from the proof of [8, Theorem 2]. For the third statement, it is a consequence of the diameter assumption that every vertex lies on a cycle of length at most D + 1. Suppose u lies on an l-cycle with $l \leq D$. Then $l \neq g$; otherwise, since G^l has diameter at most D [7, Theorem 3.1] and G^l has a loop at u, we have $u \xrightarrow{D} v$ in G^l for each v and so $\exp(G:u) \leq lD = gD < D + 1 + g(D - 1)$, a contradiction. Let $c = \gcd(g, l)$. Since $g + 1 \leq l \leq D \leq 2g - 1$, we have $1 \leq c \leq g/2$. By the first statement of the lemma, we may suppose that w is a vertex in C_g such that $u^{c^{\lceil (D+1-g)/c \rceil}} w$ in G; i.e., $u^{\lceil (D+1-g)/c \rceil} w$ in G^c . Since u and w lie on two cycles of lengths l/c and g/c in G^c , respectively, $\exp(G^c:u) \leq d_{G^c}(u,w) + D + \Phi(g/c, l/c) \leq \lceil (D + 1 - g)/c \rceil + D + (g/c - 1)(l/c - 1)$ and $\exp(G:u) \leq c \cdot \exp(G^c:u) \leq c \lceil (D + 1 - g)/c \rceil + cD + (g - c)(l/c - 1) < D + 1 + g(D - 1)$, a contradiction. Therefore, the third statement of the lemma holds. \Box

Before introducing some results from [11], we need some notation. Let $\delta^+(G)$ (resp. $\delta^-(G)$) denote the minimum outdegree (resp. indegree) of G. Let $\deg^+(u)$ (resp. $\deg^-(u)$) denote the outdegree (resp. indegree) of u. For all $i \ge 0$, let $R_i(u) = \{v \in G: u \xrightarrow{i} v\}$, $R'_i(u) = \{v \in G: v \xrightarrow{i} u\}$, $N_i(u) = \bigcup_{j=0}^i R_j(u)$ and $N'_i(u) = \bigcup_{j=0}^i R'_j(u)$. Then $N_i(u)$ is the set of vertices that can be reached from u by a path of length at most i. Recall that $R_0(u) = R'_0(u) = \{u\}$ since a vertex is at distance 0 from itself. Let $D_0(u) = \{u\}$ and $D_i(u) = N_i(u) \setminus N_{i-1}(u)$ for all $i \ge 1$. In other words, $D_i(u)$ is the set of vertices v such that d(u, v) = i. Thus $N_i(u) = N_{i-1}(u) \cup D_i(u)$ and $N_{i-1}(u) \cap D_i(u) = \emptyset$.

Lemma 4 (Shen [11, Theorems 1,2]). Suppose G is a digraph with $\delta^+(G) \ge 1$. Let $t = |\{u \in G: \deg^+(u) = 1\}|$. Then

$$g \leqslant \begin{cases} \lceil n/2 \rceil & \text{if } t = 0, \\ \lceil (n+t-1)/2 \rceil & \text{if } t \ge 1. \end{cases}$$

Moreover, if G is strongly connected, then $D \leq n - g + t$

Lemma 5. Suppose G is a digraph with $\delta^+(G) \ge 2$. Then for all u and all i, $0 \le i \le g - 1$,

 $|N_i(u)| \ge 2i+1.$

Furthermore, if $D \ge 2g - 1$ and $\exp(G:u) = D + 1 + g(D - 1)$ for some *u*, then $|N_g(u)| \ge 2g + 1$.

Proof. Suppose, contrary to the theorem, that there exists a smallest *i*, $0 \le i \le g-2$, such that $|N_i(u)| \ge 2i+1$ while $|N_{i+1}(u)| \le 2i+2$. Then $|N_i(u)| = 2i+1$ and $|D_{i+1}(u)| = 1$ since $D_{i+1}(u) \ne \emptyset$. Also we have $|D_i(u)| \le 2$; otherwise $|N_{i-1}(u)| = |N_i(u)| - |D_i(u)| < 2i-1$, contradicting the choice of *i*. Let G_1 be the subdigraph of *G* induced by $N_i(u) \setminus \{u\}$. Since there is no arc from $N_i(u) \setminus \{u\}$ to *u*, we have $\delta^+(G_1) \ge \delta^+(G) - |D_{i+1}(u)| \ge 1$. Also the number of vertices with outdegree 1 in G_1 is at most $|D_i(u)| \le 2$. By Lemma 4, $g \le g(G_1) \le \lceil (|N_i(u)| + 1)/2 \rceil = i + 1 \le g - 1$, a contradiction. Thus the first part of Lemma 5 follows.

Now suppose $D \ge 2g - 1$ and $\exp(G:u) = D + 1 + g(D - 1)$. If $|N_g(u)| \le 2g$, then $|N_{g-1}(u)| = 2g - 1$, $|D_{g-1}(u)| = 2$ and $|N_g(u)| = 1$ by the above argument. There is no arc from $N_{g-1}(u) \setminus \{u\}$ to u; otherwise u is contained in a g-cycle and thus it is easy to prove that $\exp(G:u) \le gD < D + 1 + g(D - 1)$, a contradiction. By applying Lemma 4 to the subdigraph G_2 of G induced by $N_{g-1}(u) \setminus \{u\}$, we have $g(G_2) \le \lceil (|N_{g-1}(u) \setminus \{u\}| + |D_{g-1}(u)|)/2 \rceil = g$. Thus there exists a g-cycle C_g in G_2 . It can be verified that the distance from u to C_g is at most $\lfloor g/2 \rfloor < D + 1 - g$, which contradicts Lemma 3(1). Therefore Lemma 5 follows. \Box

Lemma 6. Suppose G is strongly connected with $\min\{\delta^+(G), \delta^-(G)\} \ge 2$. Then

$$D \leqslant \begin{cases} n-g & \text{if } D \leqslant g, \\ \lfloor n/2 \rfloor & \text{if } g+1 \leqslant D \leqslant 2g-1, \\ n-2g+1 & \text{if } D \geqslant 2g. \end{cases}$$

Furthermore, if G is primitive and $\exp(G) = D + 1 + g(D - 1)$, then

$$D \leq \begin{cases} \lfloor (n-1)/2 \rfloor & \text{if } g+1 \leq D \leq 2g-1, \\ n-2g & \text{if } D \geq 2g. \end{cases}$$

Proof. By Lemma 4, it may be supposed that $D \ge g + 1$. Let u, v be two vertices with distance d(u, v) = D. In case G is primitive with exponent D + 1 + g(D-1), by Lemma 3(2), we may properly choose u such that $\exp(G:u) = D + 1 + g(D-1)$. Since $\delta^-(G) \ge 2$, applying Lemma 5 to the digraph obtained from G by reversing all its arcs, we have $|N'_i(v)| \ge 2i + 1$ for all $i, 1 \le i \le g - 1$.

Case 1: $g + 1 \le D \le 2g - 1$. Then $N_{g-1}(u) \cap N'_{D-g}(v) = \emptyset$; otherwise $d(u, v) \le D - 1$. Thus by Lemma 5, $n \ge |N_{g-1}(u)| + |N'_{D-g}(v)| \ge 2(g - 1) + 1 + 2(D - g) + 1 = 2D$; i.e., $D \le \lfloor n/2 \rfloor$. Now suppose *G* is primitive and $\exp(G:u) = D + 1 + g(D - 1)$. Then $N_{D-g+1}(u) \cap N'_{g-1}(u) = \{u\}$; otherwise *u* is contained in a cycle of length at most *D*, contradicting Lemma 3(3). Thus $n \ge |N_{D-g+1}(u)| + |N'_{g-1}(u)| - 1 \ge 2(D - g + 1) + 1 + 2(g - 1) = 2D + 1$; i.e., $D \le \lfloor (n - 1)/2 \rfloor$.

Case 2: $D \ge 2g$. Then similarly to Case 1, we have $N_{D-g}(u) \cap N'_{g-1}(v) = \emptyset$ and $n \ge |N_{D-g}(u)| + |N'_{g-1}(v)| = |N_{g-1}(u)| + \sum_{i=g}^{D-g} |D_i(u)| + |N'_{g-1}(v)| \ge 2(g-1) + 1 + (D-2g+1) + 2(g-1) + 1 = D + 2g - 1$; i.e., $D \le n - 2g + 1$. Now suppose G is primitive and $\exp(G:u) = D + 1 + g(D-1)$. Then, by Lemma 5, we can similarly obtain $n \ge |N_g(u)| + \sum_{i=g+1}^{D-g} |D_i(u)| + |N'_{g-1}(v)| \ge 2g + 1 + (D-2g) + 2g - 1 = D + 2g$; i.e., $D \le n - 2g$.

By combining the above two cases, Lemma 6 follows. \Box

The Cayley digraph Cay(\mathbb{Z}_n , $\{1,2\}$) is the digraph with vertex set \mathbb{Z}_n , the cyclic group of order n, and arc set $E = \{(i, j): j - i = 1 \text{ or } 2\}$, where subtraction is taken modulo n. The lexicographic product $G \otimes G'$ of a digraph G = (V, E) with a digraph G' = (V', E') is the digraph with vertex set $V \times V'$ and arc set

$$\{((x_1, y_1), (x_2, y_2)): (x_1, x_2) \in E\} \cup \{((x, y_1), (x, y_2)): x \in V, (y_1, y_2) \in E'\}.$$

It is well known (see [2] for example) that if G is primitive, then the greatest common divisor of the lengths of the cycles in G is one. Let C_g denote a g-cycle and \overline{K}_2 denote two isolated vertices. Then $C_g \otimes \overline{K}_2$ is not primitive when $g \ge 2$, since it only contains cycles of lengths g and 2g.

Lemma 7. Suppose G is 2-regular. If D = g = n/2, then G is isomorphic to either Cay($\mathbb{Z}_n, \{1,2\}$) or $C_g \otimes \overline{K}_2$.

Proof. Let u, v be two vertices such that d(u, v) = D. Then $N_{i-1}(u)$, $D_i(u)$ and $N'_{D-i-1}(v)$ are pairwise disjoint for all $i, 1 \le i \le D - 1$. by Lemma 5, $|D_i(u)| \le n - |N_{i-1}(u)| - |N'_{D-i-1}(v)| \le n - (2i - 1) - (2D - 2i - 1) = 2$. On the other hand, since $N_{i-1}(u) \cap N'_{D-i}(v) = \emptyset$, we have $|D_i(u)| = |N_i(u)| - |N_{i-1}(u)| \ge |N_i(u)| + |N'_{D-i}(v)| - n \ge 2i + 1 + 2(D - i) + 1 - n = 2$. Thus $|D_i(u)| = 2$ for all $i, 1 \le i \le D - 1 = g - 1$. Since $1 \le |D_g(u)| \le n - \sum_{i=0}^{g-1} |D_i(u)| = n - 2(g - 1) - 1 = 1$, we have $|D_g(u)| = 1$ and $V = \bigcup_{i=0}^{g} D_i(u)$. Let $D_i(u) = \{w_i, w'_i\}, 1 \le i \le g - 1$.

Claim 1. For any *i*, *j* such that $i \leq g-1$ and $1 \leq i-j \leq g-3$, there are no arcs from $D_i(u)$ to $D_j(u)$.

Proof. Otherwise suppose *i* is the smallest number for which Claim 1 fails. Then $g \ge 4$ and $i \ge 2$. For all $1 \le j \le i-1$, let G_j be the subdigraph of *G* induced by $D_j(u) \cup D_{j+1}(u)$. Then $\deg_{G_j}^+(w_j) = \deg_{G_j}^+(w_j') = 2$ by the choice of *i*. We define the following two types of arc sets:

Type I: {
$$(w_j, w_{j+1}), (w_j, w'_{j+1}), (w'_j, w_{j+1}), (w'_j, w'_{j+1})$$
}.
Type II: { $(w_j, w_{j+1}), (w_j, w'_{j+1}), (w'_j, w_j), (w'_j, w'_{j+1})$ }.

Let $Out(D_j(u))$ denote the set of arcs coming from the vertices in $D_j(u)$. By re-ordering w_1, w'_1 and re-ordering w_2, w'_2 if necessary, $Out(D_1(u))$ is of type I or II. Now suppose $j \le i - 2$. If $Out(D_j(u))$ is of type I, then $Out(D_{j+1}(u))$ is of type I as well since G is 2-regular. Similarly if $Out(D_j(u))$ is of type II, then by re-ordering w_{j+2}, w'_{j+2} if necessary, it can be verified that $Out(D_{j+1}(u))$ is of type I or II. Thus by induction each $Out(D_j(u)), 1 \le j \le i - 1$, is of type I or II. It can be seen that the distance from each vertex in $D_j(u)$ to each vertex in $D_i(u)$ is at most i - j + 1. Since there is an arc from $D_i(u)$ to some $D_j(u)$ by the choice of i, G contains a cycle of length at most $i - j + 2 \le g - 1$, a contradiction. Therefore Claim 1 follows.

By Claim 1 and its proof, it is easy to obtain the following two further claims: After re-ordering the vertices within each $D_i(u)$, $1 \le i \le g - 2$, if necessary,

Claim 2. All $Out(D_i(u))$, $1 \le i \le g - 2$, are of the same type.

Claim 3. $d(w_1, w_{g-1}) = d(w_1, w'_{g-1}) = d(w'_1, w'_{g-1}) = g-2$ and $g-2 \leq d(w'_1, w_{g-1}) \leq g-1$.

Case 1: All $\operatorname{Out}(D_i(u))$, $1 \leq i \leq g - 2$, are of type I. Then the distance from any vertex in $D_j(u)$ to any vertex in $D_i(u)$ is i - j whenever $0 \leq j < i \leq g$. Since G is 2-regular and has girth g = n/2, the remaining arcs are uniquely determined, which are $\{(w_{g-1}, v), (w'_{g-1}, v), (w_{g-1}, u), (w'_{g-1}, u), (v, w_1), (v, w'_1)\}$. Thus G is isomorphic to $C_g \otimes \overline{K}_2$.

Case 2: All $Out(D_i(u))$, $1 \le i \le g - 2$, are of type II. Then $d(w_j, w_i) = d(w_j, w'_i) = d(w'_j, w'_i) = i - j$ and $d(w'_j, w_i) = i - j + 1$ whenever $1 \le j < i \le g - 1$. Similarly, the remaining arcs are also uniquely determined, which are $\{(w_{g-1}, v), (w'_{g-1}, v), (v, u), (v, w'_1), (w_{g-1}, u), (w'_{g-1}, w_{g-1})\}$. Thus *G* is isomorphic to $Cay(\mathbb{Z}_n, \{1, 2\})$. This completes the proof of Lemma 7. \Box

Before stating our main theorem, we recall from the definition of the digraph set $\mathscr{F}_{\mathscr{D}}$ that, if $G \in \mathscr{F}_{\mathscr{D}}$ and G is 2-regular, then G is unique (up to isomorphism).

Theorem 1. If G is 2-regular and primitive with order $n \ge 8$, then

$$\exp(G) \leqslant \frac{(n-1)^2}{4} + 1$$

and equality holds if and only if G is the unique 2-regular digraph (up to isomorphism) in $\mathcal{F}_{\mathcal{D}}$.

Proof. Case 1: Either D=g-1 or $D=g \le (n-1)/2$. Then by Lemma 6, $D \le (n-1)/2$ is always true. By Lemma 1, $\exp(G) \le D^2 + 1 \le (n-1)^2/4 + 1$ with equality if and only if G is the unique 2-regular digraph (up to isomorphism) in $\mathscr{F}_{\mathscr{D}}$.

Case 2: $D = g \ge n/2$. Then by Lemma 6, D = g = n/2. Since $C_1 \otimes \overline{K_2}$ is isomorphic to Cay($\mathbb{Z}_2, \{1,2\}$) and $C_g \otimes \overline{K_2}$ is not primitive when $g \ge 2$, G is isomorphic to Cay($\mathbb{Z}_n\{1,2\}$) by Lemma 7. Then $\exp(G) \le n - 1 < (n-1)^2/4 + 1$ by a theorem of Kim and Krabill [4].

Case 3: $g+1 \le D \le 2g-1$. It may be supposed that $\exp(G) \le D+g(D-1)$. Otherwise $\exp(G) = D + 1 + g(D-1)$ by Lemma 2. Then by Lemma 6, $D \le \lfloor (n-1)/2 \rfloor$ and this case follows from Case 1. Thus $\exp(G) \le D + g(D-1) \le D(D-1) + 1 \le \lfloor n/2 \rfloor (\lfloor n/2 \rfloor - 1) + 1 < (n-1)^2/4 + 1$ by Lemma 6 again.

Case 4: $D \ge 2g \ge 2$. Similarly to Case 3, it may be supposed that $\exp(G) \le D + g(D-1)$. Otherwise, if $\exp(G) = D + 1 + g(D-1)$, then by Lemma 6, $\exp(G) = (g+1)(D-1) + 2 \le (g+1)(n-2g-1) + 2 < (n-1)^2/4 + 1$. Thus $\exp(G) \le D + g(D-1) \le (g+1)(n-2g) + 1 < (n-1)^2/4 + 1$ by Lemma 6 again.

By combining Cases 1–4 above, Theorem 1 follows. □

If $n \leq 7$, a routine computer check shows that $\exp(G) \leq (n-1)^2/4 + 1$ is still true. However, for the second part of Theorem 1, besides the unique 2-regular digraph (up to isomorphism) in $\mathscr{F}_{\mathscr{D}}$, there is one more digraph with exponent $(n-1)^2/4 + 1$. The adjacency matrix of the digraph is

Γ0	1	1	0	[0
1	0	0	1	0
1	0	0	1	0
0	1	0	0	1
Lo	0	1	0	1

By using the techniques presented in this paper, one can prove the following theorem. Here we only outline its proof.

Theorem 2. Suppose G is primitive.

1. If $\min{\{\delta^+(G), \delta^-(G)\}} \ge 2$ and $n \ge 6$, then

$$\exp(G) \leqslant \left\lfloor \frac{n}{2} \right\rfloor^2 + 1.$$

2. If $\delta^+(G) \ge 2$, then

$$\exp(G) \leqslant \frac{n^2}{4} + 1.$$

Proof (*outline*). The proof of Theorem 1 works for proving the first statement except for Case 2, where we have D = g = n/2 and so 2/n and $\exp(G) \le D^2 + 1 = |n/2|^2 + 1$.

For the second statement, by Lemmas 2 and 4, we have $\exp(G) \le D + 1 + g(D-1) = (g+1)(D-1) + 2 \le (g+1)(n-g-1) + 2 \le n^2/4 + 2$. Thus, in order

to prove (2), we may suppose, on the contrary, that $\exp(G) = n^2/4 + 2$. This implies D = n - g, D = g + 1, g + 2, g + 3 and $\exp(G:u) = D + 1 + g(D - 1)$ for some u. By Lemma 3(2), there exists a vertex v in a g-cycle such that d(u, v) = D. By Lemma 5, $n = |N_{g-1}(u)| + \sum_{i=g}^{D} |D_i(u)| \ge 2g - 1 + D - g + 1 = D + g$. Since D = n - g, again by Lemma 5, we have $|D_i(u)| = 2$ for all $1 \le i \le g - 1$ and $|D_i(u)| = 1$ for all $g \le i \le D$. By using similar proof techniques employed in Claim 1 of Lemma 7, we can show that for any i, j such that $i \le g - 1$ and $1 \le i - j \le g - 3$, there are no arcs from $D_i(u)$ to $D_j(u)$. Thus there is at least an arc from $D_{g-1}(u)$ to $N_1(u)$, and this arc lies on a g-cycle. Therefore, the distance from u to this g-cycle is at most 1 < D + 1 - g (recall that D = g + 1, g + 2 or g + 3), contradicting Lemma 3(1). \Box

3. Closing remarks

Conjecture 1 is still open when $r \ge 3$. As it has been mentioned in [12], the conjectured bound cannot be decreased since $\exp(G) = \lfloor n/r \rfloor^2 + 1$ for all *r*-regular digraphs in $\mathscr{F}_{\mathscr{D}}$.

In order to settle Conjecture 1 completely, we believe that first of all a good upper bound on the girth g of all r-regular digraphs should be found so that one can use Lemma 2. In 1970, Behzad et al. [1] made the following conjecture.

Conjecture 2 (Behzad et al. [1]). Let G be an r-regular digraph of order n. Then $g \leq \lceil n/r \rceil$.

This conjecture has been proved for $n \leq 5$. For more details on the conjecture and two more related conjectures, we refer the reader to [11] and references therein.

Acknowledgements

I want to thank two referees for their many valuable suggestions leading to the clear presentation of the paper.

References

- M. Behzad, G. Chartrand, C. Wall, On minimal regular digraphs with given girth, Fund. Math. 69 (1970) 227–231.
- [2] R.A. Brualdi, H.J. Ryser, Combinatorial Matrix Theory, Cambridge University Press, Cambridge, 1991.
- [3] A.L. Dulmage, N.S. Mendelsohn, Gaps in the exponent set of primitive matrices, Illinois J. Math. 8 (1964) 642–656.
- [4] K.H. Kim, J.R. Krabill, Circulant Boolean relation matrices, Czechoslovak Math. J. 24 (1974) 247-251.
- [5] S. Neufeld, A diameter bound on the exponent of a primitive directed graph, Linear Algebra Appl. 245 (1996) 27–47.
- [6] T. Nishimura, Short cycles in digraphs, Discrete Math. 72 (1988) 295-298.

- [7] J. Shen, The proof of a conjecture about the exponent of primitive matrices, Linear Algebra Appl. 216 (1995) 185–203.
- [8] J. Shen, An improvement of the Dulmage-Mendelsohn theorem, Discrete Math. 158 (1-3) (1996) 295-297.
- [9] J. Shen, A bound on the exponent of primitivity in term of diameter, Linear Algebra Appl. 244 (1996) 21–34.
- [10] J. Shen, A short proof of a theorem on primitive matrices, Congr. Numer. 121 (1996) 204-210.
- [11] J. Shen, On the girth of digraphs, Discrete Math., submitted for publication.
- [12] J. Shen, D. Gregory, Exponents of vertex-transitive digraphs, Proceedings of the International Symposium on Combinatorics and Applications, Tianjin, P.R. China, 1996.
- [13] J. Soares, Maximum diameter of regular digraphs, J. Graph Theory 16 (5) (1992) 437-450.
- [14] H. Wielandt, Unzerlegbare, nicht negative Matrizen, Math. Z. 52 (1950) 642-645.