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Abstract

A digraph G is called primitive if for some positive integer k, there is a walk of length exactly
k from each vertex u to each vertex v (possibly u again). If G is primitive, the smallest such
k is called the exponent of G, denoted by exp(G). A digraph G is said to be r-regular if each
vertex in G has outdegree and indegree exactly r.
It is proved that if G is a primitive 2-regular digraph with n vertices, then exp(G)6

(n− 1)2=4+ 1. Also all 2-regular digraphs with exponents attaining the bound are characterized.
This supports a conjecture made by Shen and Gregory. c© 2000 Elsevier Science B.V. All rights
reserved.

1. Introduction and notation

Let G = (V; E) denote a digraph on n vertices. Loops are permitted but no multiple
arcs. A u → v walk in G is a sequence of vertices u; u1; : : : ; up = v and a sequence
of arcs (u; u1); (u1; u2); : : : ; (up−1; v) where the vertices and the arcs are not necessarily
distinct. A closed walk is a u → v walk where u = v. A path is a walk with distinct
vertices. A cycle is a closed u → v walk with distinct vertices except for u = v. The
length of a walk W is the number of arcs in W . The girth g of G is the length of
a shortest cycle in G. An r-cycle is a cycle of length r. The digraph G is said to be
strongly connected if there exists a path from u to v for all u; v∈V . The distance from
u to v, denoted by dG(u; v) or d(u; v) if G is speci�ed, is the minimum k for which
there is a u → v walk of length k. The diameter D of G is the maximum d(u; v)
among all ordered pairs u; v∈V .
The notation u k→ v (resp. u

k9 v) is used to indicate that there is a u→ v walk (resp.
no u→ v walk) of length k. A diagraph G is primitive if there exists some positive in-
teger k such that u k→ v whenever u; v∈V . The minimum such k is called the exponent
of G, denoted exp(G). The local exponent of G at a vertex u∈V , denoted exp(G:u), is
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the least integer k such that u k→ v for each v∈V . Much work has been done on �nding
upper bounds for exp(G) (see [14,3] for example). The diameter bound in Lemma 1
below was proved recently by Shen [9] and Neufeld [5] independently. Neufeld [5]
characterized the case of equality in Lemma 1 with the following class of digraphs.
Let the family FD consist of the following digraphs G = (V; E): The vertex set

V=
⋃D
i=0 Vi; where the Vi are pairwise disjoint and |V0|=1. The arc set E⊃{(u; v): u∈Vi;

v∈Vi+1}, where addition is taken modulo D + 1, and the remaining arcs in E may
be any set of arcs from VD to V1 with the following properties: for each vertex
u∈VD; (u; w) is an arc for some w∈V1, and for each vertex v∈V1; (w; v) is an
arc for some w∈VD.

Lemma 1 (Neufeld [5], Shen [9]). Suppose G is a primitive digraph with diameter D.
Then

exp(G)6D2 + 1

and equality holds if and only if G ∈FD.

We note that if G is a digraph with diameter D and girth g, then g6D + 1. Con-
sequently, when g6D, the diameter bound in Lemma 1 is implied by the following
lemma.

Lemma 2 (Shen [8,10]). Suppose G is a primitive digraph with diameter D and
girth g. Then

exp(G)6D + 1 + g(D − 1):

A digraph G is said to be r-regular if each vertex in G has outdegree and indegree
exactly r. A digraph G is said to be vertex-transitive if, for each pair u; v of vertices,
there is an automorphism of the digraph that takes u to v. Thus vertex-transitive di-
graphs are regular. In [12], Shen and Gregory studied the exponents of vertex-transitive
digraphs and proved that

exp(G)6
⌈n
r

⌉(⌈n
r

⌉
+ 1

)
for all primitive vertex-transitive digraphs G. Based on this result, they raised the
following conjecture in the same paper.

Conjecture 1. If G is a primitive r-regular digraph of order n; then

exp(G)6
⌊n
r

⌋2
+ 1:

We remark that, by applying two results by Nishimura [6] and Soares [13], respec-
tively, one can obtain a rough upper bound of 3n2=r2 for the exponents of all r-regular
digraphs of order n [12, Theorem 6].
In this paper, it is proved that if G is primitive and 2-regular, then exp(G)6

(n − 1)2=4 + 1. This con�rms Conjecture 1 when r = 2. Also all 2-regular digraphs
with exponents attaining the above bound are characterized.
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2. Main results

Throughout the paper, we always assume that G is a digraph of order n, girth g and
diameter D. Let a1¡a2¡ · · ·¡ak be positive integers such that gcd(a1; a2; : : : ; ak)=1.
By a result of Schur, it is known that if N is a su�ciently large integer, then for all
n¿N the equation

b1a1 + b2a2 + · · ·+ bkak = n
has a solution in non-negative integers b1; b2; : : : ; bk . The least such number N is called
the Frobenius–Schur index and is denoted �(a1; a2; : : : ; ak). For k=2 it is well known
that �(a1; a2) = (a1 − 1)(a2 − 1).
For a �xed positive integer c, let Gc be the digraph with the same vertex set as G

and, for each pair w1; w2 of vertices, w1
1→w2 in Gc if and only if w1

c→w2 in G. It
can be proved that, if G is primitive with diameter D, then Gc is also primitive with
diameter at most D [7, Theorem 3:1]. We will repeatedly use this fact in the following
lemma.

Lemma 3. Suppose G is primitive and exp(G:u) = D + 1 + g(D − 1). Then
1: For any g-cycle Cg = (w1; w2; : : : ; wg); the distance from u to Cg is D + 1− g.
2: For any g-cycle Cg; there is a vertex v on Cg such that the distance; d(u; v); from
u to v is D.

3: If g+ 16D62g− 1; then the length of a shortest cycle containing u is D + 1.

Proof. The �rst two statements follow easily from the proof of [8, Theorem 2]. For
the third statement, it is a consequence of the diameter assumption that every vertex
lies on a cycle of length at most D+1. Suppose u lies on an l-cycle with l6D. Then
l 6= g; otherwise, since Gl has diameter at most D [7, Theorem 3:1] and Gl has a loop
at u, we have u D→ v in Gl for each v and so exp(G:u)6lD= gD¡D+1+ g(D− 1),
a contradiction. Let c=gcd(g; l). Since g+16l6D62g− 1, we have 16c6g=2. By
the �rst statement of the lemma, we may suppose that w is a vertex in Cg such that

u
cd(D+1−g)=ce→ w in G; i.e., u

d(D+1−g)=ce→ w in Gc. Since u and w lie on two cycles of
lengths l=c and g=c in Gc, respectively, exp(Gc:u)6dGc(u; w)+D+�(g=c; l=c)6d(D+
1− g)=ce+ D + (g=c − 1)(l=c − 1) and exp(G:u)6c · exp(Gc:u)6cd(D + 1− g)=ce+
cD+(g−c)(l=c−1)¡D+1+g(D−1); a contradiction. Therefore, the third statement
of the lemma holds.

Before introducing some results from [11], we need some notation. Let �+(G)
(resp. �−(G)) denote the minimum outdegree (resp. indegree) of G. Let deg+(u)
(resp. deg−(u)) denote the outdegree (resp. indegree) of u. For all i¿0, let Ri(u) =
{v∈G: u i→ v}; R′i(u) = {v∈G: v i→ u}; Ni(u) =

⋃i
j=0 Rj(u) and N

′
i (u) =

⋃i
j=0 R

′
j(u).

Then Ni(u) is the set of vertices that can be reached from u by a path of length at
most i. Recall that R0(u) = R′0(u) = {u} since a vertex is at distance 0 from itself. Let
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D0(u)={u} and Di(u)=Ni(u)\Ni−1(u) for all i¿1. In other words, Di(u) is the set of
vertices v such that d(u; v) = i. Thus Ni(u) =Ni−1(u)∪Di(u) and Ni−1(u)∩Di(u) = ∅.

Lemma 4 (Shen [11, Theorems 1; 2]). Suppose G is a digraph with �+(G)¿1. Let
t = |{u∈G: deg+(u) = 1}|. Then

g6
{ dn=2e if t = 0;
d(n+ t − 1)=2e if t¿1:

Moreover; if G is strongly connected; then D6n− g+ t

Lemma 5. Suppose G is a digraph with �+(G)¿2. Then for all u and all i;
06i6g− 1;

|Ni(u)|¿2i + 1:
Furthermore; if D¿2g − 1 and exp(G:u) = D + 1 + g(D − 1) for some u; then
|Ng(u)|¿2g+ 1.

Proof. Suppose, contrary to the theorem, that there exists a smallest i; 06i6g−2, such
that |Ni(u)|¿2i+1 while |Ni+1(u)|62i+2. Then |Ni(u)|=2i+1 and |Di+1(u)|=1 since
Di+1(u) 6= ∅. Also we have |Di(u)|62; otherwise |Ni−1(u)|= |Ni(u)|−|Di(u)|¡ 2i−1,
contradicting the choice of i. Let G1 be the subdigraph of G induced by Ni(u) \ {u}.
Since there is no arc from Ni(u) \ {u} to u, we have �+(G1)¿�+(G)− |Di+1(u)|¿1.
Also the number of vertices with outdegree 1 in G1 is at most |Di(u)|62. By Lemma 4,
g6g(G1)6d(|Ni(u)| + 1)=2e = i + 16g − 1, a contradiction. Thus the �rst part of
Lemma 5 follows.
Now suppose D¿2g − 1 and exp(G:u) = D + 1 + g(D − 1). If |Ng(u)|62g, then

|Ng−1(u)| = 2g − 1; |Dg−1(u)| = 2 and |Ng(u)| = 1 by the above argument. There is
no arc from Ng−1(u) \ {u} to u; otherwise u is contained in a g-cycle and thus it is
easy to prove that exp(G:u)6gD¡D + 1 + g(D − 1), a contradiction. By applying
Lemma 4 to the subdigraph G2 of G induced by Ng−1(u) \ {u}, we have g(G2)6
d(|Ng−1(u) \ {u}|+ |Dg−1(u)|)=2e= g. Thus there exists a g-cycle Cg in G2. It can be
veri�ed that the distance from u to Cg is at most bg=2c¡D + 1 − g; which
contradicts Lemma 3(1). Therefore Lemma 5 follows.

Lemma 6. Suppose G is strongly connected with min{�+(G); �−(G)}¿2. Then

D6



n− g if D6g;
bn=2c if g+ 16D62g− 1;
n− 2g+ 1 if D¿2g:

Furthermore; if G is primitive and exp(G) = D + 1 + g(D − 1); then

D6
{ b(n− 1)=2c if g+ 16D62g− 1;
n− 2g if D¿2g:
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Proof. By Lemma 4, it may be supposed that D¿g+1. Let u; v be two vertices with
distance d(u; v)=D. In case G is primitive with exponent D+1+g(D−1), by Lemma
3(2), we may properly choose u such that exp(G:u)=D+1+g(D−1). Since �−(G)¿2,
applying Lemma 5 to the digraph obtained from G by reversing all its arcs, we have
|N ′
i (v)|¿2i + 1 for all i; 16i6g− 1.
Case 1: g+ 16D62g− 1. Then Ng−1(u)∩N ′

D−g(v) = ∅; otherwise d(u; v)6D− 1.
Thus by Lemma 5, n¿|Ng−1(u)| + |N ′

D−g(v)|¿2(g − 1) + 1 + 2(D − g) + 1 = 2D;
i.e., D6bn=2c. Now suppose G is primitive and exp(G:u) = D + 1 + g(D − 1). Then
ND−g+1(u) ∩ N ′

g−1(u) = {u}; otherwise u is contained in a cycle of length at most D,
contradicting Lemma 3(3). Thus n¿|ND−g+1(u)|+ |N ′

g−1(u)| − 1¿2(D− g+1)+ 1+
2(g− 1) = 2D + 1; i.e., D6b(n− 1)=2c.
Case 2: D¿2g. Then similarly to Case 1, we have ND−g(u) ∩ N ′

g−1(v) = ∅ and
n¿|ND−g(u)| + |N ′

g−1(v)| = |Ng−1(u)| +
∑D−g

i=g |Di(u)| + |N ′
g−1(v)|¿2(g − 1) + 1 +

(D − 2g + 1) + 2(g − 1) + 1 = D + 2g − 1; i.e., D6n − 2g + 1. Now suppose G is
primitive and exp(G:u)=D+1+g(D−1). Then, by Lemma 5, we can similarly obtain
n¿|Ng(u)| +

∑D−g
i=g+1 |Di(u)| + |N ′

g−1(v)|¿2g + 1 + (D − 2g) + 2g − 1 = D + 2g; i.e.,
D6n− 2g.
By combining the above two cases, Lemma 6 follows.

The Cayley digraph Cay(Zn; {1; 2}) is the digraph with vertex set Zn, the cyclic
group of order n, and arc set E = {(i; j): j − i = 1 or 2}, where subtraction is taken
modulo n. The lexicographic product G ⊗ G′ of a digraph G = (V; E) with a digraph
G′ = (V ′; E′) is the digraph with vertex set V × V ′ and arc set

{((x1; y1); (x2; y2)): (x1; x2)∈E} ∪ {((x; y1); (x; y2)): x∈V; (y1; y2)∈E′}:
It is well known (see [2] for example) that if G is primitive, then the greatest common
divisor of the lengths of the cycles in G is one. Let Cg denote a g-cycle and K2 denote
two isolated vertices. Then Cg⊗K2 is not primitive when g¿2, since it only contains
cycles of lengths g and 2g.

Lemma 7. Suppose G is 2-regular. If D = g = n=2; then G is isomorphic to either
Cay(Zn; {1; 2}) or Cg ⊗ K2.

Proof. Let u; v be two vertices such that d(u; v)=D. Then Ni−1(u); Di(u) and N ′
D−i−1(v)

are pairwise disjoint for all i; 16i6D − 1. by Lemma 5, |Di(u)|6n − |Ni−1(u)| −
|N ′
D−i−1(v)|6n − (2i − 1) − (2D − 2i − 1) = 2. On the other hand, since Ni−1(u) ∩

N ′
D−i(v) = ∅, we have |Di(u)| = |Ni(u)| − |Ni−1(u)|¿|Ni(u)| + |N ′

D−i(v)| − n¿2i +
1 + 2(D − i) + 1 − n = 2. Thus |Di(u)| = 2 for all i; 16i6D − 1 = g − 1. Since
16|Dg(u)|6n − ∑g−1

i=0 |Di(u)| = n − 2(g − 1) − 1 = 1, we have |Dg(u)| = 1 and
V =

⋃̇g

i=0 Di(u). Let Di(u) = {wi; w′
i}; 16i6g− 1.

Claim 1. For any i; j such that i6g− 1 and 16i− j6g− 3; there are no arcs from
Di(u) to Dj(u).
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Proof. Otherwise suppose i is the smallest number for which Claim 1 fails. Then g¿4
and i¿2. For all 16j6i−1, let Gj be the subdigraph of G induced by Dj(u)∪Dj+1(u).
Then deg+Gj (wj)=deg

+
Gj (w

′
j)=2 by the choice of i. We de�ne the following two types

of arc sets:

Type I : {(wj; wj+1); (wj; w′
j+1); (w

′
j; wj+1); (w

′
j; w

′
j+1)}:

Type II : {(wj; wj+1); (wj; w′
j+1); (w

′
j; wj); (w

′
j; w

′
j+1)}:

Let Out(Dj(u)) denote the set of arcs coming from the vertices in Dj(u). By re-ordering
w1; w′

1 and re-ordering w2; w
′
2 if necessary, Out(D1(u)) is of type I or II. Now suppose

j6i − 2. If Out(Dj(u)) is of type I, then Out(Dj+1(u)) is of type I as well since G
is 2-regular. Similarly if Out(Dj(u)) is of type II, then by re-ordering wj+2; w′

j+2 if
necessary, it can be veri�ed that Out(Dj+1(u)) is of type I or II. Thus by induction
each Out(Dj(u)); 16j6i− 1, is of type I or II. It can be seen that the distance from
each vertex in Dj(u) to each vertex in Di(u) is at most i− j+1. Since there is an arc
from Di(u) to some Dj(u) by the choice of i; G contains a cycle of length at most
i − j + 26g− 1, a contradiction. Therefore Claim 1 follows.
By Claim 1 and its proof, it is easy to obtain the following two further claims: After

re-ordering the vertices within each Di(u); 16i6g− 2, if necessary,

Claim 2. All Out(Di(u)); 16i6g− 2; are of the same type.

Claim 3. d(w1; wg−1)=d(w1; w′
g−1)=d(w

′
1; w

′
g−1)=g−2 and g−26d(w′

1; wg−1)6g−1.

Case 1: All Out(Di(u)); 16i6g − 2, are of type I. Then the distance from any
vertex in Dj(u) to any vertex in Di(u) is i − j whenever 06j¡ i6g. Since G is
2-regular and has girth g = n=2, the remaining arcs are uniquely determined, which
are {(wg−1; v); (w′

g−1; v); (wg−1; u); (w
′
g−1; u); (v; w1); (v; w

′
1)}. Thus G is isomorphic to

Cg ⊗ K2.
Case 2: All Out(Di(u)); 16i6g − 2, are of type II. Then d(wj; wi) = d(wj; w′

i) =
d(w′

j; w
′
i)= i− j and d(w′

j; wi)= i− j+1 whenever 16j¡ i6g− 1. Similarly, the re-
maining arcs are also uniquely determined, which are {(wg−1; v); (w′

g−1; v); (v; u); (v; w
′
1),

(wg−1; u); (w′
g−1; wg−1)}. Thus G is isomorphic to Cay(Zn; {1; 2}). This completes the

proof of Lemma 7.

Before stating our main theorem, we recall from the de�nition of the digraph set
FD that, if G ∈FD and G is 2-regular, then G is unique (up to isomorphism).

Theorem 1. If G is 2-regular and primitive with order n¿8; then

exp(G)6
(n− 1)2
4

+ 1

and equality holds if and only if G is the unique 2-regular digraph (up to isomorphism)
in FD.
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Proof. Case 1: Either D=g−1 or D=g6(n−1)=2. Then by Lemma 6, D6(n−1)=2
is always true. By Lemma 1, exp(G)6D2 + 16(n − 1)2=4 + 1 with equality if and
only if G is the unique 2-regular digraph (up to isomorphism) in FD.
Case 2: D = g¿n=2. Then by Lemma 6, D = g = n=2. Since C1 ⊗ K2 is isomor-

phic to Cay(Z2; {1; 2}) and Cg ⊗ K2 is not primitive when g¿2; G is isomorphic to
Cay(Zn{1; 2}) by Lemma 7. Then exp(G)6n − 1¡ (n − 1)2=4 + 1 by a theorem of
Kim and Krabill [4].
Case 3: g+16D62g−1. It may be supposed that exp(G)6D+g(D−1). Otherwise

exp(G)=D+1+ g(D− 1) by Lemma 2. Then by Lemma 6, D6b(n− 1)=2c and this
case follows from Case 1. Thus exp(G)6D+g(D−1)6D(D−1)+16bn=2c(bn=2c−
1) + 1¡ (n− 1)2=4 + 1 by Lemma 6 again.
Case 4: D¿2g¿2. Similarly to Case 3, it may be supposed that exp(G)6

D+ g(D− 1). Otherwise, if exp(G) =D+ 1+ g(D− 1), then by Lemma 6, exp(G) =
(g + 1)(D − 1) + 26(g + 1)(n − 2g − 1) + 2¡ (n − 1)2=4 + 1. Thus exp(G)6
D + g(D − 1)6(g+ 1)(n− 2g) + 1¡ (n− 1)2=4 + 1 by Lemma 6 again.
By combining Cases 1–4 above, Theorem 1 follows.

If n67, a routine computer check shows that exp(G)6(n − 1)2=4 + 1 is still true.
However, for the second part of Theorem 1, besides the unique 2-regular digraph (up
to isomorphism) in FD, there is one more digraph with exponent (n− 1)2=4 + 1. The
adjacency matrix of the digraph is




0 1 1 0 0
1 0 0 1 0
1 0 0 1 0
0 1 0 0 1
0 0 1 0 1


 :

By using the techniques presented in this paper, one can prove the following theorem.
Here we only outline its proof.

Theorem 2. Suppose G is primitive.

1: If min{�+(G); �−(G)}¿2 and n¿6; then

exp(G)6
⌊n
2

⌋2
+ 1:

2: If �+(G)¿2; then

exp(G)6
n2

4
+ 1:

Proof (outline). The proof of Theorem 1 works for proving the �rst statement except
for Case 2, where we have D= g= n=2 and so 2=n and exp(G)6D2 + 1= bn=2c2 + 1.
For the second statement, by Lemmas 2 and 4, we have exp(G)6D + 1 +

g(D − 1) = (g + 1)(D − 1) + 26(g + 1)(n − g − 1) + 26n2=4 + 2. Thus, in order
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to prove (2), we may suppose, on the contrary, that exp(G) = n2=4 + 2. This implies
D = n− g; D = g+ 1; g+ 2; g+ 3 and exp(G:u) = D + 1 + g(D − 1) for some u. By
Lemma 3(2), there exists a vertex v in a g-cycle such that d(u; v) =D. By Lemma 5,
n= |Ng−1(u)|+

∑D
i=g |Di(u)|¿2g− 1 +D− g+ 1=D+ g. Since D= n− g, again by

Lemma 5, we have |Di(u)| = 2 for all 16i6g − 1 and |Di(u)| = 1 for all g6i6D.
By using similar proof techniques employed in Claim 1 of Lemma 7, we can show
that for any i; j such that i6g− 1 and 16i− j6g− 3, there are no arcs from Di(u)
to Dj(u). Thus there is at least an arc from Dg−1(u) to N1(u), and this arc lies on a
g-cycle. Therefore, the distance from u to this g-cycle is at most 1¡D+1− g (recall
that D = g+ 1; g+ 2 or g+ 3), contradicting Lemma 3(1).

3. Closing remarks

Conjecture 1 is still open when r¿3. As it has been mentioned in [12], the conjec-
tured bound cannot be decreased since exp(G) = bn=rc2 + 1 for all r-regular digraphs
in FD.
In order to settle Conjecture 1 completely, we believe that �rst of all a good upper

bound on the girth g of all r-regular digraphs should be found so that one can use
Lemma 2. In 1970, Behzad et al. [1] made the following conjecture.

Conjecture 2 (Behzad et al. [1]). Let G be an r-regular digraph of order n. Then
g6dn=re.

This conjecture has been proved for n65. For more details on the conjecture and
two more related conjectures, we refer the reader to [11] and references therein.
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