Discrete Mathematics 214 (2000) 211-219

Jian Shen
Department of Mathematics and Statistics, Queen's University at Kingston, ON, Canada K7L 3N6

Received 18 August 1997; revised 2 February 1999; accepted 8 February 1999

Abstract

A digraph G is called primitive if for some positive integer k, there is a walk of length exactly k from each vertex u to each vertex v (possibly u again). If G is primitive, the smallest such k is called the exponent of G, denoted by $\exp (G)$. A digraph G is said to be r-regular if each vertex in G has outdegree and indegree exactly r.

It is proved that if G is a primitive 2 -regular digraph with n vertices, then $\exp (G) \leqslant$ $(n-1)^{2} / 4+1$. Also all 2 -regular digraphs with exponents attaining the bound are characterized. This supports a conjecture made by Shen and Gregory. © 2000 Elsevier Science B.V. All rights reserved.

1. Introduction and notation

Let $G=(V, E)$ denote a digraph on n vertices. Loops are permitted but no multiple arcs. A $u \rightarrow v$ walk in G is a sequence of vertices $u, u_{1}, \ldots, u_{p}=v$ and a sequence of $\operatorname{arcs}\left(u, u_{1}\right),\left(u_{1}, u_{2}\right), \ldots,\left(u_{p-1}, v\right)$ where the vertices and the arcs are not necessarily distinct. A closed walk is a $u \rightarrow v$ walk where $u=v$. A path is a walk with distinct vertices. A cycle is a closed $u \rightarrow v$ walk with distinct vertices except for $u=v$. The length of a walk W is the number of arcs in W. The girth g of G is the length of a shortest cycle in G. An r-cycle is a cycle of length r. The digraph G is said to be strongly connected if there exists a path from u to v for all $u, v \in V$. The distance from u to v, denoted by $d_{G}(u, v)$ or $d(u, v)$ if G is specified, is the minimum k for which there is a $u \rightarrow v$ walk of length k. The diameter D of G is the maximum $d(u, v)$ among all ordered pairs $u, v \in V$.
The notation $u \xrightarrow{k} v($ resp. $u \xrightarrow{k} v)$ is used to indicate that there is a $u \rightarrow v$ walk (resp. no $u \rightarrow v$ walk) of length k. A diagraph G is primitive if there exists some positive integer k such that $u \xrightarrow{k} v$ whenever $u, v \in V$. The minimum such k is called the exponent of G, denoted $\exp (G)$. The local exponent of G at a vertex $u \in V$, denoted $\exp (G: u)$, is

[^0]the least integer k such that $u \xrightarrow{k} v$ for each $v \in V$. Much work has been done on finding upper bounds for $\exp (G)$ (see [14,3] for example). The diameter bound in Lemma 1 below was proved recently by Shen [9] and Neufeld [5] independently. Neufeld [5] characterized the case of equality in Lemma 1 with the following class of digraphs.

Let the family $\mathscr{F}_{\mathscr{D}}$ consist of the following digraphs $G=(V, E)$: The vertex set $V=\bigcup_{i=0}^{D} V_{i}$, where the V_{i} are pairwise disjoint and $\left|V_{0}\right|=1$. The arc set $E \supset\left\{(u, v): u \in V_{i}\right.$, $\left.v \in V_{i+1}\right\}$, where addition is taken modulo $D+1$, and the remaining arcs in E may be any set of arcs from V_{D} to V_{1} with the following properties: for each vertex $u \in V_{D},(u, w)$ is an arc for some $w \in V_{1}$, and for each vertex $v \in V_{1},(w, v)$ is an arc for some $w \in V_{D}$.

Lemma 1 (Neufeld [5], Shen [9]). Suppose G is a primitive digraph with diameter D. Then

$$
\exp (G) \leqslant D^{2}+1
$$

and equality holds if and only if $G \in \mathscr{F}_{\mathscr{D}}$.
We note that if G is a digraph with diameter D and girth g, then $g \leqslant D+1$. Consequently, when $g \leqslant D$, the diameter bound in Lemma 1 is implied by the following lemma.

Lemma 2 (Shen [8,10]). Suppose G is a primitive digraph with diameter D and girth g. Then

$$
\exp (G) \leqslant D+1+g(D-1)
$$

A digraph G is said to be r-regular if each vertex in G has outdegree and indegree exactly r. A digraph G is said to be vertex-transitive if, for each pair u, v of vertices, there is an automorphism of the digraph that takes u to v. Thus vertex-transitive digraphs are regular. In [12], Shen and Gregory studied the exponents of vertex-transitive digraphs and proved that

$$
\exp (G) \leqslant\left\lceil\frac{n}{r}\right\rceil\left(\left\lceil\frac{n}{r}\right\rceil+1\right)
$$

for all primitive vertex-transitive digraphs G. Based on this result, they raised the following conjecture in the same paper.

Conjecture 1. If G is a primitive r-regular digraph of order n, then

$$
\exp (G) \leqslant\left\lfloor\frac{n}{r}\right\rfloor^{2}+1
$$

We remark that, by applying two results by Nishimura [6] and Soares [13], respectively, one can obtain a rough upper bound of $3 n^{2} / r^{2}$ for the exponents of all r-regular digraphs of order n [12, Theorem 6].

In this paper, it is proved that if G is primitive and 2-regular, then $\exp (G) \leqslant$ $(n-1)^{2} / 4+1$. This confirms Conjecture 1 when $r=2$. Also all 2-regular digraphs with exponents attaining the above bound are characterized.

2. Main results

Throughout the paper, we always assume that G is a digraph of order n, girth g and diameter D. Let $a_{1}<a_{2}<\cdots<a_{k}$ be positive integers such that $\operatorname{gcd}\left(a_{1}, a_{2}, \ldots, a_{k}\right)=1$. By a result of Schur, it is known that if N is a sufficiently large integer, then for all $n \geqslant N$ the equation

$$
b_{1} a_{1}+b_{2} a_{2}+\cdots+b_{k} a_{k}=n
$$

has a solution in non-negative integers $b_{1}, b_{2}, \ldots, b_{k}$. The least such number N is called the Frobenius-Schur index and is denoted $\Phi\left(a_{1}, a_{2}, \ldots, a_{k}\right)$. For $k=2$ it is well known that $\Phi\left(a_{1}, a_{2}\right)=\left(a_{1}-1\right)\left(a_{2}-1\right)$.

For a fixed positive integer c, let G^{c} be the digraph with the same vertex set as G and, for each pair w_{1}, w_{2} of vertices, $w_{1} \xrightarrow{1} w_{2}$ in G^{c} if and only if $w_{1} \xrightarrow{c} w_{2}$ in G. It can be proved that, if G is primitive with diameter D, then G^{c} is also primitive with diameter at most D [7, Theorem 3.1]. We will repeatedly use this fact in the following lemma.

Lemma 3. Suppose G is primitive and $\exp (G: u)=D+1+g(D-1)$. Then

1. For any g-cycle $C_{g}=\left(w_{1}, w_{2}, \ldots, w_{g}\right)$, the distance from u to C_{g} is $D+1-g$.
2. For any g-cycle C_{g}, there is a vertex v on C_{g} such that the distance, $d(u, v)$, from u to v is D.
3. If $g+1 \leqslant D \leqslant 2 g-1$, then the length of a shortest cycle containing u is $D+1$.

Proof. The first two statements follow easily from the proof of [8, Theorem 2]. For the third statement, it is a consequence of the diameter assumption that every vertex lies on a cycle of length at most $D+1$. Suppose u lies on an l-cycle with $l \leqslant D$. Then $l \neq g$; otherwise, since G^{l} has diameter at most $D\left[7\right.$, Theorem 3.1] and G^{l} has a loop at u, we have $u \xrightarrow{D} v$ in G^{l} for each v and so $\exp (G: u) \leqslant l D=g D<D+1+g(D-1)$, a contradiction. Let $c=\operatorname{gcd}(g, l)$. Since $g+1 \leqslant l \leqslant D \leqslant 2 g-1$, we have $1 \leqslant c \leqslant g / 2$. By the first statement of the lemma, we may suppose that w is a vertex in C_{g} such that $u^{c\lceil(D+1-g) / c\rceil} w$ in G; i.e., $u \xrightarrow{\lceil(D+1-g) / c\rceil} w$ in G^{c}. Since u and w lie on two cycles of lengths l / c and g / c in G^{c}, respectively, $\exp \left(G^{c}: u\right) \leqslant d_{G^{c}}(u, w)+D+\Phi(g / c, l / c) \leqslant\lceil(D+$ $1-g) / c\rceil+D+(g / c-1)(l / c-1)$ and $\exp (G: u) \leqslant c \cdot \exp \left(G^{c}: u\right) \leqslant c\lceil(D+1-g) / c\rceil+$ $c D+(g-c)(l / c-1)<D+1+g(D-1)$, a contradiction. Therefore, the third statement of the lemma holds.

Before introducing some results from [11], we need some notation. Let $\delta^{+}(G)$ (resp. $\delta^{-}(G)$) denote the minimum outdegree (resp. indegree) of G. Let $\operatorname{deg}^{+}(u)$ (resp. $\operatorname{deg}^{-}(u)$) denote the outdegree (resp. indegree) of u. For all $i \geqslant 0$, let $R_{i}(u)=$ $\{v \in G: u \xrightarrow{i} v\}, R_{i}^{\prime}(u)=\{v \in G: v \xrightarrow{i} u\}, N_{i}(u)=\bigcup_{j=0}^{i} R_{j}(u)$ and $N_{i}^{\prime}(u)=\bigcup_{j=0}^{i} R_{j}^{\prime}(u)$. Then $N_{i}(u)$ is the set of vertices that can be reached from u by a path of length at most i. Recall that $R_{0}(u)=R_{0}^{\prime}(u)=\{u\}$ since a vertex is at distance 0 from itself. Let
$D_{0}(u)=\{u\}$ and $D_{i}(u)=N_{i}(u) \backslash N_{i-1}(u)$ for all $i \geqslant 1$. In other words, $D_{i}(u)$ is the set of vertices v such that $d(u, v)=i$. Thus $N_{i}(u)=N_{i-1}(u) \cup D_{i}(u)$ and $N_{i-1}(u) \cap D_{i}(u)=\emptyset$.

Lemma 4 (Shen [11, Theorems 1,2]). Suppose G is a digraph with $\delta^{+}(G) \geqslant 1$. Let $t=\left|\left\{u \in G: \operatorname{deg}^{+}(u)=1\right\}\right|$. Then

$$
g \leqslant \begin{cases}\lceil n / 2\rceil & \text { if } t=0 \\ \lceil(n+t-1) / 2\rceil & \text { if } t \geqslant 1\end{cases}
$$

Moreover, if G is strongly connected, then $D \leqslant n-g+t$
Lemma 5. Suppose G is a digraph with $\delta^{+}(G) \geqslant 2$. Then for all u and all i, $0 \leqslant i \leqslant g-1$,

$$
\left|N_{i}(u)\right| \geqslant 2 i+1
$$

Furthermore, if $D \geqslant 2 g-1$ and $\exp (G: u)=D+1+g(D-1)$ for some u, then $\left|N_{g}(u)\right| \geqslant 2 g+1$.

Proof. Suppose, contrary to the theorem, that there exists a smallest $i, 0 \leqslant i \leqslant g-2$, such that $\left|N_{i}(u)\right| \geqslant 2 i+1$ while $\left|N_{i+1}(u)\right| \leqslant 2 i+2$. Then $\left|N_{i}(u)\right|=2 i+1$ and $\left|D_{i+1}(u)\right|=1$ since $D_{i+1}(u) \neq \emptyset$. Also we have $\left|D_{i}(u)\right| \leqslant 2$; otherwise $\left|N_{i-1}(u)\right|=\left|N_{i}(u)\right|-\left|D_{i}(u)\right|<2 i-1$, contradicting the choice of i. Let G_{1} be the subdigraph of G induced by $N_{i}(u) \backslash\{u\}$. Since there is no arc from $N_{i}(u) \backslash\{u\}$ to u, we have $\delta^{+}\left(G_{1}\right) \geqslant \delta^{+}(G)-\left|D_{i+1}(u)\right| \geqslant 1$. Also the number of vertices with outdegree 1 in G_{1} is at most $\left|D_{i}(u)\right| \leqslant 2$. By Lemma 4, $g \leqslant g\left(G_{1}\right) \leqslant\left\lceil\left(\left|N_{i}(u)\right|+1\right) / 2\right\rceil=i+1 \leqslant g-1$, a contradiction. Thus the first part of Lemma 5 follows.

Now suppose $D \geqslant 2 g-1$ and $\exp (G: u)=D+1+g(D-1)$. If $\left|N_{g}(u)\right| \leqslant 2 g$, then $\left|N_{g-1}(u)\right|=2 g-1,\left|D_{g-1}(u)\right|=2$ and $\left|N_{g}(u)\right|=1$ by the above argument. There is no arc from $N_{g-1}(u) \backslash\{u\}$ to u; otherwise u is contained in a g-cycle and thus it is easy to prove that $\exp (G: u) \leqslant g D<D+1+g(D-1)$, a contradiction. By applying Lemma 4 to the subdigraph G_{2} of G induced by $N_{g-1}(u) \backslash\{u\}$, we have $g\left(G_{2}\right) \leqslant$ $\left\lceil\left(\left|N_{g-1}(u) \backslash\{u\}\right|+\left|D_{g-1}(u)\right|\right) / 2\right\rceil=g$. Thus there exists a g-cycle C_{g} in G_{2}. It can be verified that the distance from u to C_{g} is at most $\lfloor g / 2\rfloor<D+1-g$, which contradicts Lemma 3(1). Therefore Lemma 5 follows.

Lemma 6. Suppose G is strongly connected with $\min \left\{\delta^{+}(G), \delta^{-}(G)\right\} \geqslant 2$. Then

$$
D \leqslant \begin{cases}n-g & \text { if } D \leqslant g, \\ \lfloor n / 2\rfloor & \text { if } g+1 \leqslant D \leqslant 2 g-1, \\ n-2 g+1 & \text { if } D \geqslant 2 g .\end{cases}
$$

Furthermore, if G is primitive and $\exp (G)=D+1+g(D-1)$, then

$$
D \leqslant \begin{cases}\lfloor(n-1) / 2\rfloor & \text { if } g+1 \leqslant D \leqslant 2 g-1, \\ n-2 g & \text { if } D \geqslant 2 g .\end{cases}
$$

Proof. By Lemma 4, it may be supposed that $D \geqslant g+1$. Let u, v be two vertices with distance $d(u, v)=D$. In case G is primitive with exponent $D+1+g(D-1)$, by Lemma $3(2)$, we may properly choose u such that $\exp (G: u)=D+1+g(D-1)$. Since $\delta^{-}(G) \geqslant 2$, applying Lemma 5 to the digraph obtained from G by reversing all its arcs, we have $\left|N_{i}^{\prime}(v)\right| \geqslant 2 i+1$ for all $i, 1 \leqslant i \leqslant g-1$.

Case 1: $g+1 \leqslant D \leqslant 2 g-1$. Then $N_{g-1}(u) \cap N_{D-g}^{\prime}(v)=\emptyset$; otherwise $d(u, v) \leqslant D-1$. Thus by Lemma $5, n \geqslant\left|N_{g-1}(u)\right|+\left|N_{D-g}^{\prime}(v)\right| \geqslant 2(g-1)+1+2(D-g)+1=2 D$; i.e., $D \leqslant\lfloor n / 2\rfloor$. Now suppose G is primitive and $\exp (G: u)=D+1+g(D-1)$. Then $N_{D-g+1}(u) \cap N_{g-1}^{\prime}(u)=\{u\}$; otherwise u is contained in a cycle of length at most D, contradicting Lemma 3(3). Thus $n \geqslant\left|N_{D-g+1}(u)\right|+\left|N_{g-1}^{\prime}(u)\right|-1 \geqslant 2(D-g+1)+1+$ $2(g-1)=2 D+1$; i.e., $D \leqslant\lfloor(n-1) / 2\rfloor$.

Case 2: $D \geqslant 2 g$. Then similarly to Case 1 , we have $N_{D-g}(u) \cap N_{g-1}^{\prime}(v)=\emptyset$ and $n \geqslant\left|N_{D-g}(u)\right|+\left|N_{g-1}^{\prime}(v)\right|=\left|N_{g-1}(u)\right|+\sum_{i=g}^{D-g}\left|D_{i}(u)\right|+\left|N_{g-1}^{\prime}(v)\right| \geqslant 2(g-1)+1+$ $(D-2 g+1)+2(g-1)+1=D+2 g-1$; i.e., $D \leqslant n-2 g+1$. Now suppose G is primitive and $\exp (G: u)=D+1+g(D-1)$. Then, by Lemma 5 , we can similarly obtain $n \geqslant\left|N_{g}(u)\right|+\sum_{i=g+1}^{D-g}\left|D_{i}(u)\right|+\left|N_{g-1}^{\prime}(v)\right| \geqslant 2 g+1+(D-2 g)+2 g-1=D+2 g$; i.e., $D \leqslant n-2 g$.

By combining the above two cases, Lemma 6 follows.
The Cayley digraph $\operatorname{Cay}\left(\boldsymbol{Z}_{n},\{1,2\}\right)$ is the digraph with vertex set \boldsymbol{Z}_{n}, the cyclic group of order n, and arc set $E=\{(i, j): j-i=1$ or 2$\}$, where subtraction is taken modulo n. The lexicographic product $G \otimes G^{\prime}$ of a digraph $G=(V, E)$ with a digraph $G^{\prime}=\left(V^{\prime}, E^{\prime}\right)$ is the digraph with vertex set $V \times V^{\prime}$ and arc set

$$
\left\{\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right):\left(x_{1}, x_{2}\right) \in E\right\} \cup\left\{\left(\left(x, y_{1}\right),\left(x, y_{2}\right)\right): x \in V,\left(y_{1}, y_{2}\right) \in E^{\prime}\right\}
$$

It is well known (see [2] for example) that if G is primitive, then the greatest common divisor of the lengths of the cycles in G is one. Let C_{g} denote a g-cycle and \bar{K}_{2} denote two isolated vertices. Then $C_{g} \otimes \bar{K}_{2}$ is not primitive when $g \geqslant 2$, since it only contains cycles of lengths g and $2 g$.

Lemma 7. Suppose G is 2-regular. If $D=g=n / 2$, then G is isomorphic to either $\operatorname{Cay}\left(\boldsymbol{Z}_{n},\{1,2\}\right)$ or $C_{g} \otimes \bar{K}_{2}$.

Proof. Let u, v be two vertices such that $d(u, v)=D$. Then $N_{i-1}(u), D_{i}(u)$ and $N_{D-i-1}^{\prime}(v)$ are pairwise disjoint for all $i, 1 \leqslant i \leqslant D-1$. by Lemma $5,\left|D_{i}(u)\right| \leqslant n-\left|N_{i-1}(u)\right|-$ $\left|N_{D-i-1}^{\prime}(v)\right| \leqslant n-(2 i-1)-(2 D-2 i-1)=2$. On the other hand, since $N_{i-1}(u) \cap$ $N_{D-i}^{\prime}(v)=\emptyset$, we have $\left|D_{i}(u)\right|=\left|N_{i}(u)\right|-\left|N_{i-1}(u)\right| \geqslant\left|N_{i}(u)\right|+\left|N_{D-i}^{\prime}(v)\right|-n \geqslant 2 i+$ $1+2(D-i)+1-n=2$. Thus $\left|D_{i}(u)\right|=2$ for all $i, 1 \leqslant i \leqslant D-1=g-1$. Since $1 \leqslant\left|D_{g}(u)\right| \leqslant n-\sum_{i=0}^{g-1}\left|D_{i}(u)\right|=n-2(g-1)-1=1$, we have $\left|D_{g}(u)\right|=1$ and $V=\dot{\bigcup}_{i=0}^{g} D_{i}(u)$. Let $D_{i}(u)=\left\{w_{i}, w_{i}^{\prime}\right\}, 1 \leqslant i \leqslant g-1$.

Claim 1. For any i, j such that $i \leqslant g-1$ and $1 \leqslant i-j \leqslant g-3$, there are no arcs from $D_{i}(u)$ to $D_{j}(u)$.

Proof. Otherwise suppose i is the smallest number for which Claim 1 fails. Then $g \geqslant 4$ and $i \geqslant 2$. For all $1 \leqslant j \leqslant i-1$, let G_{j} be the subdigraph of G induced by $D_{j}(u) \cup D_{j+1}(u)$. Then $\operatorname{deg}_{G_{j}}^{+}\left(w_{j}\right)=\operatorname{deg}_{G_{j}}^{+}\left(w_{j}^{\prime}\right)=2$ by the choice of i. We define the following two types of are sets:

Type I: $\left\{\left(w_{j}, w_{j+1}\right),\left(w_{j}, w_{j+1}^{\prime}\right),\left(w_{j}^{\prime}, w_{j+1}\right),\left(w_{j}^{\prime}, w_{j+1}^{\prime}\right)\right\}$.
Type II: $\left\{\left(w_{j}, w_{j+1}\right),\left(w_{j}, w_{j+1}^{\prime}\right),\left(w_{j}^{\prime}, w_{j}\right),\left(w_{j}^{\prime}, w_{j+1}^{\prime}\right)\right\}$.
Let $\operatorname{Out}\left(D_{j}(u)\right)$ denote the set of arcs coming from the vertices in $D_{j}(u)$. By re-ordering w_{1}, w_{1}^{\prime} and re-ordering w_{2}, w_{2}^{\prime} if necessary, $\operatorname{Out}\left(D_{1}(u)\right)$ is of type I or II. Now suppose $j \leqslant i-2$. If $\operatorname{Out}\left(D_{j}(u)\right)$ is of type I, then $\operatorname{Out}\left(D_{j+1}(u)\right)$ is of type I as well since G is 2-regular. Similarly if $\operatorname{Out}\left(D_{j}(u)\right)$ is of type II, then by re-ordering $w_{j+2}, w_{j+2}^{\prime}$ if necessary, it can be verified that $\operatorname{Out}\left(D_{j+1}(u)\right)$ is of type I or II. Thus by induction each $\operatorname{Out}\left(D_{j}(u)\right), 1 \leqslant j \leqslant i-1$, is of type I or II. It can be seen that the distance from each vertex in $D_{j}(u)$ to each vertex in $D_{i}(u)$ is at most $i-j+1$. Since there is an arc from $D_{i}(u)$ to some $D_{j}(u)$ by the choice of i, G contains a cycle of length at most $i-j+2 \leqslant g-1$, a contradiction. Therefore Claim 1 follows.

By Claim 1 and its proof, it is easy to obtain the following two further claims: After re-ordering the vertices within each $D_{i}(u), 1 \leqslant i \leqslant g-2$, if necessary,

Claim 2. All $\operatorname{Out}\left(D_{i}(u)\right), 1 \leqslant i \leqslant g-2$, are of the same type.
Claim 3. $d\left(w_{1}, w_{g-1}\right)=d\left(w_{1}, w_{g-1}^{\prime}\right)=d\left(w_{1}^{\prime}, w_{g-1}^{\prime}\right)=g-2$ and $g-2 \leqslant d\left(w_{1}^{\prime}, w_{g-1}\right) \leqslant g-1$.
Case 1: All $\operatorname{Out}\left(D_{i}(u)\right), 1 \leqslant i \leqslant g-2$, are of type I. Then the distance from any vertex in $D_{j}(u)$ to any vertex in $D_{i}(u)$ is $i-j$ whenever $0 \leqslant j<i \leqslant g$. Since G is 2-regular and has girth $g=n / 2$, the remaining arcs are uniquely determined, which are $\left\{\left(w_{g-1}, v\right),\left(w_{g-1}^{\prime}, v\right),\left(w_{g-1}, u\right),\left(w_{g-1}^{\prime}, u\right),\left(v, w_{1}\right),\left(v, w_{1}^{\prime}\right)\right\}$. Thus G is isomorphic to $C_{g} \otimes \bar{K}_{2}$.

Case 2: All $\operatorname{Out}\left(D_{i}(u)\right), 1 \leqslant i \leqslant g-2$, are of type II. Then $d\left(w_{j}, w_{i}\right)=d\left(w_{j}, w_{i}^{\prime}\right)=$ $d\left(w_{j}^{\prime}, w_{i}^{\prime}\right)=i-j$ and $d\left(w_{j}^{\prime}, w_{i}\right)=i-j+1$ whenever $1 \leqslant j<i \leqslant g-1$. Similarly, the remaining arcs are also uniquely determined, which are $\left\{\left(w_{g-1}, v\right),\left(w_{g-1}^{\prime}, v\right),(v, u),\left(v, w_{1}^{\prime}\right)\right.$, $\left.\left(w_{g-1}, u\right),\left(w_{g-1}^{\prime}, w_{g-1}\right)\right\}$. Thus G is isomorphic to $\operatorname{Cay}\left(\boldsymbol{Z}_{n},\{1,2\}\right)$. This completes the proof of Lemma 7.

Before stating our main theorem, we recall from the definition of the digraph set $\mathscr{F}_{\mathscr{D}}$ that, if $G \in \mathscr{F}_{\mathscr{O}}$ and G is 2-regular, then G is unique (up to isomorphism).

Theorem 1. If G is 2 -regular and primitive with order $n \geqslant 8$, then

$$
\exp (G) \leqslant \frac{(n-1)^{2}}{4}+1
$$

and equality holds if and only if G is the unique 2-regular digraph (up to isomorphism) in $\mathscr{F}_{\mathscr{D}}$.

Proof. Case 1: Either $D=g-1$ or $D=g \leqslant(n-1) / 2$. Then by Lemma $6, D \leqslant(n-1) / 2$ is always true. By Lemma $1, \exp (G) \leqslant D^{2}+1 \leqslant(n-1)^{2} / 4+1$ with equality if and only if G is the unique 2 -regular digraph (up to isomorphism) in $\mathscr{F}_{\mathscr{D}}$.

Case 2: $D=g \geqslant n / 2$. Then by Lemma $6, D=g=n / 2$. Since $C_{1} \otimes \overline{K_{2}}$ is isomorphic to $\operatorname{Cay}\left(\boldsymbol{Z}_{2},\{1,2\}\right)$ and $C_{g} \otimes \overline{K_{2}}$ is not primitive when $g \geqslant 2, G$ is isomorphic to $\operatorname{Cay}\left(\boldsymbol{Z}_{n}\{1,2\}\right)$ by Lemma 7. Then $\exp (G) \leqslant n-1<(n-1)^{2} / 4+1$ by a theorem of Kim and Krabill [4].

Case 3: $g+1 \leqslant D \leqslant 2 g-1$. It may be supposed that $\exp (G) \leqslant D+g(D-1)$. Otherwise $\exp (G)=D+1+g(D-1)$ by Lemma 2. Then by Lemma $6, D \leqslant\lfloor(n-1) / 2\rfloor$ and this case follows from Case 1. Thus $\exp (G) \leqslant D+g(D-1) \leqslant D(D-1)+1 \leqslant\lfloor n / 2\rfloor(\lfloor n / 2\rfloor-$ 1) $+1<(n-1)^{2} / 4+1$ by Lemma 6 again.

Case 4: $D \geqslant 2 g \geqslant 2$. Similarly to Case 3, it may be supposed that $\exp (G) \leqslant$ $D+g(D-1)$. Otherwise, if $\exp (G)=D+1+g(D-1)$, then by Lemma $6, \exp (G)=$ $(g+1)(D-1)+2 \leqslant(g+1)(n-2 g-1)+2<(n-1)^{2} / 4+1$. Thus $\exp (G) \leqslant$ $D+g(D-1) \leqslant(g+1)(n-2 g)+1<(n-1)^{2} / 4+1$ by Lemma 6 again.

By combining Cases $1-4$ above, Theorem 1 follows.
If $n \leqslant 7$, a routine computer check shows that $\exp (G) \leqslant(n-1)^{2} / 4+1$ is still true. However, for the second part of Theorem 1, besides the unique 2-regular digraph (up to isomorphism) in $\mathscr{F}_{\mathscr{D}}$, there is one more digraph with exponent $(n-1)^{2} / 4+1$. The adjacency matrix of the digraph is

$$
\left[\begin{array}{lllll}
0 & 1 & 1 & 0 & 0 \\
1 & 0 & 0 & 1 & 0 \\
1 & 0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 & 1
\end{array}\right]
$$

By using the techniques presented in this paper, one can prove the following theorem. Here we only outline its proof.

Theorem 2. Suppose G is primitive.

1. If $\min \left\{\delta^{+}(G), \delta^{-}(G)\right\} \geqslant 2$ and $n \geqslant 6$, then

$$
\exp (G) \leqslant\left\lfloor\frac{n}{2}\right\rfloor^{2}+1
$$

2. If $\delta^{+}(G) \geqslant 2$, then

$$
\exp (G) \leqslant \frac{n^{2}}{4}+1
$$

Proof (outline). The proof of Theorem 1 works for proving the first statement except for Case 2, where we have $D=g=n / 2$ and so $2 / n$ and $\exp (G) \leqslant D^{2}+1=\lfloor n / 2\rfloor^{2}+1$.

For the second statement, by Lemmas 2 and 4, we have $\exp (G) \leqslant D+1+$ $g(D-1)=(g+1)(D-1)+2 \leqslant(g+1)(n-g-1)+2 \leqslant n^{2} / 4+2$. Thus, in order
to prove (2), we may suppose, on the contrary, that $\exp (G)=n^{2} / 4+2$. This implies $D=n-g, D=g+1, g+2, g+3$ and $\exp (G: u)=D+1+g(D-1)$ for some u. By Lemma 3(2), there exists a vertex v in a g-cycle such that $d(u, v)=D$. By Lemma 5, $n=\left|N_{g-1}(u)\right|+\sum_{i=g}^{D}\left|D_{i}(u)\right| \geqslant 2 g-1+D-g+1=D+g$. Since $D=n-g$, again by Lemma 5, we have $\left|D_{i}(u)\right|=2$ for all $1 \leqslant i \leqslant g-1$ and $\left|D_{i}(u)\right|=1$ for all $g \leqslant i \leqslant D$. By using similar proof techniques employed in Claim 1 of Lemma 7, we can show that for any i, j such that $i \leqslant g-1$ and $1 \leqslant i-j \leqslant g-3$, there are no arcs from $D_{i}(u)$ to $D_{j}(u)$. Thus there is at least an arc from $D_{g-1}(u)$ to $N_{1}(u)$, and this arc lies on a g-cycle. Therefore, the distance from u to this g-cycle is at most $1<D+1-g$ (recall that $D=g+1, g+2$ or $g+3)$, contradicting Lemma 3(1).

3. Closing remarks

Conjecture 1 is still open when $r \geqslant 3$. As it has been mentioned in [12], the conjectured bound cannot be decreased since $\exp (G)=\lfloor n / r\rfloor^{2}+1$ for all r-regular digraphs in $\mathscr{F}_{\mathscr{D}}$.

In order to settle Conjecture 1 completely, we believe that first of all a good upper bound on the girth g of all r-regular digraphs should be found so that one can use Lemma 2. In 1970, Behzad et al. [1] made the following conjecture.

Conjecture 2 (Behzad et al. [1]). Let G be an r-regular digraph of order n. Then $g \leqslant\lceil n / r\rceil$.

This conjecture has been proved for $n \leqslant 5$. For more details on the conjecture and two more related conjectures, we refer the reader to [11] and references therein.

Acknowledgements

I want to thank two referees for their many valuable suggestions leading to the clear presentation of the paper.

References

[1] M. Behzad, G. Chartrand, C. Wall, On minimal regular digraphs with given girth, Fund. Math. 69 (1970) 227-231.
[2] R.A. Brualdi, H.J. Ryser, Combinatorial Matrix Theory, Cambridge University Press, Cambridge, 1991.
[3] A.L. Dulmage, N.S. Mendelsohn, Gaps in the exponent set of primitive matrices, Illinois J. Math. 8 (1964) 642-656.
[4] K.H. Kim, J.R. Krabill, Circulant Boolean relation matrices, Czechoslovak Math. J. 24 (1974) 247-251.
[5] S. Neufeld, A diameter bound on the exponent of a primitive directed graph, Linear Algebra Appl. 245 (1996) 27-47.
[6] T. Nishimura, Short cycles in digraphs, Discrete Math. 72 (1988) 295-298.
[7] J. Shen, The proof of a conjecture about the exponent of primitive matrices, Linear Algebra Appl. 216 (1995) 185-203.
[8] J. Shen, An improvement of the Dulmage-Mendelsohn theorem, Discrete Math. 158 (1-3) (1996) 295-297.
[9] J. Shen, A bound on the exponent of primitivity in term of diameter, Linear Algebra Appl. 244 (1996) 21-34.
[10] J. Shen, A short proof of a theorem on primitive matrices, Congr. Numer. 121 (1996) 204-210.
[11] J. Shen, On the girth of digraphs, Discrete Math., submitted for publication.
[12] J. Shen, D. Gregory, Exponents of vertex-transitive digraphs, Proceedings of the International Symposium on Combinatorics and Applications, Tianjin, P.R. China, 1996.
[13] J. Soares, Maximum diameter of regular digraphs, J. Graph Theory 16 (5) (1992) 437-450.
[14] H. Wielandt, Unzerlegbare, nicht negative Matrizen, Math. Z. 52 (1950) 642-645.

[^0]: E-mail address: shen@mast.queensu.ca (J. Shen)

