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Abstract

A double latin square of order 2n on symbols s1;y; sn is a 2n � 2n matrix A ¼ ðaijÞ in
which each aij is one of the symbols s1;y; sn and each sk occurs twice in each row and twice

in each column. For k ¼ 1;y; n let BðA; skÞ be the bipartite graph with vertices

r1;y; r2n; c1;y; c2n and 4n edges ½ri; cj � corresponding to ordered pairs ði; jÞ such that aij ¼
sk: We say that A is Hamiltonian if BðA; skÞ is a cycle of length 4n for k ¼ 1;y; n: Two
double latin squares ðaijÞ; ða0ijÞ of order 2n on symbols s1;y; sn are said to be orthogonal if for

each ordered pair ðsh; skÞ of symbols there are four ordered pairs ði; jÞ such that aij ¼ sh;

a0ij ¼ sk:

We explore ways of constructing Hamiltonian double latin squares (HLS), symmetric HLS,

sets of mutually orthogonal HLS and pairs of orthogonal symmetric HLS. We identify those

arrays which can be obtained from HLS by amalgamating rows and amalgamating columns in

a certain sense, and we prove a similar result concerning symmetric arrays obtainable in this

way from symmetric HLS. These results can be proved either by using matroids or by a more

elementary method, and we illustrate both approaches. From these results we deduce a

characterisation of those matrices which are submatrices of HLS on n symbols, a similar result

concerning symmetric submatrices of symmetric HLS and some related results. Much of our

discussion uses graph-theoretic language, since HLS on n symbols are equivalent to

decompositions of K2n;2n into Hamiltonian cycles and symmetric HLS on n symbols are
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equivalent to decompositions of K2n into Hamiltonian paths (and these are equivalent to

decompositions of K2nþ1 into Hamiltonian cycles).
r 2002 Elsevier Science (USA). All rights reserved.

1. Definition and elementary construction

A double latin square of order 2n is a 2n � 2n matrix containing n symbols, such
that each cell contains exactly one symbol and each symbol occurs exactly twice in
each row and twice in each column. The occurrences of a symbol s describe a set of
disjoint cycles in a double latin square: if s occurs in 2n distinct cells

ði1; j1Þ; ði1; j2Þ; ði2; j2Þ; ði2; j3Þ; ði3; j3Þ; ði3; j4Þ;y; ðic; jcÞ; ðic; j1Þ

then these cells are said to constitute a cycle, or more specifically a s-cycle, of length

2c: In a double latin square of order 2n; the lengths of the cycles described by any
one symbol have sum 4n: A cycle of length 4n; the maximum possible length, is called
a Hamiltonian cycle of the double latin square.
In this paper we study double latin squares in which the occurrences of each

symbol describe a Hamiltonian cycle. Such double latin squares are called
Hamiltonian double latin squares. The expression ‘‘Hamiltonian double latin
square(s) of order 2n’’ will be abbreviated to HLSð2nÞ:
We let Aði; jÞ denote the entry in the cell ði; jÞ of a matrix A: If A is an n � n matrix

and g is a permutation of the set f1;y; ng then pgðAÞ will denote the matrix obtained
from A by applying the permutation g to its columns and pgðAÞ will denote the
matrix obtained from A by applying the permutation g to its rows: thus pgðAÞ ¼ B;
pgðAÞ ¼ C where Bði; gðjÞÞ ¼ CðgðiÞ; jÞ ¼ Aði; jÞ for i; j ¼ 1;y; n: The following
theorem (which incorporates an improvement suggested by a referee) describes an
easy way to construct several HLSð2nÞ from two latin squares of order n:

Theorem 1.1. If A;B are latin squares of order n on the same n symbols and g is a

permutation of f1;y; ng which has just one cycle (i.e. 1; g1ð1Þ; g2ð1Þ; g3ð1Þ;y; gn�1ð1Þ
are distinct) then

LðA;B; gÞ ¼
A B

pgðAÞ B

 !

is an HLSð2nÞ:

Proof. If a symbol s occupies a cell ði; jÞ of A then it must also occupy the cell
ði; gðjÞÞ of pgðAÞ and some cell ði; kÞ of B and some cell ðh; gðjÞÞ of A: Consequently, s
describes a cycle in L ¼ LðA;B; gÞ in which five successive cells are ði; jÞ; ði; n þ kÞ;
ðn þ i; n þ kÞ; ðn þ i; gðjÞÞ; ðh; gðjÞÞ: Hence, starting with the occurrence of s in the
first column of A; we find that in L there is a s-cycle which visits in succession the
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columns

1; k0; g1ð1Þ; k1; g2ð1Þ; k2; g3ð1Þ; k3;y; gn�1ð1Þ; kn�1; 1 of L;

for some k0; k1;y; kn�1Afn þ 1; n þ 2;y; 2ng: Since 1; gð1Þ; g2ð1Þ;y; gn�1ð1Þ are
distinct, it follows that s describes a Hamiltonian cycle in L: Since this argument
applies to every symbol, L is Hamiltonian. &

Example. If

and g is the permutation 1/3/2/4/1 then LðA;A; gÞ is

If we permute the rows and columns of an HLSð2nÞ we obtain another HLSð2nÞ:

Proposition 1.2. If A is an HLSð2nÞ and g; d are permutations of f1; 2;y; 2ng then

pgðpdðAÞÞ is an HLSð2nÞ:

Proof. If a symbol describes a Hamiltonian cycle

ði1; j1Þ; ði1; j2Þ; ði2; j2Þ; ði2; j3Þ;y; ði2n; j2nÞ; ði2n; j1Þ

in A then it describes a Hamiltonian cycle

ðgði1Þ; dðj1ÞÞ; ðgði1Þ; dðj2ÞÞ; ðgði2Þ; dðj2ÞÞ; ðgði2Þ; dðj3ÞÞ;

y; ðgði2nÞ; dðj2nÞÞ; ðgði2nÞ; dðj1ÞÞ

in pgðpdðAÞÞ: &
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2. Orthogonality

Let A;B be double latin squares of order 2n on the same symbols s1;y; sn: We
say that A;B are orthogonal if for each ordered pair ðsi; sjÞ of symbols there are four
ordered pairs ðr; sÞ such that Aðr; sÞ ¼ si and Bðr; sÞ ¼ sj: We abbreviate ‘‘mutually

orthogonal Hamiltonian double latin square(s) of order 2n’’ to MOHLSð2nÞ:
For nX2; let Hð2nÞ be the maximum number of MOHLSð2nÞ and NðnÞ be the

maximum number of mutually orthogonal latin spares of order n; or MOLSðnÞ:

Lemma 2.1. Hð2nÞXNðnÞ for all nX2:

Proof. Let g be a permutation of f1;y; ng which has just one cycle. If A1;y;ANðnÞ
are MOLSðnÞ then the NðnÞ double latin squares LðAr;Ar; gÞ ðr ¼ 1;y;NðnÞÞ are
clearly mutually orthogonal, and are Hamiltonian by Theorem 1.1. &

Problem 2.2. It is well known that NðnÞpn � 1; with equality occurring for some

values of n: What is the comparable bound for Hð2nÞ?

A bound due to Hedayat et al. [13,14] for the maximum number of mutually

orthogonal frequency squares implies that Hð2nÞpð2n � 1Þ2=ðn � 1Þ (since double
latin squares are special cases of frequency squares), but it seems unlikely that this
bound is the right one.
In contrast to the fact that NðnÞ ¼ 1 when n is 2 or 6, we have the following result:

Theorem 2.3. Hð2nÞX2 for all nX2:

Proof. When nef2; 6g; Lemma 2.1 gives Hð2nÞXNðnÞX2; and so it remains to
check that there exist two MOHLS(4) and two MOHLS(12). An example of the
former is

To obtain a pair of MOHLS(12), start with the latin squares
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Here A and B are obtained by using a direct product of a pair of MOLS(3) with an
LS(2) and B0 is obtained from B by interchanging three pairs of symbols. If g is the
permutation 1/6/5/4/3/2/1 then LðA;A; gÞ and LðB;B0; gÞ are
MOHLS(12). &

Not surprisingly, orthogonality of HLSð2nÞ is preserved by permutations of the
rows or columns.

Theorem 2.4. If fA1;y;Arg is a set of MOHLSð2nÞ and g; d are permutations of

f1;y; ng then fpgðpdðA1ÞÞ;y; pgðpdðArÞÞg is also a set of MOHLSð2nÞ:

Proof. This is easy to see using Proposition 1.2. &

3. Connections with graph theory

We use the following graph-theoretic language and conventions. As usual, VðGÞ
and EðGÞ denote the sets of vertices and edges, respectively, of a graph G: A spanning

subgraph of G is a subgraph S of G such that VðSÞ ¼ VðGÞ: A f1; 2g-factor of G is a
spanning subgraph S of G such that each vertex of G has degree 1 or 2 in S (i.e. such
that each component of S is a path of non-zero length or a cycle). For the purposes
of this paper, a decomposition of G is a set fS1;y;Srg of spanning subgraphs of G

such that each edge of G is in exactly one of them. This decomposition will be called
(i) a Hamiltonian decomposition of G if S1;y;Sr are Hamiltonian cycles of G; (ii) a
Hamiltonian path decomposition of G if S1;y;Sr are Hamiltonian paths of G; (iii) a
f1; 2g-factorisation of G if S1;y;Sr are f1; 2g-factors of G: An edge of a graph
joining vertices x; y will be denoted by ½x; y�: A path or cycle in a graph will be
denoted by /x1; x2;y; xmS or /x1; x2;y; xm; x1S; respectively, if it has m distinct
vertices x1;y; xm and its edges are ½x1; x2�; ½x2; x3�;y; ½xm�1; xm� and, in the case of a
cycle, ½xm; x1�:We use the customary notations Kn and Km;n for complete graphs and

complete bipartite graphs.
We describe here two connections between Hamiltonian double latin squares and

graph theory.
For the first of these, consider any 2n � 2n matrix A in which each cell contains

exactly one of the symbols s1;y; sn: Let K2n;2n be a complete bipartite graph with

vertices r1; r2;y; r2n; c1; c2;y; c2n and edges ½ri; cj� ði; j ¼ 1;y; 2nÞ: we think of the
vertices ri; cj as representing the ith row and the jth column of A; respectively. Let Sk

be the spanning subgraph of K2n;2n such that ½ri; cj�AEðSkÞ if and only if the cell ði; jÞ
of A contains sk ði; j ¼ 1;y; 2nÞ: Then fS1;y;S2ng is a decomposition of K2n;2n
which represents A in an obvious sense, and it is easily seen that fS1;y;S2ng is a
Hamiltonian decomposition of K2n;2n if and only if A is a Hamiltonian double latin

square. Thus we have:

Lemma 3.1. An HLSð2nÞ is equivalent to a Hamiltonian decomposition of K2n;2n:

A.J.W. Hilton et al. / Journal of Combinatorial Theory, Series B 87 (2003) 81–129 85



For a general reference about Hamiltonian decompositions, see [1], and for some
conceptually similar current work, see [8,21].
The second connection with graph theory is less obvious. It concerns symmetric

Hamiltonian double latin squares. We abbreviate ‘‘symmetric HLSð2nÞ’’ to
SHLSð2nÞ:We shall make use of f1; 2g-factorisations of K2n which comprise exactly
n f1; 2g-factors: these include Hamiltonian path decompositions of K2n by the
following (trivial) lemma:

Lemma 3.2. If D is a Hamiltonian path decomposition of K2n then jDj ¼ n and each

vertex of K2n is an endvertex of exactly one member of D:

Proof. Since jEðK2nÞj ¼ nð2n � 1Þ and each member ofD has 2n � 1 edges, it follows
that jDj ¼ n: Since the degrees of a vertex in the n members of D add up to 2n � 1; it
must be an endvertex of exactly one of them. &

For any positive integer m; let Zm denote the ring of residue classes modulo m:
Expressions which denote integers will also be used as names for the corresponding
residue classes modulo m; leaving the context to indicate the intended meaning.
Throughout Sections 3–5, we shall for convenience take VðK2nÞ to be Z2n:
Consequently, expressions which denote integers can also serve as names for
vertices of K2n; and two such expressions serve as different names for the same vertex
if they denote integers differing by a multiple of 2n:
Given a symmetric double latin square A of order 2n on symbols s1;y; sn; let

Hr ¼ HðA; srÞ be the spanning subgraph of K2n such that EðHrÞ ¼
f½i; j�: iaj and Aði; jÞ ¼ Aðj; iÞ ¼ srg: Then fH1;y;Hng is a decomposition of
K2n; and the presence of sr in the cells ði; jÞ; ðj; iÞ of A (where iaj) is witnessed by the
edge ½i; j� of K2n being in Hr: If rAf1;y; ng and iAf1;y; 2ng; the symbol sr appears
twice in the ith row of A; but only appearances of sr off the main diagonal of A give
rise to edges of Hr: Therefore, the degree in Hr of the vertex i is 2 if Aði; iÞasr and 1
if Aði; iÞ ¼ sr: Consequently each Hr is a f1; 2g-factor of K2n whose vertices of degree
1 correspond to the occurrences of sr on the main diagonal of A: It follows that
fH1;y;Hng is a f1; 2g-factorisation of K2n; which we shall call the f1; 2g-
factorisation corresponding to A:
If a particular Hr is a Hamiltonian path /i1; i2;y; i2nS of K2n then sr describes a

Hamiltonian cycle

ði1; i1Þ; ði1; i2Þ; ði3; i2Þ; ði3; i4Þ; ði5; i4Þ;y; ði2n�1; i2n�2Þ; ði2n�1; i2nÞ; ði2n; i2nÞ;

ði2n; i2n�1Þ; ði2n�2; i2n�1Þ;y; ði4; i5Þ; ði4; i3Þ; ði2; i3Þ; ði2; i1Þ

in A: Conversely, if a particular symbol sr describes a Hamiltonian cycle in A then
the corresponding f1; 2g-factorHr must clearly be connected, and so must be either a
Hamiltonian path or a Hamiltonian cycle of K2n; but Hr cannot be a Hamiltonian
cycle /i1; i2;y; i2n; i1S because then sr would describe two disjoint cycles

ði1; i2Þ; ði3; i2Þ; ði3; i4Þ; ði5; i4Þ;y; ði2n�1; i2n�2Þ; ði2n�1; i2nÞ; ði1; i2nÞ
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and

ði2; i1Þ; ði2; i3Þ; ði4; i3Þ; ði4; i5Þ;y; ði2n�2; i2n�1Þ; ði2n; i2n�1Þ; ði2n; i1Þ:

We conclude that sr describes a Hamiltonian cycle in A if and only if Hr is a
Hamiltonian path of K2n: Consequently, A is Hamiltonian if and only if fH1;y;Hrg
is a Hamiltonian path decomposition of K2n; and we have established the following
theorem:

Theorem 3.3. A symmetric double latin square of order 2n is Hamiltonian if and only if

the corresponding f1; 2g-factorisation of K2n is a Hamiltonian path decomposition.

Moreover, Lemma 3.2 implies that any Hamiltonian path decomposition
fP1;y;Png of K2n is the f1; 2g-factorisation corresponding to a symmetric double
latin square A on n symbols s1;y; sn such that

Aði; jÞ ¼ sr when iaj and ½i; j�AEðPrÞ;

Aði; iÞ ¼ sr when i is an endvertex of Pr:

From this observation and Theorem 3.3, we see that an SHLSð2nÞ is equivalent to a
Hamiltonian path decomposition of K2n: This, in turn, implies the following further
equivalence, which will be exploited in Section 8:

Corollary 3.4. An SHLSð2nÞ is equivalent to a Hamiltonian decomposition of K2nþ1:

Proof. We may clearly regard K2nþ1 as being obtained from K2n by adding a new
vertex v and edges joining v to the vertices of K2n: By Lemma 3.2, any Hamiltonian
path decomposition fH1;y;Hng of K2n gives rise to a Hamiltonian decomposition
fH 0

1;y;H 0
ng of K2nþ1; in which H 0

r is obtained from Hr by adding v and the edges of

K2nþ1 joining v to the endvertices ofHr: Conversely, any Hamiltonian decomposition
of K2nþ1 becomes a Hamiltonian path decomposition of K2n when we delete v and its
incident edges from the Hamiltonian circuits concerned. Therefore, Hamiltonian
decompositions of K2nþ1 are equivalent to Hamiltonian path decompositions of K2n
and hence to symmetric Hamiltonian double latin squares of order 2n: &

4. Symmetry

We have just seen that an SHLSð2nÞ is equivalent to a Hamiltonian path
decomposition of K2n and also to a Hamiltonian decomposition of K2nþ1: It is well
known (see, for example, [7, Chapter1, Theorem 11]) that such decompositions exist
for every positive integer n; and so we have:

Theorem 4.1. An SHLSð2nÞ exists for every positive integer n:
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In fact, each of Corollary 4.10, Theorems 8.2 and 9.1 below implies Theorem 4.1.

Lemma 4.2. In a symmetric Hamiltonian double latin square, each symbol occurs

exactly twice on the main diagonal.

Proof. Let A be an SHLSð2nÞ on symbols s1;y; sn: Then the corresponding f1; 2g-
factorisation fH1;y;Hng of K2n is obtained, as explained in Section 3, by taking Hr

to beHðA; srÞ for r ¼ 1;y; n: By Theorem 3.3, eachHr is a Hamiltonian path of K2n
and so has exactly two vertices of degree 1. It follows that each sr occurs exactly
twice on the main diagonal of A because, as explained in Section 3, Aði; iÞ is sr if and
only if the vertex i has degree 1 in Hr: &

If A is an SHLSð2nÞ on symbols s1;y; sn then there is by Lemma 4.2 a partition
ffi1; j1g; fi2; j2g;y; fin; jngg of f1; 2;y; 2ng into n subsets of cardinality 2 such that
Aðir; irÞ ¼ Aðjr; jrÞ ¼ sr for r ¼ 1;y; n: This partition will be called the diagonal

partition induced by A:
For some purposes, it may be convenient to take the symbols in a double latin

square of order 2n to be the numbers 1;y; n rather than arbitrary objects s1;y; sn:
If A is an SHLSð2nÞ on the symbols 1;y; n whose main diagonal is
ð1; 2;y; n; 1; 2;y; nÞ; we shall say that A is in normal form. Thus A is in normal
form if Aðr; rÞ ¼ Aðn þ r; n þ rÞ ¼ r for r ¼ 1;y; n:

Example 4.3. The following SHLS(10) are both in normal form:

By Proposition 1.2 and Lemma 4.2, any SHLSð2nÞ on the symbols 1;y; n can be
transformed into an SHLSð2nÞ in normal form by applying a suitable permutation to
its rows and the same permutation to its columns.
We shall say that a double latin square A of order 2n on the symbols 1;y; n is

cyclic if Aði0; j0Þ  Aði; jÞ þ 1 ðmod nÞ whenever i0  i þ 1 ðmod 2nÞ and j0 
j þ 1 ðmod 2nÞ: In other words, A is cyclic if Aði þ 1; j þ 1Þ ¼ Aði; jÞ þ 1 for i; j ¼
1;y; 2n; with i þ 1; j þ 1 interpreted modulo 2n and Aði; jÞ þ 1 interpreted modulo
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n: In a cyclic double latin square of order 2n; if we start at a cell containing 1 and
travel ‘‘South-East’’, we encounter the symbols 1; 2;y; n; 1; 2;y; n in that order,
provided that on reaching a cell ði; 2nÞ ðionÞ; ð2n; jÞ ðjonÞ or ð2n; 2nÞ we move next
to the cell ði þ 1; 1Þ; ð1; j þ 1Þ or ð1; 1Þ respectively. An example of a cyclic HLS(10)
which is not symmetric is

The SHLS(10) in Examples 4.3 are also both cyclic.
If a cyclic HLSð2nÞ is also symmetric, it is by Theorem 3.3 associated with a

Hamiltonian path decomposition of K2n: We now examine those Hamiltonian path
decompositions of K2n which correspond to cyclic SHLSð2nÞ: We also seek ways of
constructing such decompositions, which is tantamount to constructing examples of
cyclic SHLSð2nÞ:
If e denotes an edge ½x; y� of K2n and rAZ2n then e þ r will denote the edge

½x þ r; y þ r� of K2n: If U is a subset of VðK2nÞ ¼ Z2n or of EðK2nÞ then U þ r will
denote the set fu þ r: uAUg and U � r will denote U þ ð�rÞ: If S is a spanning
subgraph of K2n then S þ r; S � r will denote the spanning subgraphs of K2n such
that EðS þ rÞ ¼ EðSÞ þ r;EðS � rÞ ¼ EðSÞ � r; respectively. We shall call S a cyclic

spanning subgraph and call fS þ 1;S þ 2;y;S þ ng a cyclic decomposition of K2n
generated by S if each edge of K2n belongs to exactly one of the spanning subgraphs
S þ 1;S þ 2;y;S þ n:

Lemma 4.4. If S is a cyclic spanning subgraph of K2n then S þ n ¼ S:

Proof. Since fEðS þ 1Þ;EðS þ 2Þ;y;EðS þ nÞg is a partition of EðK2nÞ; it follows
that fEðS þ 1Þ � 1;EðS þ 2Þ � 1;y;EðS þ nÞ � 1g is also a partition of EðK2nÞ; i.e.
fEðSÞ;EðS þ 1Þ;y;EðS þ n � 1Þg is a partition of EðK2nÞ: Since both fEðs þ
1Þ;EðS þ 2Þ;y;EðS þ nÞg and fEðSÞ;EðS þ 1Þ;y;EðS þ n � 1Þg are partitions of
EðK2nÞ; it follows that EðS þ nÞ ¼ EðSÞ; and so S þ n ¼ S: &

Lemma 4.5. If a symmetric double latin square of order 2n is cyclic then the

corresponding f1; 2g-factorisation of K2n is cyclic. Conversely, every cyclic f1; 2g-
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factorisation of K2n is the f1; 2g-factorisation corresponding to some cyclic symmetric

double latin square of order 2n:

Proof. Let

f ðrÞ ¼ r þ 1 ðr ¼ 1;y; 2n � 1Þ; f ð2nÞ ¼ 1;

gðrÞ ¼ r þ 1 ðr ¼ 1;y; n � 1Þ; gðnÞ ¼ 1:

Suppose that A is a cyclic symmetric double latin square of order 2n: Then the
corresponding f1; 2g-factorisation of K2n is fH1;y;Hng; where Hr ¼ HðA; rÞ for
r ¼ 1;y; n: Suppose that i; jAf1;y; 2ng; iaj; rAf1;y; ng and e is the edge ½i; j� of
K2n: Then e þ 1 ¼ ½i þ 1; j þ 1� ¼ ½f ðiÞ; f ðjÞ� because i þ 1 ¼ f ðiÞ and j þ 1 ¼ f ðjÞ in
Z2n ¼ VðK2nÞ: Therefore e þ 1AEðHgðrÞÞ if and only if Aðf ðiÞ; f ðjÞÞ ¼ gðrÞ; which
(since A is cyclic) is true if and only if Aði; jÞ ¼ r; which is true if and only if
e ¼ ½i; j�AEðHrÞ: Hence EðHgðrÞÞ ¼ EðHrÞ þ 1: Since this is true for r ¼ 1;y; n it

follows that EðHrÞ ¼ EðHnÞ þ r for r ¼ 1;y; n and therefore Hr ¼ Hn þ r for r ¼
1;y; n: Therefore the f1; 2g-factorisation fH1;y;Hng corresponding to A is cyclic.
Now suppose thatF is a cyclic f1; 2g-factorisation of K2n: ThenF ¼ fS þ 1;S þ

2;y;S þ ng for some cyclic spanning subgraph S of K2n: Since S þ n þ 1 ¼ S þ 1 by
Lemma 4.4, it follows that S þ r þ 1 ¼ S þ gðrÞ for r ¼ 1;y; n: Each vertex of K2n
has degree 2n � 1; and so must have degree 1 in just one member ofF and degree 2
in the others. Consequently,F ¼ fS þ 1;S þ 2;y;S þ ng is the f1; 2g-factorisation
of K2n corresponding to the symmetric double latin square B defined by

Bði; jÞ ¼ r when iaj and ½i; j�AEðS þ rÞ;

Bði; iÞ ¼ r when the vertex i has degree 1 in S þ r:

If i; jAf1;y; ng and iaj and Bði; jÞ ¼ r then ½i; j�AEðS þ rÞ and so ½f ðiÞ; f ðjÞ� ¼
½i þ 1; j þ 1�AEðS þ r þ 1Þ ¼ EðS þ gðrÞÞ and therefore Bðf ðiÞ; f ðjÞÞ ¼ gðrÞ: If
iAf1;y; ng and Bði; iÞ ¼ r then the vertex i has degree 1 in S þ r and so the vertex
i þ 1 ¼ f ðiÞ has degree 1 in S þ r þ 1 ¼ S þ gðrÞ and therefore Bðf ðiÞ; f ðiÞÞ ¼ gðrÞ:
Hence Bðf ðiÞ; f ðjÞÞ ¼ gðBði; jÞÞ for i; j ¼ 1;y; 2n: Therefore B is cyclic, and so F is
the f1; 2g-factorisation corresponding to a cyclic symmetric double latin square of
order 2n: &

Corollary 4.6. If an SHLSð2nÞ is cyclic then the corresponding f1; 2g-factorisation of

K2n is a cyclic Hamiltonian path decomposition of K2n: Conversely, every cyclic

Hamiltonian path decomposition of K2n is the f1; 2g-factorisation corresponding to

some cyclic SHLSð2nÞ:

Proof. This follows from Theorem 3.3 and Lemma 4.5. &

Thus, searching for cyclic SHLSð2nÞ is equivalent to searching for cyclic
Hamiltonian path decompositions of K2n; which is equivalent to searching for
generators of such decompositions, i.e. cyclic Hamiltonian paths of K2n:
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We let r denotes the automorphism of K2n such that rðxÞ ¼ x þ 1 for each
xAVðK2nÞ ¼ Z2n: Clearly, r induces a permutation of EðK2nÞ whose orbits are
E1;y;En; where

Er ¼ f½1; 1þ r�; ½2; 2þ r�;y; ½2n; 2n þ r�g

for r ¼ 1;y; n � 1 and
En ¼ f½1; 1þ n�; ½2; 2þ n�;y; ½n; 2n�g:

Lemma 4.7. A spanning subgraph S of K2n is cyclic if and only if jEðSÞ-Enj ¼ 1 and

there are edges e1;y; en�1 of K2n such that EðSÞ-Er ¼ fer; er þ ng for r ¼ 1;y;
n � 1:

Proof. By definition, S is cyclic if and only if each edge of K2n is in exactly one of
S þ 1;S þ 2;y;S þ n: This condition is satisfied by the edges in En if and only if
jEðSÞ-Enj ¼ 1; and is satisfied by the edges in Er; where rAf1;y; n � 1g; if and
only if EðSÞ-Er ¼ fer; er þ ng for some edge er: &

Definition. We shall say that a set A is a transversal of disjoint sets B1;y;Bm if
ADB1,?,Bm and jA-Brj ¼ 1 for r ¼ 1;y;m: For nX2; we define an n-
procession to be a sequence s1;y; sn of n elements of Z2n which satisfies the
conditions

(P1) fs1;y; sng is a transversal of the sets f0; ng; f1; n þ 1g; f2; n þ 2g;y; fn �
1; 2n � 1g;

(P2) fs2 � s1; s3 � s2;y; sn � sn�1g is a transversal of the sets f1;�1g; f2;�2g;
f3;�3g;y; fn � 1;�ðn � 1Þg:

We define an n-gradation ðnX2Þ to be a sequence a1;y; an�1 of n � 1 elements of
Z2n which satisfies the conditions

(G1) fa1; a1 þ a2; a1 þ a2 þ a3;y; a1 þ a2 þ?þ an�1g is a transversal of the sets
f1; n þ 1g; f2; n þ 2g; f3; n þ 3g;y; fn � 1; 2n � 1g;

(G2) fa1; a2;y; an�1g is a transversal of the sets f1;�1g; f2;�2g; f3;�3g;y; fn �
1;�ðn � 1Þg:

These are, in a sense, equivalent concepts, since a sequence is an n-gradation if and
only if it is s2 � s1; s3 � s2;y; sn � sn�1 for some n-procession s1;y; sn and a
sequence is an n-procession if and only if it is x; x þ a1; x þ a1 þ a2; x þ a1 þ a2 þ
a3;y; x þ a1 þ?þ an�1 for some xAZ2n and some n-gradation a1;y; an�1:
Convenience will dictate whether we use n-processions or n-gradations in any
particular part of our discussion.

Illustration. For any integer nX2; an obvious example of an n-gradation is the

sequence 1;�2; 3;�4; 5;�6;y; ð�1Þnðn � 1Þ: An associated n-procession is the
sequence x; x þ 1; x � 1; x þ 2; x � 2; x þ 3; x � 3;y ending with its nth term x þ n

2

or x � n�1
2
; where x is any element of Z2n:
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It is easily checked that the only 4-gradations are the eight sequences

1; 2; 3; 1;�2; 3; �1; 2;�3; �1;�2;�3;

3; 2; 1; 3;�2; 1; �3; 2;�1; �3;�2;�1:

In the arithmetic of Z8; these are just the sequences u; v; 3u where uAf�3;�1; 1; 3g;
vAf�2; 2g: It follows that there are just sixty-four 4-processions, namely the
sequences x; x þ u; x þ u þ v; x þ 4u þ v where xAZ8; uAf�3;�1; 1; 3g; vAf�2; 2g-
or, more simply, the sequences x; x þ u; x þ u þ v; x � v with x; u; v as stated.

Definition. If a sequence s1;y; sn of elements of Z2n satisfies (P1) then Hðs1;y; snÞ
will denote the Hamiltonian path /s1; s2;y; sn; sn þ n; sn�1 þ n; sn�2 þ n;y; s1 þ nS
of K2n; if we let siþn denote sn�iþ1 þ n for i ¼ 1;y; n; then Hðs1;y; snÞ is the
Hamiltonian path /s1; s2;y; s2nS: If a sequence a1;y; an�1 of elements of Z2n
satisfies (G1) then H½a1;y; an�1� will denote the Hamiltonian path Hð0; a1; a1 þ
a2; a1 þ a2 þ a3;y; a1 þ a2 þ?þ an�1Þ of K2n:

Lemma 4.8. A Hamiltonian path Q of K2n ðnX2Þ is cyclic if and only if Q ¼
Hðs1;y; snÞ for some n-procession s1;y; sn:

Proof. Assume first that Q ¼ Hðs1;y; snÞ where s1;y; sn is an n-procession. Then it
follows from (P2) that EðQÞ-En ¼ f½sn; sn þ n�g and that EðQÞ-E1;
EðQÞ-E2;y;EðQÞ-En�1 are the sets

f½s1; s2�; ½s1 þ n; s2 þ n�g; f½s2; s3�; ½s2 þ n; s3 þ n�g;y; f½sn�1; sn�; ½sn�1 þ n; sn þ n�g

in some order. Therefore Q is cyclic by Lemma 4.7.
Now assume that Q is cyclic. Then, by Lemma 4.4, the automorphism x/x þ n of

K2n induces an automorphism of Q: Since this automorphism of Q is not the identity
automorphism, it must be the one which interchanges the endvertices of Q; and so Q

must be /s1; s2;y; sn; sn þ n; sn�1 þ n; sn�2 þ n;y; s1 þ nS for some s1;y; snAZ2n:
Since the vertices s1; s2;y; sn; sn þ n; sn�1 þ n;y; s1 þ n of Q are distinct, the
sequence s1;y; sn satisfies (P1). Since the edge ½sn; sn þ n� of Q belongs to En; it
follows from Lemma 4.7 that each of E1;y;En�1 includes two of the remaining
2n � 2 edges of Q; and so s1;y; sn must satisfy (P2). Hence s1;y; sn is
an n-procession. Moreover Q ¼ /s1; s2;y; sn; sn þ n; sn�1 þ n;y; s1 þ nS ¼
Hðs1;y; snÞ: &

Corollary 4.9. A Hamiltonian path Q of K2nðnX2Þ is cyclic if and only if

Q ¼ H½a1;y; an�1� þ x for some n-gradation a1;y; an�1 and some xAZ2n:

Proof. If Q is cyclic then by Lemma 4.8 there is an n-procession s1;y; sn such that

Q ¼ Hðs1;y; snÞ ¼ H½s2 � s1; s3 � s2;y; sn � sn�1� þ s1;
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which is of the required form since s2 � s1; s3 � s2;y; sn � sn�1 is an n-gradation.
Conversely, if a1;y; an�1 is an n-gradation and xAZ2n then

H½a1;y; an�1� þ x ¼ Hðx; x þ a1; x þ a1 þ a2;y; x þ a1 þ?þ an�1Þ;

which is a cyclic Hamiltonian path by Lemma 4.8 since x; x þ a1; x þ a1 þ a2;y; x þ
a1 þ?þ an�1 is an n-procession. &

Corollary 4.10. There exists a cyclic SHLSð2nÞ for every positive integer n:

Proof. The double latin square is a cyclic SHLS(2). For nX2; it follows from

Corollary 4.9 that H½1;�2; 3;�4; 5;�6;y; ð�1Þnðn � 1Þ� is a cyclic Hamiltonian
path of K2n and so generates a cyclic Hamiltonian path decomposition of K2n; which
by Corollary 4.6 implies the existence of a cyclic SHLSð2nÞ: &

(This proof of Corollary 4.10 is really just a disguised version of the usual way of
proving that K2n has a Hamiltonian path decomposition for every n:)
Searching for cyclic SHLSð2nÞ is by Corollary 4.6 equivalent to searching for

cyclic Hamiltonian paths of K2n; which is by Corollary 4.9 equivalent (when nX2) to
searching for n-gradations. It is therefore worth noticing three simple transforma-
tions which generate new n-gradations from known ones.
Firstly, it is easily seen that if a1;y; an�1 is an n-gradation then so is ka1;y; kan�1

for any integer k coprime to 2n: The multiplication by k is of course performed in
Z2n: For example, the 10-gradation 1;�2; 3;�4; 5;�6; 7;�8; 9 yields another 10-
gradation 3;�6; 9; 8;�5; 2; 1;�4; 7 when we multiply its terms by 3 in the arithmetic
of Z20:
Secondly, if a1; a2;y; an�1 is an n-gradation then so is an�1; an�2;y; a1: Reversing

the order of the terms obviously preserves property (G2) of an n-gradation, and it
also preserves (G1) because (G1) is equivalent to saying that none of the elements
ai þ aiþ1 þ aiþ2 þ?þ aj�1 þ aj ð1pipjpn � 1Þ of Z2n belongs to its subgroup

f0; ng: Combining this observation with the preceding one, we see that if a1;y; an�1
is an n-gradation then so is �an�1;�an�2;y;�a1 and therefore H½a1; a2;y; an�1�;
H½�an�1;�an�2;y;�a1� generate two cyclic Hamiltonian path decompositions
D;Dn of K2n: For any Hamiltonian path P ¼ /x1; x2;y; x2nS of K2n; let P

n denote
the Hamiltonian path /xn; xn�1;y; x1; x2n; x2n�1;y; xnþ1S obtained from P by
removing its middle edge ½xn; xnþ1� and adding the edge ½x1; x2n� of K2n: Then it is
easily checked that

H½�an�1;�an�2;y;�a1� ¼ H½a1; a2;y; an�1�n � ða1 þ?þ an�1Þ

and consequently Dn ¼ fPn: PADg:
Thirdly, adding n (in the arithmetic of Z2n) to some of the terms of an n-gradation

will preserve property (G1). It may not in general preserve (G2), but it will clearly do
so if we add n to those terms which belong to S,ð�SÞ where S is a subset of
f1;y; n � 1g such that S ¼ n � S: (As usual, �S and n � S mean f�r: rASg and
fn � r: rASg respectively.) For example, taking n ¼ 12 and S ¼ f2; 3; 6; 9; 10g; the
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12-gradation 5, �10; 3;�8;�11; 6;�1;�4; 9;�2; 7 becomes a new 12-gradation
5; 2;�9;�8;�11;�6;�1;�4;�3; 10; 7 when we add 12 (in Z24) to each of its terms
�10; 3; 6; 9;�2:
Corollary 4.9 says that the sequence of vertices of a cyclic Hamiltonian path of K2n

can be derived from a shorter sequence, namely an n-gradation. In many cases, this
in turn can be derived from an even shorter sequence, as indicated by Theorems 4.11
and 4.12 below. These theorems require a preliminary definition. If mð40Þ and x are
integers, let ½x�m denote the residue class of x modulo m (so that ½x�mAZm and, in

fact, ½x�m is the element of Zm which we commonly denote by just the symbol x).

Then the representatives of ½x�m in Z2m are the elements ½x�2m; ½x þ m�2m of Z2m:

Theorem 4.11. If a1;y; an�1is an n-gradation and %ai is a representative of ai in

Z4n ði ¼ 1;y; n � 1Þ and dAf�1; 1g then %a1; %a2;y; %an�1; dn; 2n � %an�1; 2n �
%an�2;y; 2n � %a1 is a 2n-gradation.

Proof. That %a1; %a2;y; %an�1; dn; 2n � %an�1; 2n � %an�2;y; 2n � %a1 satisfies (G1) fol-
lows from the observation that in Z2n

%a1 þ %a2 þ?þ %ai þ n ¼ %a1 þ?þ %an�1 þ dn þ ð2n � an�1Þ
þð2n � an�2Þ þ?þ ð2n � aiþ1Þ:

That (G2) is satisfied follows by observing that in Z4n one of %ai and 2n � %ai is in the
set f1; 2;y; n � 1g,f�1;�2;y;�ðn � 1Þg and the other in the set
fn þ 1; n þ 2;y; 2n � 1g,f�ðn þ 1Þ;�ðn þ 2Þ;y;�ð2n � 1Þg: &

Theorem 4.12. If a1;y; an�1AZ2n�1 and both fa1;y; an�1g and fa1; a1 þ a2;
a1 þ a2 þ a3;y; a1 þ a2 þ?þ an�1g are transversals of the sets

f1;�1g; f2;�2g;y; fn � 1;�ðn � 1Þg and %ai is a representative of ai in Z4n�2 ði ¼
1;y; n � 1Þ then %an�1; %an�2;y; %a2; %a1; 2n � 1þ %a1; 2n � 1þ %a2;y; 2n � 1þ
%an�2; 2n � 1þ %an�1 is a ð2n � 1Þ-gradation.

Proof. First, we prove that the sequence %an�1; %an�2;y; %a1; ð2n � 1Þ þ %a1;y; ð2n �
1Þ þ %an�1 satisfies (G2). We need to show that this sequence is a transversal of
f1;�1g; f2;�2g;y; f2n � 2;�ð2n � 2Þg: Observe that the sequence has the correct
number of elements. Therefore, to show that the sequence is a transversal, we only
need to show that no two elements are in the same set. If one of %ai and ð2n � 1Þ þ %ai

equals one of %aj and ð2n � 1Þ þ %aj for some iaj; 1pi; jpn � 1 in Z4n�2; then ai ¼ aj

in Z2n�1; a contradiction since fa1; a2;y; an�1g is a transversal.
Next we show that the given sequence satisfies (G1). We need to show that, writing

%A ¼ %a1 þ %a2 þ?þ %an�1;

%an�1; %an�1 þ %an�2;y; %an�1 þ %an�2 þ?þ %a1; %A þ ð2n � 1Þ þ %a1;

%A þ 2ð2n � 1Þ þ %a1 þ %a2;y; %A þ ðn � 1Þð2n � 1Þ þ?þ %a1 þ %a2 þ?þ %an�1
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is a transversal in Z4n�2 of the sets

f1; ð2n � 1Þ þ 1g; f2; ð2n � 1Þ þ 2g;y; fð2n � 2Þ; ð2n � 1Þ þ ð2n � 2Þg:

The number of terms, 2n � 2; is the same as the number of sets. Therefore to show
that the sequence is a transversal, we only need to show that no two elements are in
the same set.
Suppose %an�1 þ?þ %an�iAf %an�1 þ?þ %an�j; %an�1 þ?þ %an�j þ ð2n � 1Þg where

iaj; 1pi; jpn � 1; in Z4n�2: Then in Z2n�1 we find that

an�1 þ?þ an�i ¼ an�1 þ?þ an�j :

Subtracting these from a1 þ?þ an�1 we obtain

a1 þ?þ an�i�1 ¼ a1 þ?þ an�j�1;

contradicting the assumption that fa1; a1 þ a2;y; a1 þ a2 þ?þ an�1g is a trans-
versal. A similar argument shows that %A þ ið2n � 1Þ þ %a1 þ?þ %aief %A þ jð2n �
1Þ þ %a1 þ?þ %aj ; %A þ jð2n � 1Þ þ %a1 þ?þ %aj þ ð2n � 1Þg if iaj; 1pi; jpn � 1:
If %an�1 þ?þ %an�iAf %A þ jð2n � 1Þ þ %a1 þ?þ %aj; %A þ jð2n � 1Þ þ %a1 þ?þ

%aj þ ð2n � 1Þg; 1pi; jpn � 1; in Z4n�2; then, in Z2n�1;

an�1 þ?þ an�i ¼ ða1 þ a2 þ?þ an�1Þ þ a1 þ?þ aj

so that

a1 þ a2 þ?þ aj ¼ �ða1 þ?þ an�iÞ:

But this contradicts the assumption that a1; a1 þ a2;y; a1 þ a2 þ?þ an�1 is a
transversal of the sets f1;�1g; f2;�2g;y; fn � 1;�ðn � 1Þg: &

Recall that r denotes the automorphism x/x þ 1 of K2n: Consequently, rn is the
automorphism of K2n which interchanges each pair of vertices x; x þ n: If, in K2n; we
identify pairs of vertices which are interchanged by rn and identify pairs of edges

which are interchanged by rn; we obtain a multigraph Kn
n with n vertices, in which

each vertex is incident with one loop and each pair of distinct vertices are joined by
two edges. Under these identifications, the automorphism r of K2n induces an

automorphism rn of Kn
n which permutes its vertices cyclically. Moreover, under the

foregoing identifications, a cyclic Hamiltonian path decomposition of K2n becomes a

decomposition of Kn
n into spanning subgraphs each consisting of a Hamiltonian path

with a loop attached to one of its endvertices, and rn permutes the members of this
decomposition cyclically. Some of our observations about n-gradations are

interpretable in terms of such decompositions of Kn
n : Studying these decompositions

might therefore yield further information and insight.

5. Orthogonality and symmetry

We shall abbreviate ‘‘mutually orthogonal symmetric HLSð2nÞ’’ to MOSHLSð2nÞ:
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Example 5.1. For n ¼ 1; 2; 3; 4 a pair An;Bn of MOSHLSð2nÞ is given below:

We are indebted to a referee for the pair A3;B3 and to D.A. Pike who found the pair
A4;B4 on a computer.

The two SHLS(10) in Example 4.3 are also mutually orthogonal.

Lemma 5.2. If two SHLSð2nÞ are orthogonal then they induce the same diagonal

partition.

Proof. Let A;B be MOSHLSð2nÞ on symbols s1;y; sn: If p; qAf1;y; 2ng;
Aðp; pÞ ¼ sr ¼ Aðq; qÞ and Bðp; pÞ ¼ ssaBðq; qÞ then, by Lemma 4.2, p is the only
value of i such that Aði; iÞ ¼ sr and Bði; iÞ ¼ ss: Therefore the orthogonality of A;B

requires that there be exactly three ordered pairs ði; jÞ such that iaj; Aði; jÞ ¼ sr and
Bði; jÞ ¼ ss; which contradicts the symmetry of A;B: This contradiction shows that if
p; qAf1; 2;y; 2ng and Aðp; pÞ ¼ Aðq; qÞ then Bðp; pÞ ¼ Bðq; qÞ; thus proving Lemma
5.2. &

Proposition 5.3. If there exist p MOSHLSð2nÞ then there exist p MOSHLSð2nÞ in

normal form.

Proof. Let A1;y;Ap be MOSHLSð2nÞ: Then A1;y;Ap all induce the same

diagonal partition by Lemma 5.2, and so there exists a permutation g of f1; 2;y; 2ng

A.J.W. Hilton et al. / Journal of Combinatorial Theory, Series B 87 (2003) 81–12996



such that pgðpgðArÞÞ ¼ Br (say) induces the diagonal partition ff1; n þ 1g; f2; n þ
2g;y; fn; 2ngg for r ¼ 1;y; p:Moreover B1;y;Bp are Hamiltonian by Proposition

1.2, and are symmetric and mutually orthogonal since A1;y;Ap have these

properties. For r ¼ 1;y; p let Cr denote the double latin square obtained from Br

when each symbol s is replaced throughout Br by the number iAf1;y; ng such that
Brði; iÞ ¼ Brðn þ i; n þ iÞ ¼ s: Then C1;y;Cp are MOSHLSð2nÞ since B1;y;Bp are

MOSHLSð2nÞ; and C1;y;Cp are in normal form. &

Recalling that symmetric double latin squares of order 2n can be represented by
f1; 2g-factorisations of K2n; we now consider how orthogonality of symmetric
double latin squares translates into a property of the corresponding f1; 2g-
factorisations.

Definition. Let V1ðGÞ denote the set of vertices which have degree 1 in a graph G:We
shall say that two f1; 2g-factors H;H 0 of K2n are orthogonal if 2jEðH-H 0Þj þ
jV1ðHÞ-V1ðH 0Þj ¼ 4: We shall say that two f1; 2g-factorisations F;F0 of K2n are

orthogonal if each member of F is orthogonal to each member of F0:

For a general reference about orthogonality in graphs, see [2].

Lemma 5.4. Two symmetric double latin squares of order 2n on the same symbols are

orthogonal if and only if the corresponding f1; 2g-factorisations of K2n are orthogonal.

Proof. Let A;B be symmetric double latin squares of order 2n on the same symbols
s1;y; sn: Let the corresponding f1; 2g-factorisations of K2n be fH1;y;Hng and
fH 0

1;y;H 0
ng where Hr ¼ HðA; srÞ and H 0

r ¼ HðB; srÞ for r ¼ 1;y; n: Suppose that
i; jAf1; 2;y; 2ng and r; sAf1;y; ng: If iaj then

Aði; jÞ ¼ sr 3 Aðj; iÞ ¼ sr 3 ½i; j�AEðHrÞ;

Bði; jÞ ¼ ss 3 Bðj; iÞ ¼ ss 3 ½i; j�AEðH 0
sÞ:

Moreover, as explained in Section 3,

Aði; iÞ ¼ sr 3 iAV1ðHrÞ;

Bði; iÞ ¼ ss 3 iAV1ðH 0
sÞ:

Therefore, there are exactly 2jEðHr-H 0
sÞj þ jV1ðHrÞ-V1ðH 0

sÞj ordered pairs ði; jÞ
such that Aði; jÞ ¼ sr and Bði; jÞ ¼ ss: It follows that A;B are orthogonal if and only
if 2jEðHr-H 0

sÞj þ jV1ðHrÞ-V1ðH 0
sÞj ¼ 4 for all r; sAf1;y; ng; i.e. if and only if the

f1; 2g-factorisations fH1;y;Hng and fH 0
1;y;H 0

ng are orthogonal. &

In particular, Lemma 5.4 implies that two SHLSð2nÞ are orthogonal if and only if
the corresponding Hamiltonian path decompositions of K2n are orthogonal. In this
connection, the following further lemma is helpful.
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Lemma 5.5. Two Hamiltonian path decompositions of K2n are orthogonal

if and only if they can be expressed in the forms fH1;y;Hng and fH 0
1;y;H 0

ng
where

(i) for each rAf1;y; ng;Hr has the same endvertices as H 0
r;

(ii) jEðHr-H 0
rÞj ¼ 1 for r ¼ 1;y; n;

(iii) jEðHr-H 0
sÞj ¼ 2 when r; sAf1;y; ng and ras:

Proof. Assume first that fH1;y;Hng and fH 0
1;y;H 0

ng are Hamiltonian path
decompositions of K2n satisfying (i)–(iii). Then jV1ðHrÞ-V1ðH 0

rj ¼ 2 for r ¼ 1;y; n

by (i); and V1ðHrÞ-V1ðH 0
sÞ ¼ | when ras by (i) and Lemma 3.2. These observations

and (ii) and (iii) imply that 2jEðHr-H 0
sÞj þ jV1ðHrÞ-V1ðH 0

sÞj ¼ 4 for all

r; sAf1;y; ng and so fH1;y;Hng and fH 0
1;y;H 0

ng are orthogonal.
Now assume that D;D0 are orthogonal Hamiltonian path decompositions of K2n:

Then jDj ¼ jD0j ¼ n by Lemma 3.2, and jEðH-H 0jp2 for all HAD; H 0AD0 since
D;D0 are orthogonal. Since each Hamiltonian path of K2n has 2n � 1 edges, it
follows that each member of D shares one edge with one member of D0 and two
edges with each of the other n � 1 members ofD0 and that the same is true withD;D0

interchanged. Therefore, we can choose an ordering H1;y;Hn of the members of D

and an orderingH1;y;H 0
n of the members ofD

0 such that (ii) and (iii) are true. Then
(i) follows from (ii) and the fact that 2jEðHr-H 0

rÞj þ jV1ðHrÞ-V1ðH 0
rÞj ¼ 4 for

r ¼ 1;y; n: &

By Corollary 4.6 and Lemma 5.4, two cyclic SHLSð2nÞ are orthogonal if and only
if the corresponding cyclic Hamiltonian path decompositions of K2n are orthogonal.
Moreover, a cyclic Hamiltonian path decomposition of K2n is generated by a cyclic
Hamiltonian path which, by Lemma 4.8, is Hðs1;y; snÞ for some n-procession
s1;y; sn: So we might ask what conditions on two n-processions s1;y; sn and
t1;y; tn ensure that Hðs1;y; snÞ and Hðt1;y; tnÞ generate orthogonal cyclic
Hamiltonian path decompositions of K2n: This will in effect provide a test for
orthogonality of two cyclic SHLSð2nÞ:
This question is answered by Theorem 5.7, whose statement is slightly simplified

by assuming that s1 ¼ t1: This assumption involves no real loss of generality, in view
of the following simple observation:

Lemma 5.6. If D is a cyclic Hamiltonian path decomposition of K2n and xAZ2n
then there exists an n-procession s01;y; s0n such that s01 ¼ x and Hðs01;y; s0nÞ
generates D:

Proof. Since D is a cyclic Hamiltonian path decomposition, it is generated by some
cyclic Hamiltonian path H; and H ¼ Hðs1;y; snÞ for some n-procession s1;y; sn by
Lemma 4.8. Let y ¼ x � s1: By Lemma 4.4 (or by an easy inference from the
definition of Hðs1;y; snÞ), H þ n ¼ H and so fH þ y þ 1;H þ y þ 2;y;H þ y þ
ng ¼ fH þ 1;H þ 2;y;H þ ng ¼ D: Therefore D is generated by H þ y ¼ Hðs1 þ

A.J.W. Hilton et al. / Journal of Combinatorial Theory, Series B 87 (2003) 81–12998



y; s2 þ y;y; sn þ yÞ; where s1 þ y; s2 þ y;y; sn þ y is an n-procession with first
term x: &

Definition. If s; tAZ2n; the statement s  t ðmod nÞ will mean that s ¼ t or s ¼ t þ n:
We recall that U þ r means fu þ r: uAUg when UDZ2n and rAZ2n:

Recall that, in Z2n; ðs1; s2;y; s2nÞ ¼ ðs1; s2;y; sn; sn þ n; sn�1 þ n;y; s1 þ nÞ:

Theorem 5.7. Let s1;y; sn and t1;y; tn be n-processions such that s1 ¼ t1: Then

Hðs1;y; snÞ and Hðt1;y; tnÞ generate orthogonal cyclic Hamiltonian path decom-

positions of K2n if and only if

(i) sn  tn ðmod nÞ;
and

(ii) for each kAf1;y; n � 1g there exists exactly one pair ðx; yÞ with xAf1;y; n �
1g,fn þ 1;y; 2n � 1g and yAf1;y; n � 1g such that fsx; sxþ1g  fty; tyþ1g þ
k ðmod 2nÞ:

Proof. Let H ¼ Hðs1;y; snÞ;H 0 ¼ Hðt1;y; tnÞ and let Hi ¼ H þ i;H 0
i ¼ H 0 þ i for

each iAZ2n: The cyclic Hamiltonian path decompositions generated by Hðs1;y; snÞ
and Hðt1;y; tnÞ are fH1;y;Hng and fH 0

1;y;H 0
ng: Since s1 ¼ t1 and Hi has

endvertices s1 þ i; s1 þ n þ i and H 0
j has endvertices t1 þ j; t1 þ n þ j; it follows that

Hi;H 0
j have the same endvertices when i ¼ j and have no common endvertex when

icj ðmod nÞ: Therefore fH1;y;Hng and fH 0
1;y;H 0

ng are orthogonal if and only if
(a) jEðHi-H 0

i Þj ¼ 1 for i ¼ 1;y; n

and
(b) jEðHi-H 0

j Þj ¼ 2 when i; jAf1;y; ng and iaj:

It therefore remains to be proved that (a) and (b) are both true if and only if (i)
and (ii) are both true.
Assume first that (i) and (ii) are true. By (i), the edge ½sn þ i; sn þ n þ i� of Hi

coincides with the edge ½tn þ i; tn þ n þ i� of H 0
i for i ¼ 1;y; n: If i; jA f1;y; ng and

iaj then, by (ii), there exist xA f1;y; n � 1g,fn þ 1;y; 2n � 1g and yAf1;y; n �
1g such that fsx; sxþ1g ¼ fty; tyþ1g þ j � i ðmod 2nÞ: Therefore, the edges ½sx þ
i; sxþ1 þ i� of Hi and ½ty þ j; tyþ1 þ j� of H 0

j coincide, and the edges ½sx þ n þ i; sxþ1 þ
n þ i� of Hi and ½ty þ n þ j; tyþ1 þ n þ j� of H 0

j coincide. Hence jEðHi-H 0
j ÞjX1 for

i ¼ 1;y; n and jEðHi-H 0
j ÞjX2 when i; jAf1;y; ng and iaj: This implies (a) and (b)

because
Pn

j¼1 jEðHj-H 0
j Þj ¼ jEðHiÞj ¼ 2n � 1 for each i:

Now assume (a) and (b). From the definition of Hðs1;y; snÞ it follows that H ¼
H þ n ¼ Hn and H 0 ¼ H 0 þ n ¼ H 0

n: Therefore jEðH-H 0Þj ¼ jEðHn-H 0
nÞj ¼ 1 by

(a). Since H ¼ H þ n and H 0 ¼ H 0 þ n it follows that EðH-H 0Þ ¼ EðH-H 0Þ þ n

and so the unique edge ofH-H 0 must be ½p; p þ n� for some p: By (P2), the only edge
of this form in H is ½sn; sn þ n� and the only such edge in H 0 is ½tn; tn þ n�: Therefore
½sn; sn þ n� and ½tn; tn þ n� must be the same edge and so (i) is true. Now let
kAf1;y; n � 1g: Since H ¼ Hn; it follows from (b) that at least one edge of H other
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than ½sn; sn þ n� must be in H 0
k: Therefore there exists xAf1;y; n � 1g,fn þ

1;y; 2n � 1g such that ½sx; sxþ1� is in H 0
k; and consequently both of the edges

½sx; sxþ1� and ½sx þ n; sxþ1 þ n� must be in H 0
k because H 0

k ¼ H 0 þ k ¼ ðH 0 þ nÞ þ k ¼
H 0

k þ n: By (b) there can be only one such x: By (P2), ½sx; sxþ1� and ½sx þ n; sxþ1 þ n�
must be edges of H 0

k other than ½tn þ k; tn þ n þ k�; and so the pair f½sx; sxþ1�; ½sx þ
n; sxþ1 þ n�g of edges of H must coincide with a pair f½ty þ k; tyþ1 þ k�; ½ty þ n þ
k; tyþ1 þ n þ k� of edges of H 0

k for some yAf1;y; n � 1g: Clearly there is precisely
one such y: If ½sx; sxþ1� ¼ ½ty þ k; tyþ1 þ k� then fsx; sxþ1g  fty; tyþ1g þ k ðmod 2nÞ;
as asserted. If ½sx þ n; sxþ1 þ n� ¼ ½ty þ k; tyþ1 þ k� and xon then sx þ n ¼ s2n�xþ1
and sxþ1 þ n ¼ s2n�x; so ½sx þ n; sxþ1 þ n� ¼ ½s2n�x; s2n�xþ1�: Therefore fsx0 ; sx0þ1g 
fty; tyþ1g þ k ðmod 2nÞ; with x0 ¼ 2n � x; where x0Af1;y; n � 1g,fn þ 1;y; 2n �
1g: If ½sx þ n; sxþ1 þ n� ¼ ½ty þ k; tyþ1 þ k� with x4n then the same holds since

s2n�xþ1 þ n ¼ s2n�ð2n�xþ1Þþ1 ¼ sx; so sx þ n ¼ s2n�xþ1 in Z2n: This proves (ii). &

Call two n-gradations ða1;y; an�1Þ and ðb1;y; bn�1Þ orthogonal if H½a1;y; an�1�
and H½b1;y; bn�1� generate orthogonal cyclic Hamiltonian path decompositions of
K2n (or, equivalently, generate a pair of MOSHLSð2nÞ). Similarly, if ðs1;y; snÞ and
ðt1;y; tnÞ are the n-processions corresponding to ða1;y; an�1Þ and ðb1;y; bn�1Þ;
also call ðs1;y; snÞ and ðt1;y; tnÞ orthogonal.

Lemma 5.8. The following pairs of n-gradations are either all orthogonal, or all not

orthogonal:

(i) ða1;y; an�1Þ and ðb1;y; bn�1Þ;
(ii) ðka1;y; kan�1Þ and ðkb1;y; kbn�1Þ; where k is any integer coprime to 2n; the

multiplication being performed in Z2n;
(iii) ðan�1;y; a1Þ and ðbn�1;y; b1Þ:
(iv) ða0

1;y; a0
n�1Þ and ðb0

1;y; b0
n�1Þ; where these are obtained from ða1;y; an�1Þ and

ðb1;y; bn�1Þ by adding n in Z2n to those terms which belong to S,ð�SÞ; where

S is a subset of f1;y; n � 1g such that S ¼ n � S:

Proof. ðiÞ3ðiiÞ: Clearly (i) is just a special case of (ii), so ðiiÞ ) ðiÞ: To show the
converse, suppose that the n-gradations ða1;y; an�1Þ and ðb1;y; bn�1Þ are
orthogonal. Let ðs1;y; snÞ and ðt1;y; tnÞ be corresponding n-processions. Then
Hðs1;y; snÞ and Hðt1;y; tnÞ generate orthogonal cyclic Hamiltonian path

decompositions fHa
1 ;y;Ha

ng and fHb
1 ;y;Hb

ng of Kn: As observed in Section 4,
since k is coprime to 2n; ðka1;y; kan�1Þ and ðkb1;y; kbn�1Þ are n-gradations, and it
follows that Hðks1;y; ksnÞ and Hðkt1;y; ktnÞ are cyclic Hamiltonian paths

generating Hamiltonian path decompositions fHka
1 ;y;Hka

n g and fHkb
1 ;y;Hkb

n g;
respectively.

Suppose that jEðHka
r -Hkb

s ÞjX3 for some ras; r; sAf1;y; ng: Then there are at
least three pairs ði; jÞ ðiaj; i; jAf1;y; ngÞ such that fksi�1 þ r; ksi þ rg ¼ fktj�1 þ
s; ktj þ sg: But then fsi�1 þ k�1r; si þ k�1rg ¼ ftj�1 þ k�1s; tj þ k�1sg; so that

jEðHa
k�1r-Hb

k�1sjX3; contradicting Lemma 5.5. Therefore jEðHka
r -Hkb

r Þjp2:
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Similarly jEðHka
r -Hkb

s Þjp1: By counting edges, it follows that jEðHka
r -Hkb

s Þj ¼ 2
and jEðHka

r -Hkb
s Þj ¼ 1; so that by Lemma 5.5 fHka

1 ;y;Hka
n g and fHkb

1 ;y;Hkb
n g

are orthogonal.
ðiÞ3ðiiiÞ: This is similar to the proof that ðiÞ3ðiiÞ; and may be left to the reader.
ðiÞ3ðivÞ: Suppose first that ða1;y; an�1Þ and ðb1;y; bn�1Þ are orthogonal. We

wish to show that ða0
1;y; a0

n�1Þ and ðb0
1;y; b0

n�1Þ are orthogonal.
We may set s1 ¼ t1 ¼ 0: Since ða1;y; an�1Þ and ðb1;y; bn�1Þ are orthogonal, by

Theorem 5.7, sn  tn ðmod nÞ and, for each kAf1;y; n � 1g; there exists exactly one
pair ðx; yÞ with xAf1;y; n � 1g,fn þ 1;y; 2n � 1g and yAf1;y; n � 1g such that
fsx; sxþ1g ¼ fty; tyþ1g þ k (in Z2). Then

ffsx; sxþ1g; fs2n�x; s2n�xþ1gg ¼ ffty; tyþ1g þ k; ft2n�y; t2n�yþ1g þ kg:

For such a pair ðx; yÞ; set z ¼ tyþ1 � ty: Then if zeS,ð�SÞ; it follows that
t0yþ1 � t0y ¼ tyþ1 � ty ¼ z

and

s0xþ1 � s0x ¼ sxþ1 � sx ¼ z;

and if zAS,ð�SÞ; it follows that
t0yþ1 � t0y ¼ tyþ1 � ty þ n ¼ z þ n

and

s0xþ1 � s0x ¼ sxþ1 � sx þ n ¼ z þ n:

Since this holds for any value of x and y; it follows by summation that

s0x ¼ sx or s0x ¼ sx þ n ¼ s2n�xþ1

and that

t0y ¼ ty or t0y ¼ ty þ n ¼ t2n�yþ1:

Thus, if zeS,ð�SÞ
fs0x; s0xþ1g ¼ fsx; sxþ1g or fs2n�x; s2n�xþ1g

and

ft0y; t0yþ1g ¼ fty; tyþ1g or ft2n�y; t2n�yþ1g

so

ffs0x; s0xþ1g; fs02n�x; s02n�xþ1gg ¼ fft0y; t0yþ1g þ k; ft02n�y; t02n�yþ1g þ kg: ð*Þ

Similarly, if zAS,ð�SÞ;
fs0x; s0xþ1g ¼ fsx; s2n�xg or fsxþ1; s2n�xþ1g

and

fty; t0yþ1g ¼ fty; tyþ1g or ftyþ1; t2n�yþ1g;

so again (*) holds.
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It follows that there is a pair ðx0; y0Þ with x0Af1;y; n � 1g,fn þ 1;y; 2n � 1g
and y0Af1;y; n � 1g such that

fs0x0 ; s0x0þ1g ¼ ft0y; t0yþ1g þ k;

and, by reversing the argument, it follows that there is exactly one such pair.
Clearly s01 ¼ t01 ¼ 0 and s0n  t0n  sn  tn ðmod nÞ; so it follows from Theorem 5.7

that ða0
1;y; a0

n�1Þ and ðb0
1;y; b0

n�1Þ are orthogonal.
The n-gradations ða1;y; an�1Þ and ðb1;y; bn�1Þ may be obtained from

ða0
1;y; a0

n�1Þ and ðb0
1;y; b0

n�1Þ by adding n in Z2n to those terms which belong to

S,ð�SÞ; so the argument above shows that if ða0
1;y; a0

n�1Þ and ðb0
1;y; b0

n�1Þ are
orthogonal, then so are ða1;y; an�1Þ and ðb1;y; bn�1Þ: &

Illustration. Examples of pairs of orthogonal n-processions are ð0; 1Þ and ð0;�1Þ
when n ¼ 2; ð0; 1;�1Þ and ð0;�2;�1Þ when n ¼ 3; and ð0; 1;�1; 2;�2Þ and
ð0; 4; 2; 1;�2Þ when n ¼ 5: In fact these could be used to generate Example 5.1
ðA2 and B2Þ when n ¼ 2; Example 5.1 ðA3 and B3Þ when n ¼ 3; and Example 4.3
when n ¼ 5: An example of such a pair when n ¼ 7 is ð0; 1;�1; 2;�2; 3;�3Þ and
ð0;�2;�6; 2; 3; 6;�3Þ; an example when n ¼ 9 is ð0; 1;�1; 2;�2; 3;�3; 4;�4Þ and
ð0;�1; 3;�8; 4; 6;�2;�7;�4Þ; an example when n ¼ 11 is ð0; 1;�1; 2;�
2; 3;�3; 4;�4; 5;�5Þ and ð0;�1;�4;�10; 2; 4; 8; 3;�6; 9;�5Þ; and an example when
n ¼ 13 is ð0; 1;�1; 2;�2; 3;�3; 4;�4; 5;�5; 6;�6Þ and ð0; 3; 4; 12;�7; 2; 8; 10;�2;
�12; 9; 5;�6Þ: Here, of course, in each example, whichever of a pair of sequences is
chosen to be ðs1;y; snÞ; then ðsnþ1;y; s2nÞ is found using the equation si ¼
s2n�iþ1 ð1pipnÞ: For further information about such pairs of sequences, see [18] or:
http://www.math.wvu.edu/2mays/moshls.htm.

Theorem 5.7 can be used to show, for example, that there do not exist two
orthogonal cyclic Hamiltonian path decompositions of K8: To see this, suppose that
two such decompositions exist. Then by Lemma 5.6 there must exist 4-processions
s1; s2; s3; s4 and t1; t2; t3; t4 such that s1 ¼ t1 ¼ 0 and Hðs1; s2; s3; s4Þ;
Hðt1; t2; t3; t4Þ generate orthogonal cyclic Hamiltonian path decompositions of K8:
This requires s1; s2; s3; s4 and t1; t2; t3; t4 to satisfy the conditions of Theorem 5.7.
However, there are only 64 4-processions, which were specified in Section 4, and the
only ones with first term 0 are the eight sequences 0; u; u þ v;�v where
uA f�3;�1; 1; 3g; vAf�2; 2g: It is easily checked that no two of these eight
sequences satisfy the conditions of Theorem 5.7. Therefore K8 does not have two
orthogonal cyclic Hamiltonian path decompositions and so, by Corollary 4.6 and
Lemma 5.4, there do not exist two cyclic MOSHLS(8).

Theorem 5.9. If there exist two orthogonal Hamiltonian path decompositions of K2n
then there exist two orthogonal Hamiltonian path decompositions of K4n:

Proof. By associating two vertices vn; vnn of K4n with each vA VðK2nÞ; we can take
VðK4nÞ to be fvn: vAVðK2nÞg,fvnn: vAVðK2nÞg: For any edge e ¼ ½u; v� of K2n we
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define subsets Xe;Ye;Ze of EðK4nÞ by
Xe ¼ f½un; vn�; ½unn; vnn�g; Ye ¼ f½un; vnn�; ½unn; vn�g; Ze ¼ Xe,Ye:

For each vAVðK2nÞ let bðvÞ be the edge ½vn; vnn� of K4n: If H is a Hamiltonian path of

K2n with endvertices u; v; let H̃ denote the spanning subgraph of K4n such that

EðH̃Þ ¼ fbðuÞ; bðvÞg,
S

eAEðHÞ Ze: If, for each eAEðHÞ; we take Se to be one of

Xe; Ye and Te to be the other, then clearly H̃ has a Hamiltonian path decomposition
fP;Qg such that

EðPÞ ¼ fbðuÞg,
[

eAEðHÞ
Se; EðQÞ ¼ fbðvÞg,

[
eAEðHÞ

Te:

There are altogether 22n�1 such Hamiltonian path decompositions of H̃ because for
each eAEðHÞ we can choose whether Se is Xe or Ye: Moreover, if fH1;y;Hng is a
Hamiltonian path decomposition of K2n; then fH̃1;y; H̃ng is a decomposition of
K4n in view of the second assertion of Lemma 3.2. Consequently, taking fPr;Qrg to
be one of the 22n�1 Hamiltonian path decompositions of H̃r arising from the above

construction for r ¼ 1;y; n yields 2nð2n�1Þ different Hamiltonian path decomposi-
tions fP1;Q1;P2;Q2;y;Pn;Qng of K4n: This provides the key to our proof.
Now assume that there exist two orthogonal Hamiltonian path decompositions of

K2n: Then, by Lemma 5.5, we can take these to be fH1;y;Hng and fH 0
1;y;H 0

ng;
whereHr and H 0

r have two common endvertices ur; vr and just one common edge cðrÞ
for r ¼ 1;y; n and Hr;H 0

s have just two common edges f ðr; sÞ; gðr; sÞ when ras:
For r ¼ 1;y; n let Pr;Qr be the Hamiltonian paths of K4n such that

EðPrÞ ¼ fbðurÞg,
[

eAEðHrÞ
Xe; EðQrÞ ¼ fbðvrÞg,

[
eAEðHrÞ

Ye:

Let D denote the Hamiltonian path decomposition fP1;Q1;P2;Q2;y;Pn;Qng of
K4n: For each eA EðK2nÞ; define Se;Te as follows:

Se ¼ Ye; Te ¼ Xe if e ¼ cðrÞ for some r or

e ¼ f ðr; sÞ for some r; sðrasÞ;
Se ¼ Xe; Te ¼ Ye if e ¼ gðr; sÞ for some r; sðrasÞ:

For r ¼ 1;y; n let P0
r;Q0

r be the Hamiltonian paths of K4n such that

EðP0
rÞ ¼ fbðurÞg,

[
eAEðH 0

rÞ
Se; EðQ0

rÞ ¼ fbðvrÞg,
[

eAEðH 0
rÞ

Te:

Let D0 denote the Hamiltonian path decomposition fP0
1;Q0

1;P0
2;Q0

2;y;P0
n;Q0

ng of
K4n: Since u1; v1; u2; v2;y; un; vn are by Lemma 3.2 distinct, it is clear that
(I) for r ¼ 1;y; n we have

V1ðPrÞ-V1ðP0
rÞ ¼ fvnr ; vnnr g; V1ðQrÞ-V1ðQ0

rÞ ¼ fun

r ; unn

r g;

V1ðPrÞ-V1ðQ0
rÞ ¼ V1ðQrÞ-V1ðP0

rÞ ¼ |;
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EðPr-P0
rÞ ¼ fbðurÞg; EðQr-Q0

rÞ ¼ fbðvrÞg;

EðPr-Q0
rÞ ¼ XcðrÞ; EðQr-P0

rÞ ¼ YcðrÞ;

(II) when r; sAf1;y; ng and ras we have

V1ðPrÞ-V1ðP0
sÞ ¼ V1ðQrÞ-V1ðQ0

sÞ ¼V1ðPrÞ-V1ðQ0
sÞ

¼V1ðQrÞ-V1ðP0
sÞ ¼ |;

EðPr-P0
sÞ ¼ Xgðr;sÞ; EðQr-Q0

sÞ ¼ Ygðr;sÞ;

EðPr-Q0
sÞ ¼ Xf ðr;sÞ; EðQr-P0

sÞ ¼ Yf ðr;sÞ:

Therefore jV1ðJÞ-V1ðJ 0Þj þ 2jEðJ-J 0Þj ¼ 4 for every pair JAD; J 0AD0 and so D;

D0 are orthogonal Hamiltonian path decompositions of K4n: &

Corollary 5.10. If there exist two MOSHLSð2nÞ then there exist two MOSHLSð4nÞ:

Proof. This follows from Theorem 3.3, Lemma 5.4 and Theorem 5.9. &

From Examples 4.3 and 5.1 and the examples after Lemma 5.8, we know that two
MOSHLSð2nÞ exist when nAf1; 3; 5; 7; 9; 11g: Consequently, by repeated application
of Corollary 5.10, two MOSHLSð2nÞ exist whenever n is 2m or 3:2m or 5:2m

or 7:2m or 9:2m or 11:2m or 13:2m for some non-negative integer m: The first value
of 2n for which the existence of two MOSHLSð2nÞ has not been demonstrated
is 30.

6. Amalgamation and embedding: introductory remarks

We define an unfilled matrix (on symbols s1;y; snÞ to be a matrix in which
certain cells are left unoccupied and each remaining cell contains one symbol
(belonging to the set fs1;y; sng). (For example, the cells which contain symbols
might be those of a specified submatrix.) We shall sometimes, for clarity, use the
term ‘‘ordinary matrix’’ for a matrix in which each cell contains exactly one symbol.
We shall regard an ordinary matrix as a special kind of unfilled matrix, i.e. the set of
unoccupied cells in an ‘‘unfilled’’ matrix may be empty. If we insert a symbol into
each unoccupied cell of an unfilled matrix M; we obtain an ordinary matrix M 0 and
we shall say that M has been embedded in M 0: This leads to questions about which
unfilled square matrices can be embedded in a latin square, or a symmetric latin
square, or some other desired type of array: see, for example, [3–5,10,12,16,20], etc.
In Section 9, we shall prove some results about embeddability in (i) Hamiltonian
double latin squares, and (ii) more specifically, symmetric Hamiltonian double latin
squares.
These results will be deduced, somewhat in the spirit of [16], from two Theorems

7.2 and 8.2 concerning ‘‘amalgamation’’ of Hamiltonian double latin squares, i.e. a
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process of ‘‘amalgamating’’ certain rows and ‘‘amalgamating’’ certain columns in a
way explained below. Very roughly, Theorem 7.2 says that any array which looks as
though it might have been obtained from a Hamiltonian double latin square by such
amalgamation can in fact be obtained in this way. Theorem 8.2 is a similar result
concerning symmetric Hamiltonian double latin squares.
Theorems 7.2 and 8.2 are fairly easily deducible from two graph-theoretic

propositions, Propositions 7.5 and 8.6, respectively, whose proofs will therefore be
our main task. Proposition 7.5 is in fact a special case of [17, Theorem 1] but, to
make the required ideas more accessible, we shall here prove Proposition 7.5 in a
slightly different way and without complications arising from the greater generality
of the treatment in [17]. (Actually, it has recently come to light that the proof of
Theorem 1 in [17] is flawed.) Proposition 8.6 is [15, Theorem 1] but again it
may be helpful to present a different proof here. Propositions 7.5 and 8.6 and some
similar statements can be proved either by using matroids or by a somewhat
more elementary method. We have somewhat arbitrarily chosen to present an
elementary proof of Proposition 7.5 and a matroid proof of Proposition 8.6, thus
enabling the reader to see these two different methods of proof side by side.
Although we have for some while been aware of the possible use of matroids in such
proofs, we believe that it has not hitherto been mentioned in print. Illustrating it here
may help to make known a possible tool for tackling future amalgamation problems.
We may also note that our elementary proof makes use of laminar sets, and so is
different from the elementary proofs in [15,17] and elsewhere which use de Werra’s
theorem [23]; another elementary proof could also be found by using some results of
Buchanan [9].

Definition. A composition of a positive integer n is a sequence of positive integers
whose sum is n: A multiple-entry matrix on symbols s1;y; su is a matrix in which
each cell contains finitely many symbols drawn from the set fs1;y; sug; the same
symbol being allowed to occur more than once in a cell. For example,

is a 4� 3 multiple-entry matrix on symbols s1; s2; s3; s4; s5: We regard the symbols
in any one cell as being unordered: for example, changing the top left-hand entry in
the above matrix M to s3; s1; s3; s1 would merely give a different notation for the
same multiple-entry matrix.
We can obtain a multiple-entry matrix from an ordinary matrix by ‘‘amal-

gamating’’ rows and ‘‘amalgamating’’ columns in a certain sense. Before
defining this process formally, we illustrate it by an example. Let A be the 9� 8
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matrix

and consider the composition S ¼ ð3; 4; 2Þ of 9 and the composition T ¼ ð2; 3; 1; 2Þ
of 8. We shall use S to decide which rows of A to amalgamate and use T to decide
which columns to amalgamate. First, since S ¼ ð3; 4; 2Þ; we amalgamate the first
three rows and then amalgamate the next four rows and finally amalgamate the last
two rows, to produce the 3� 8 multiple-entry matrix

Then, since T ¼ ð2; 3; 1; 2Þ; we amalgamate the first two columns, then amalgamate
the next three columns, leave the next column alone, and finally amalgamate the last
two columns. This produces the 3� 4 multiple-entry matrix

which we call the ðS;TÞ-amalgamation of A:
The general definition is as follows. Let m; n be positive integers and let S ¼

ðp1;y; psÞ be a composition of m and T ¼ ðq1;y; qtÞ be a composition of n: Let A

be an m � n matrix with one of the symbols s1;y; su in each of its cells. Then by
partitioning A into submatrices, we can write

A ¼

A11 A12 y A1t

A21 A22 y A2t

^ ^ & ^

As1 As2 y Ast

0
BBB@

1
CCCA;

where Aab is a pa � qb submatrix of A with the cell ðp1 þ?þ pa; q1 þ?þ qbÞ of A

in its bottom right-hand corner. We define the ðS;TÞ-amalgamation of A to be the
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s � t multiple-entry matrix on symbols s1;y; su such that the number of

occurrences of sk in the cell ða; bÞ of An is equal to the number of occurrences of
sk in Aab for a ¼ 1;y; s and b ¼ 1;y; t and k ¼ 1;y; u:

In discussing this concept, we shall continue to use graph theory, but we shall need
multigraphs, i.e. graphs which may have loops and/or multiple edges. Where
necessary, we extend our graph-theoretic language and notation to multigraphs in
obvious ways. We shall refer to ‘‘subgraphs’’ (rather than ‘‘submultigraphs’’) of
multigraphs, but it will be understood that a ‘‘subgraph’’ of a multigraph may have
loops and/or multiple edges. If u; v are vertices of a multigraph G then dGðu; vÞ will
denote the number of edges joining them and dGðvÞ will denote the degree of v in G:
thus dGðvÞ ¼ 2p þ q if v is incident with p loops and q other edges. We let G � v

denote the subgraph obtained from G by removing v and the edges incident with it.
The order of G is jVðGÞj: The set of components of G will be denoted by ðGÞ: A
bridge of a multigraph is an edge which is not in any cycle.
If D; G are multigraphs and EðDÞ ¼ EðGÞ; we define a DG- amalgamator to be a

surjection O :VðDÞ-VðGÞ which, for each eA EðDÞ ¼ EðGÞ; maps the vertices
joined by e in D to those joined by e in G (so that, in particular, emust be a loop of G

if in D it joins vertices x; y such that OðxÞ ¼ OðyÞÞ: Thus a DG-amalgamator is, more
informally, an operation which transforms D into G by identifying (or ‘‘amalgamat-
ing’’) vertices. Amalgamating rows and columns of Hamiltonian double latin squares
will give rise to operations of this kind on certain graphs associated with these double
latin squares.
For the purposes of this paper, we define an n-edge-coloured multigraph to be an

ordered pair ðG;fÞ such that G is a finite multigraph and f is a function from EðGÞ
into the set f1;y; ng: We shall say that an edge e has colour fðeÞ in ðG;fÞ: We let
G/iS denote the spanning subgraph of G such that EðG/iSÞ is the set of edges of G

which have colour i: (Of course, this notation only makes sense in contexts where the
use of some particular ‘colouring function’ f is understood.)

7. Amalgamating Hamiltonian double latin squares: an elementary proof

If A is an s � t multiple-entry matrix on symbols s1;y;su and kAf1;y; ug; we
define BðA; skÞ to be a bipartite multigraph on two sets of vertices fr1;y; rsg and
fc1;y; ctg such that the number of edges joining ri to cj is equal to the number of

occurrences of sk in the cell ði; jÞ of A for i ¼ 1;y; s and j ¼ 1;y; t: For example,
the multiple-entry matrix M in Section 6 gives rise to bipartite multigraphs
BðM; skÞ ðk ¼ 1; 2; 3; 4; 5Þ; of which BðM; s1Þ is shown in Fig. 1.
It is easy to verify the following proposition.

Proposition 7.1. If S ¼ ðp1;y; psÞ; t ¼ ðq1;y; qtÞ are compositions of 2n and An is

the ðS;TÞ-amalgamation of an HLSð2nÞ on symbols s1;y; sn then

(OH1) row a of An contains each symbol 2pa times, for a ¼ 1;y; s;
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(OH2) column b of An contains each symbol 2qb times, for b ¼ 1;y; t;
(OH3) cell ða; bÞ of An contains paqb symbols, counting repetitions, for a ¼ 1;y; s

and b ¼ 1;y; t;
(OH4) BðAn; skÞ is connected for k ¼ 1;y; n:

The truth of (OH4) follows from the fact that, if A is the relevant HLSð2nÞ; then
BðAn; skÞ is obtained from BðA; skÞ by identifying vertices and BðA; skÞ is a cycle
(the cycle Sk in the notation of the paragraph preceding Lemma 3.1).

If S ¼ ðp1;y; psÞ;T ¼ ðq1;y; qtÞ are compositions of 2n and if An is an s � t

multiple-entry matrix on symbols s1;y; sn satisfying the above conditions (OH1)–

(OH4), then we shall call An an ðS;TÞ-outline Hamiltonian double latin square. By
Proposition 7.1, an ðS;TÞ-amalgamation of an HLSð2nÞ is an ðS;TÞ-outline
Hamiltonian double latin square. The main result of this section if the following:

Theorem 7.2. If S;T are compositions of 2n then each ðS;TÞ-outline Hamiltonian

double latin square is the ðS;TÞ-amalgamation of an HLSð2nÞ:

In order to give our elementary proof of this theorem, we need a lemma from [15].
A setF of sets will be said to be laminar if, for every pair X ; Y of sets belonging to

F; one of the statements XDY ;YDX ; X-Y ¼ | is true. If x; y are real numbers
then Iym; Jyn denote (as usual) the integers such that y � 1oIympypJynoy þ 1
and the statement xEy will mean that IympxpJyn: We observe that the relation
E is reflexive and transitive but not symmetric.

Lemma 7.3. If F; G are two laminar sets of subsets of a finite set M and h is a positive

integer then M has a subset L such that

jL-X jEjX j=h for every XAF,G: ð1Þ

 ρ1  c1

 ρ2

 c2

ρ 3

ρ 4  c3

Fig. 1.
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A proof of Lemma 7.3 may be found in [19]. It uses a fairly simple network flow
argument essentially contained in the paper [6] of Baranyai, who in turn attributes
the underlying idea to Lovász.
We define an n-bimultigraph to be an ordered quadruple ðG;f;P;QÞ such that

ðG;fÞ is an n-edge-coloured multigraph and P;Q are disjoint non-empty sets with
union VðGÞ and each edge of G joins an element of P to an element of Q:
We shall say that an n-bimultigraph ðD;f;P0;Q0Þ is a detachment of an n-

bimultigraph ðG;f;P;QÞ if EðDÞ ¼ EðGÞ and there exists a DG-amalgamator O
such that OðP0Þ ¼ P; OðQ0Þ ¼ Q: An important special case will be that in which
VðDÞ ¼ VðGÞ,fvng for some element vneVðGÞ and there is a DG-amalgamator O
such that OðP0Þ ¼ P; OðQ0Þ ¼ Q and OðxÞ ¼ x for every xA VðGÞ: Then OðvnÞ must
be some vertex v of G; and we shall say that the detachment ðD;f;P0;Q0Þ of
ðG;f;P;QÞ is obtained by splitting off a new vertex vn from v: Clearly, in this case
either vAP;P0 ¼ P,fvng and Q0 ¼ Q or vAQ; P0 ¼ P and Q0 ¼ Q,fvng: In more
informal language, a detachment of ðG;f;P;QÞ is obtained by splitting each
xA VðGÞ into one or more vertices (the elements of O�1ðfxgÞ). In this process, an
edge joining vertices x; y in G becomes an edge joining one of the vertices into which
x splits to one of the vertices into which y splits. The process does not change colours
of edges, since ðG;f;P;QÞ and ðD;f;P0;Q0Þ involve the same ‘colouring function’ f:
If we merely split one vertex v of G into two vertices v; vn; leaving all other vertices
intact, then the resulting detachment is ‘‘obtained by splitting off vn from v’’.
Let ðG;f;P;QÞ be an n-bimultigraph. We shall say that ðG;f;P;QÞ is (i) 2n-

bicomplete if jPj ¼ jQj ¼ 2n and dGðx; yÞ ¼ 1 for all xAP; yAQ (ii) Hamiltonian if
G/1S;G/2S;y;G/nS are all Hamiltonian cycles of G: We shall say that
ðG;f;P;QÞ is n-admissible if it satisfies the following conditions:

(A1) dGðxÞ=2n is a positive integer for every xAVðGÞ;
(A2) each vertex x of G is incident with dGðxÞ=n edges of each colour;
(A3) dGðx; yÞ ¼ dGðxÞdGðyÞ=4n2 for all xAP; yAQ;
(A4) G/1S;G/2S;y;G/nS are connected.

It is easily seen (although we shall not need this fact in any of our proofs) that (A1)–
(A4) are necessary conditions for ðG;f;P;QÞ to have a 2n-bicomplete Hamiltonian
detachment, the integer dGðxÞ=2n in (A1) being the number of vertices into which x

must be split in forming such a detachment. In Proposition 7.5, we shall see that
these necessary conditions are also sufficient.

Lemma 7.4. If ðG;f;P;QÞ is an n-admissible n-bimultigraph, vAVðGÞ and dGðvÞ42n
then an n-admissible detachment of ðG;f;P;QÞ is obtainable by splitting off a new

vertex from v.

Proof. Assume without loss of generality that vAP: (Clearly, a similar argument can
be given when vAQ:) LetM be the set of edges incident with v in G: For each yAQ let
My be the set of edges joining v to y in G; and letF ¼ fMy; yAQg: For k ¼ 1;y; n

let Mk be the set of edges of colour k in M and for each component C of G/kS� v
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letMC
k be the set of those edges inMk which join v to elements of VðCÞ in G: LetMk

denote the set fMC
k : CAðG/kS� vÞg of subsets of Mk and let G be the set

M1,M2,?,Mn,fM1;M2;y;Mn;Mg of subsets of M:
By (A1), dGðvÞ ¼ 2hn for some integer h; and hX2 by our hypothesis that

dGðvÞ42n: SinceF; G are laminar sets of subsets ofM; there exists by Lemma 7.3 a
subset L of M such that (1) is true. Let ðD;f;P,fvng;QÞ be the detachment of
ðG;f;P;QÞ obtained by splitting off a new vertex vn from v and taking the set of

edges incident with vn in D to be the set of edges of L: We will prove that
ðD;f;P,fvng;QÞ is n-admissible.
SinceMAG and jMj ¼ dGðvÞ ¼ 2hn; taking X ¼ M in (1) gives dDðv*Þ ¼ jLj ¼ 2n

and so dDðvÞ ¼ jMj � jLj ¼ 2ðh � 1Þn: Moreover G satisfies (A1) and all vertices in

VðDÞ\fv; vng have the same degrees in D as in G: Therefore D satisfies (A1). For
k ¼ 1;y; n we have jMkj ¼ dGðvÞ=n ¼ 2h by (A2) and so taking X ¼ MkAG in (1)
gives jL-Mkj ¼ 2 and consequently jMk\Lj ¼ 2h � 2: Therefore vn is incident in D

with 2 ¼ dDðvnÞ=n edges of each colour and v is incident in D with 2h � 2 ¼ dDðvÞ=n

edges of each colour. Moreover ðG;fÞ satisfies (A2) and all vertices in VðDÞ\fv; vng
are incident with the same edges in D as in G: Therefore ðD;fÞ satisfies (A2).
If yAQ then (A3) gives jMyj ¼ dGðv; yÞ ¼ dGðvÞdGðyÞ=4n2 ¼ hdGðyÞ=2n and so (since
dGðyÞ=2n is an integer by (A1)) taking X ¼ MyAF in (1) gives jL-Myj ¼ dGðyÞ=2n
and consequently jMy

\Lj ¼ ðh � 1ÞdGðyÞ=2n: Therefore dDðvn; yÞ ¼ dGðyÞ
=2n ¼ dDðyÞ=2n ¼ dDðvnÞdDðyÞ=4n2 and dDðv; yÞ ¼ ðh � 1ÞdGðyÞ=2n ¼ ðh � 1ÞdDðyÞ
=2n ¼ dDðvÞdDðyÞ=4n2 for every yAQ: Moreover ðG;f;P;QÞ satisfies (A3) and
dDðx; yÞ ¼ dGðx; yÞ; dDðxÞ ¼ dGðxÞ; dDðyÞ ¼ dGðyÞ whenever xAP\fvg; yAQ: There-
fore ðD;f;P,fvng;QÞ satisfies (A3).
Let kAf1;y; ng: By (A1) and (A2), each vertex of G has even degree in G/kS

and so G/kS has no bridges. Since G/kS is connected by (A4) and has no bridges,
jMC

k jX2 for each component C of G/kS� v: Therefore, for each such C; taking

x ¼ MC
k AG in (1) gives jL-Mk

C jojMC
k j; and so not all edges joining v to vertices of

C in G/kS become incident with vn in D: Therefore v is adjacent in D/kS to at least
one vertex of each component of G/kS� v ¼ ðD/kS� vnÞ � v and so D/kS� vn

is connected. Moreover, vn is adjacent in D/kS to at least one vertex of D/kS� vn

since we have seen that vn is incident in D with two edges of each colour. Therefore
D/kS is connected. We have thus proved that ðD;fÞ satisfies (A4).
We conclude that ðD;f;P,fvng;QÞ is n-admissible, as required. &

Proposition 7.5. Every n-admissible n-bimultigraph has a 2n-bicomplete Hamiltonian

detachment.

Proof. Let ðG;f;P;QÞ be an n-admissible n-bimultigraph. Let ðD;f;P0;Q0Þ be an n-
admissible detachment of ðG;f;P;QÞ such that jVðDÞj is as large as possible. If any
vertex had degree exceeding 2n in D then ðD;f;P0;Q0Þ would by Lemma 7.4 have an
n-admissible detachment involving a graph with more vertices than D and, since this
detachment would also be a detachment of ðG;f;P;QÞ; it would contradict the
maximality of jVðDÞj: Therefore no vertex has degree exceeding 2n in D and so, by
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(A1), dDðxÞ ¼ 2n for every xAVðDÞ: Therefore, by (A3), dDðx; yÞ ¼ 1 for all xAP0;
yAQ0: Considering any fixed xAP0 now gives

2n ¼ dDðxÞ ¼
X
yAQ0

dDðx; yÞ ¼
X
yAQ0

1 ¼ jQ0j

and a similar argument gives jP0j ¼ 2n: Therefore ðD;f;P0;Q0Þ is 2n-bicomplete.
Since all vertices have degree 2n in D; it follows from (A2) and (A4) that each D/kS
is a connected graph in which every vertex of D has degree 2, i.e. a Hamiltonian cycle
of D: Therefore ðD;f;P0;Q0Þ is Hamiltonian. &

Proof of Theorem 7.2. Let S ¼ ðp1;y; psÞ; T ¼ ðq1;y; qtÞ be compositions of 2n
and let An be an ðS;TÞ-outline Hamiltonian double latin square on symbols
s1;y; sn: Then An satisfies (OH1)–(OH4). Let G denote an n-bimultigraph
ðG;f; fr1;y; rsg; fc1;y; ctgÞ such that dG/kSðra; cbÞ is the number of occurrences
of sk in the cell ða; bÞ of An for a ¼ 1;y; s and b ¼ 1;y; t and k ¼ 1;y; n: Thus
G/kS is precisely the multigraph BðAn; skÞ; and we can think of G as being obtained
by superposing BðAn; s1Þ;y;BðAn; snÞ with their edges coloured 1;y; n; respec-
tively, to distinguish between them.
For a ¼ 1;y; s it follows from (OH1) that ra is incident in G with 2pa edges of

each colour, which implies that dGðraÞ ¼ 2pan and that ra is incident in G with
dGðraÞ=n edges of each colour. Similarly (OH2) implies that dGðcbÞ ¼ 2qbn and cb is

incident in G with dGðcbÞ=n edges of each colour for b ¼ 1;y; t: Therefore G satisfies
(A1) and (A2). By (OH3), dGðra; cbÞ ¼ paqb ¼ dGðraÞdGðcbÞ=4n2 for a ¼ 1;y; s and

b ¼ 1;y; t and so G satisfies (A3). Since G/kS ¼ BðAn; skÞ for k ¼ 1;y; n; it
follows from (OH4) that G satisfies (A4). Therefore G is n-admissible and so has, by
Proposition 7.5, a 2n-bicomplete Hamiltonian detachment ðD;f;P;QÞ:
By the definition of detachment, there exists a DG-amalgamator O such that

OðPÞ ¼ fr1;y; rsg; OðQÞ ¼ fc1;y; ctg: The definition of a DG-amalgamator

implies that dGðraÞ ¼
P

ðdDðxÞ: xAO�1ðfragÞÞ; which is 2njO�1ðfragÞj since
ðD;f;P;QÞ is 2n-bicomplete. Therefore jO�1ðfragÞj ¼ dGðraÞ=2n ¼ pa ða ¼
1;y; sÞ: Consequently, the elements of P can be arranged in an order r01;y; r02n
such that

Oðr0iÞ ¼ ra when %pa�1oip %pa ða ¼ 1;y; sÞ;

where %p0 ¼ 0; %pa ¼ p1 þ?þ pa ða ¼ 1;y; sÞ: For similar reasons, the elements of Q

can be arranged in an order c01;y; c02n such that

Oðc0jÞ ¼ cb when %qb�1ojp %qb ðb ¼ 1;y; tÞ;

where %q0 ¼ 0; %qb ¼ q1 þ?þ qb ðb ¼ 1;y; tÞ: Let A be the 2n � 2n matrix such that
Aði; jÞ ¼ sk whenever the edge joining r0i to c0j has colour k in ðD;fÞ: Then BðA; skÞ is
the graph obtained from D/kS on replacing r0i by ri and c0j by cj for i; j ¼ 1;y; 2n:

Since ðD;f;P;QÞ is Hamiltonian, each D/kS is a Hamiltonian cycle of D:
Therefore each BðA; skÞ is a cycle with vertices r1; r2;y; r2n; c1; c2;y; c2n and so A

is a HLSð2nÞ:
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Let A be partitioned into submatrices as

A ¼

A11 A12 ? A1t

A21 A22 ? A2t

^ ^ & ^

As1 As2 ? Ast

0
BBB@

1
CCCA;

where Aab is the pa � qb submatrix of A formed by the entries Aði; jÞ with
%pa�1oip %pa; %qb�1ojp %qb: Then the number of occurrences of sk in Aab is the number

of pairs ði; jÞ such that r0iAO�1ðfragÞ; c0jAO�1ðfcbgÞ and the edge joining r0i to c0j has

colour k in ðD;fÞ: This in turn is equal to the number of edges of colour k joining ra
to cb in ðG;fÞ; which is the number of occurrences of sk in the cell ða; bÞ of An:

Therefore An is the ðS;TÞ-amalgamation of A: &

8. Amalgamating symmetric Hamiltonian double latin squares: a matroid proof

Definition. A cell ði; jÞ of a square matrix will be called a diagonal cell if i ¼ j and an
off-diagonal cell if iaj: Let A be an s � s multiple-entry matrix on symbols s1;y; sn

and let Nðk; a; bÞ denote the number of occurrences of sk in the cell ða; bÞ of A: We
shall say that sk appears in the cell ða; bÞ of A if Nðk; a; bÞ40 and that sk appears

oddly in this cell if Nðk; a; bÞ is odd. If aAf1;y; sg then qaðAÞ will denote the
number of symbols which appear oddly in the cell ða; aÞ of A: A symbol sk is
diagonally even in A if Nðk; a; aÞ is even for a ¼ 1;y; s and is diagonally odd in A if
Nðk; a; aÞ is odd for at least one aA f1;y; sg: A symbol sk is diagonally confined (in
A) to a subset X of f1;y; sg if Nðk; a; aÞ ¼ 0 for every aAf1;y; sg\X : For k ¼
1;y; n we define FðA; skÞ to be a multigraph with s vertices r1;y; rs in which ra
and rb are joined by Nðk; a; bÞ edges for a; b ¼ 1;y; s: (In particular, ra is incident
with Nðk; a; aÞ loops.)

Proposition 8.1. If S ¼ ðp1;y; psÞ is a composition of 2n and An is the ðS;SÞ-
amalgamation of an SHLSð2nÞ on symbols s1;y; sn then

(OS1) row a of An contains each symbol 2pa times, for a ¼ 1;y; s;
(OS2) cell ða;bÞ of An contains papb symbols, counting repetitions, for a; b ¼ 1;y; s;
(OS3) decðXÞp1

2

P
aAX ðpa � qaðAnÞÞ for every subset X of f1;y; sg; where decðXÞ

is the number of symbols which are diagonally even and diagonally confined to

X in An;
(OS4) FðAn; skÞ is connected for k ¼ 1;y; n:

We remark that in Proposition 8.7 and Theorem 8.8 we show that (OS3) can be
replaced by an alternative condition (OS3*) which does not involve a set of
inequalities.

Proof. It is easy to see that An satisfies (OS1) and (OS2).
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Let A be the SHLSð2n) of which An is the ðS;SÞ-amalgamation. Since A is

Hamiltonian, FðA; skÞ is clearly connected for each symbol sk: Since FðAn; skÞ is
obtained from FðA; skÞ by identifying vertices, (OS4) follows.
To prove (OS3), recall the definition of ðS;TÞ-amalgamation in Section 6. When

T ¼ S ¼ ðp1;y; psÞ; this definition involves partitioning A into submatrices
Aab ða; b ¼ 1;y; sÞ: Let X be a subset of f1;y; sg and let DX be the set of all

cells on the main diagonal of A which are in the submatrices Aaa ðaAX Þ: Each
occurrence of a symbol in Aaa gives rise to an occurrence of that symbol in the cell

ða; aÞ of An: Therefore, if a symbol sk is diagonally confined to X in An; then all
occurrences of sk on the main diagonal of A must be in cells belonging to DX and so,
by Lemma 4.2, two of these cells must contain sk: Consequently, at least 2decðXÞ
cells in DX contain symbols which are diagonally even in An: (We say ‘at least’ here
since a symbol sk that is diagonally even and occurs twice in DX may not be
diagonally confined, as it could occur an even number of times in Abb but not on the

main diagonal of Abb; for some beX ). If a symbol sk appears oddly in a cell ða; aÞ of
An then the number of occurrences of sk in Aaa is odd and so, since A is symmetric,
at least one cell on the main diagonal of Aaa must contain sk; in view of Lemma 4.2,
exactly one cell on the main diagonal of Aaa contains sk: Consequently,P

aAX qaðAnÞ cells in DX contain symbols which are diagonally odd in An:
Hence

2decðX Þ þ
X
aAX

qaðAnÞpjDX j ¼
X
aAX

pa;

and (OS3) is proved. &

If S ¼ ðp1;y; psÞ is a composition of 2n and if An is a symmetric s � s multiple-
entry matrix on symbols s1;y; sn satisfying conditions (OS1)–(OS4), then we shall

call An a symmetric S-outline Hamiltonian double latin square. By Proposition 8.1, an
ðS;SÞ-amalgamation of an SHLSð2nÞ is a symmetric S-outline Hamiltonian double
latin square. The main result of this section is the following:

Theorem 8.2. If S is a composition of 2n then each symmetric S-outline Hamiltonian

double latin square is the ðS;SÞ-amalgamation of an SHLSð2nÞ:

Theorem 7.2 could be used to show that any symmetric S-outline Hamiltonian
double latin square is the ðS;SÞ-amalgamation of an HLSð2nÞ: (Hint: deduce (OH4)
from (OS3) and (OS4); taking X ¼ | in (OS3) shows that every symbol occurs on the
diagonal of An:) However, this approach would not guarantee that the HLSð2nÞ
concerned was symmetric. So we need a different argument, although it will bear
some resemblances to the proof of Theorem 7.2.
As already stated, our proof of Theorem 8.2 will use matroids. We recall that a

matroid is an ordered pair ðM;IÞ such thatM is a finite set, I is a set of subsets ofM

(which are called independent sets) and the following axioms are satisfied:

(i) |AI;
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(ii) if IAI and JDI then JAI;
(iii) for each subset A of M; all maximal independent subsets of A have the same

cardinality (which is called the rank of A and denoted by rðAÞ).

We shall need the following Matroid Intersection Theorem of Edmonds.

Theorem 8.3 (Edmonds [11,22, Section 69; Section 8.5]). Let ðM;IÞ; ðM;I0Þ be

matroids with the same underlying set M and with rank functions r; r0; respectively.

Then these matroids have a common independent set of cardinality c if and only if

rðAÞ þ r0ðM\AÞXc for every subset A of M:

We shall say that an n-edge-coloured multigraph ðD;fÞ is a detachment of an n-
edge-coloured multigraph ðG;fÞ if EðDÞ ¼ EðGÞ and there exists a DG-amalga-

mator. An important special case will be that in which VðDÞ ¼ VðGÞ,fvng for some
element vneVðGÞ and there is a DG-amalgamator O such that OðxÞ ¼ x for every

xAVðGÞ: Then OðvnÞ must be some vertex v of G; and we shall say that the
detachment ðD;fÞ of ðG;fÞ is obtained by splitting off a new vertex vn from v: In
more informal language, a detachment ðD;fÞ of ðG;fÞ is obtained by splitting each
xAVðGÞ into one or more vertices (the elements of O�1ðfxgÞ for some DG-
amalgamator O). In this process, an edge joining vertices x; y in G becomes an edge
joining one of the vertices into which x splits to one of the vertices into which y splits.
The process does not change colours of edges, since ðG;fÞ and ðD;fÞ involve the
same ‘colouring function’ f: A loop c incident with a vertex x in G becomes an edge
of D joining two of the vertices into which x splits. These two vertices need not be
distinct, and so c may become a loop of D incident with one of the vertices into

which x splits. If we merely split one vertex v of G into two vertices v; vn; leaving all
other vertices intact, then the resulting detachment is ‘‘obtained by splitting off vn

from v’’.
Let ðG;fÞ be an n-edge-coloured multigraph. We shall say that ðG;fÞ is (i)

ð2n þ 1Þ-complete if G is a complete graph of order 2n þ 1; (ii) Hamiltonian if G/1S;
G/2S;y;G/nS are all Hamiltonian cycles of G: We shall say that ðG;fÞ is n-
helpful if it satisfies the following conditions:

(H0) jEðGÞj ¼ 2n2 þ n;
(H1) dGðxÞ=2n is a positive integer for every xAVðGÞ;
(H2) dG/kSðxÞ ¼ dGðxÞ=n for each xAVðGÞ and for k ¼ 1;y; n;
(H3) dGðx; yÞ ¼ dGðxÞdGðyÞ=4n2 for every pair x; y of distinct vertices of G;
(H4) G/1S;G/2S;y;G/nS are connected.

It is easily seen (although we shall not need this fact) that (H0)–(H4) are necessary
conditions for ðG;fÞ to have a ð2n þ 1Þ-complete Hamiltonian detachment, the
integer dGðxÞ=2n in (H1) being the number of vertices into which x must be split in
forming such a detachment. In Proposition 8.6, we shall see that these necessary
conditions are in fact sufficient.
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Lemma 8.4. If ðG;fÞ is an n-helpful n-edge-coloured multigraph and xAVðGÞ and

dGðxÞ ¼ 2hn then x is incident in G with exactly
h

2

 �
loops.

Proof. By (H0),
P

yAVðGÞ dGðyÞ ¼ 4n2 þ 2n and so
P

yAVðGÞ\fxg dGðyÞ ¼ 4n2 þ 2n �
2hn: By (H3) it follows that dGðx; yÞ ¼ h

2n
dGðyÞ; so

P
yAVðGÞ\fxg dGðx; yÞ ¼ hð2n þ

1� hÞ: Since dGðxÞ ¼ 2hn; it follows that x must be incident with exactly hðh � 1Þ=2
loops. &

Lemma 8.5. If ðG;fÞ is an n-helpful n-edge-coloured multigraph, vAVðGÞ and

dGðvÞ42n then an n-helpful detachment of ðG;fÞ is obtainable by splitting off a new

vertex from v.

Proof. By (H1), dGðvÞ ¼ 2hn for some integer h; and hX2 by our hypothesis that
dGðvÞ42n: Let M be the set of edges incident with v in G: For each yAVðGÞ let My

be the set of edges joining v to y in G: (In particular, Mv is the set of loops incident
with v in G:) Let I be the set of all subsets X of M such that jX-Mvjph � 1 and
jX-MyjpdGðyÞ=2n for each yAVðGÞ\fvg: It is easy to see that ðM;IÞ is a matroid.
For k ¼ 1;y; n let Mk be the set of edges of colour k in M and for each

component C of G/kS� v let MC
k be the set of those edges in Mk which join v to

elements of VðCÞ in G: Let Ck be the set of all components C of G/kS� v such that

jMC
k j ¼ 2: Let I0

k be the set of all subsets I of Mk such that jI-MC
k jp1 for each

CACk: Let I0 be the set of all sets of the form I1,I2,?,In where IkAI0
k for

k ¼ 1;y; n: Since for each k the sets MC
k ðCACkÞ are disjoint, it is easily seen that

ðM 0
k;I

0
kÞ is a matroid for k ¼ 1;y; n: Therefore ðM;I0Þ is a matroid.

Let r; r0 be the rank functions of the matroids ðM;IÞ; ðM;I0Þ; respectively.
Let A be a subset of M: Since jA-MvjpjMvj ¼ hðh � 1Þ=2 by Lemma 8.4 and hX2
it follows that minðjA-Mvj; h � 1ÞX2jA-Mvj=h: If yAVðGÞ\fvg then jA-Myj
pjMyj ¼ hdGðyÞ =2n by (H3) and so minðjA-Myj; dGðyÞ=2nÞXjA-Myj=h: There-
fore

rðAÞ ¼minðjA-Mvj; h � 1Þ þ
X

yAVðGÞ\fvg
minðjA-Myj; dGðyÞ=2nÞ

X 2jA-Mvj þ
X

yAVðGÞ\fvg
jA-Myj

0
@

1
A=h ¼ ð2jA-Mvj þ jA\MvjÞ=h:

For each kAf1;y; ng the sets MC
k ðCACkÞ are disjoint subsets of Mk\M

v each of

which has cardinality 2, and so A-Mk has a subset Sk such that

jSkjXjðA-MkÞ-Mvj þ 1
2
jðA-MkÞ\Mvj and jSk-MC

k jp1 for each CACk: There-

fore any subset of Sk of cardinality minðjSkj; 2Þ is a set IkDA-Mk such that IkAI0
k

and

jIkjXminðjA-Mk-Mvj þ 1
2
jðA-MkÞ\Mvj; 2Þ:
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Moreover (H2) gives

2jA-Mk-Mvj þ jðA-MkÞ\Mvjp 2jMk-Mvj þ jMk\M
vj

¼ dG/kSðvÞ

¼ dGðvÞ=n ¼ 2h:

Therefore jIkjXð2jA-Mk-Mvj þ jðA-MkÞ\MvjÞ=h: Since I1,?,InAI0 and
I1,?,InDA it follows that

r0ðAÞXjI1,?,InjXð2jA-Mvj þ jA\MvjÞ=h:

Since rðAÞ; r0ðAÞ are both at least ð2jA-Mvj þ jA\MvjÞ=h for every ADM; it follows
that

rðAÞ þ r0ðM\AÞXð2jMvj þ jM\MvjÞ=h ¼ dGðvÞ=h ¼ 2n

for every ADM; and so there is by Theorem 8.3 a set LAI-I0 such that jLj ¼ 2n:
Let ðD;fÞ be the detachment of ðG;fÞ obtained by splitting off a new vertex vn from

v; taking L to be the set of edges incident with vn in D and requiring edges in L-Mv

to join v to vn in D (so that vn is not incident with any loops in D). We will prove that
ðD;fÞ is n-helpful.
Since G satisfies (H0) and EðDÞ ¼ EðGÞ it follows that D satisfies (H0). Since

dGðvÞ ¼ 2hn and dDðvnÞ ¼ jLj ¼ 2n it follows that dDðvÞ ¼ dGðvÞ � dDðvnÞ ¼ 2ðh �
1Þn:Moreover G satisfies (H1) and all vertices in VðDÞ\fv; vng have the same degrees
in D as in G: Therefore D satisfies (H1). Since LAI0 it follows that L ¼ L1,?,Ln

for some sets L1AI0
1;y;LnAI0

n: Since jLj ¼ 2n and no set in any I0
k has cardinality

exceeding 2, it follows that jL1j ¼ ? ¼ jLnj ¼ 2 and so dD/kSðvnÞ ¼ jLkj ¼ 2 ¼
jLj=n ¼ dDðvnÞ=n for k ¼ 1;y; n: Moreover, for k ¼ 1;y; n we have dG/kSðvÞ ¼
dGðvÞ=n ¼ 2h since ðG;fÞ satisfies (H2) and consequently dD/kSðvÞ ¼ 2h �
dD/kSðvnÞ ¼ 2h � 2 ¼ dDðvÞ=n: Furthermore, since ðG;fÞ satisfies (H2) it follows
that dD/kSðxÞ ¼ dG/kSðxÞ ¼ dGðxÞ=n ¼ dDðxÞ=n for all xAVðDÞ\fv; vng: Hence
ðD;fÞ satisfies (H2).
Since LAI it follows that

jL-Mvjph � 1 ¼ ðdGðvÞ=2nÞ � 1 and

jL-MyjpdGðyÞ=2n for every yAVðGÞ\fvg:

Since

ðdGðvÞ=2nÞ � 1þ
X

yAVðGÞ\fvg
dGðyÞ=2n ¼ ðjEðGÞj=nÞ � 1 ¼ 2n ¼ jLj

by (H0), it follows that jL-Mvj ¼ ðdGðvÞ=2nÞ � 1 ¼ h � 1 and jL-Myj ¼ dGðyÞ=2n
for every yAVðGÞ\fvg: Therefore dDðv; vnÞ ¼ jL-Mvj ¼ h � 1 ¼ dDðvÞdDðvnÞ=4n2
and

dDðvn; yÞ ¼ jL-Myj ¼ dGðyÞ=2n ¼ dDðyÞ=2n ¼ dDðvnÞdDðyÞ=4n2
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for every yAVðGÞ\fvg ¼ VðDÞ\fv; vng: Moreover, since G satisfies (H3),

dDðv; yÞ ¼ dGðv; yÞ � dDðvn; yÞ ¼ ðdGðvÞdGðyÞ � dDðvnÞdDðyÞÞ=4n2

¼ðdGðvÞ � dDðvnÞÞdDðyÞ=4n2 ¼ dDðvÞdDðyÞ=4n2

for every yAVðGÞ\fvg ¼ VðDÞ\fv; vng and
dDðx; yÞ ¼ dGðx; yÞ ¼ dGðxÞdGðyÞ=4n2 ¼ dDðxÞdDðyÞ=4n2

for every two distinct elements x; y ofVðGÞ\fvg ¼ VðDÞ\fv; vng:HenceD satisfies (H3).
Let kAf1;y; ng: By (H1) and (H2), each vertex of G has even degree in G/kS

and so G/kS has no bridges. Since G/kS is connected by (H4) and has no bridges,
jMC

k jX2 for each component C of G/kS� v and so jMC
k j42 ¼ jLkjXjLk-MC

k j for
each component C of G/kS� v such that CeCk: Since LkAI0

k it follows that

jLk-MC
k jp1o2 ¼ jMC

k j for every CACk: Hence, for each component C of

G/kS� v; we have jMC
k j4jLk-MC

k j ¼ jL-MC
k j; and so not all edges joining v

to vertices of C in G/kS become incident with vn in D: Therefore v is adjacent in

D/kS to at least one vertex of each component of G/kS� v ¼ ðD/kS� vnÞ � v

and so D/kS� vn is connected. Moreover, vn is adjacent in D/kS to at least one
vertex of D/kS� vn since we have seen that dD/kSðvnÞ ¼ 2 and no loops are
incident with vn in D: Therefore D/kS is connected. We have thus proved that
ðD;fÞ satisfies (H4).
We conclude that ðD;fÞ is n-helpful, as required. &

Proposition 8.6. Every n-helpful n-edge-coloured multigraph has a ð2n þ 1Þ-complete

Hamiltonian detachment.

Proof. Let ðG;fÞ be an n-helpful n-edge-coloured multigraph. Let ðD;fÞ be an n-
helpful detachment of ðG;fÞ such that jVðDÞj is as large as possible. If any vertex
had degree exceeding 2n in D then ðD;fÞ would by Lemma 8.5 have an n-helpful
detachment involving a graph with more vertices than D and, since this detachment
would also be a detachment of ðG;fÞ; it would contradict the maximality of jVðDÞj:
Therefore no vertex has degree exceeding 2n in D and so, by (H1), dDðxÞ ¼ 2n for
every xAVðDÞ: From this and (H3) and Lemma 8.4, it follows that D is a complete
graph, which must have order 2n þ 1 since each of its vertices has degree 2n:
Therefore ðD;fÞ is ð2n þ 1Þ-complete. By (H2) and (H4), each D/kS is a connected
graph in which every vertex of D has degree 2, i.e. a Hamiltonian cycle of D:
Therefore ðD;fÞ is Hamiltonian. &

Proof of Theorem 8.2. Let S ¼ ðp1;y; psÞ be a composition of 2n and let An be a

symmetric S-outline Hamiltonian double latin square on symbols s1;y; sn: Then An

satisfies (OS1)–(OS4), and fs1;y; sng ¼ F,C; C ¼ C1,?,Cs where F;C are,

respectively, the sets of diagonally even and diagonally odd symbols in An and Ca is

the set of those symbols which appear oddly in the cell ða; aÞ of An for a ¼ 1;y; s:
For simplicity write qa ¼ qaðAnÞ ða ¼ 1;y; sÞ: By (OS2), any diagonal cell ða; aÞ of
An contains p2a symbols (counting repetitions) and so qa must have the same parity as
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p2a: Therefore
1
2ðpa � qaÞ is an integer, which is non-negative since decðfagÞp1

2ðpa �
qaÞ by (OS3). Let ra denote the non-negative integer

1
2
ðpa � qaÞ for a ¼ 1;y; s:

Since An is symmetric, each symbol occurs an even number of times in the union of
its non-diagonal cells, and by (OS1) each symbol occurs an even number of times in

the whole of An: Therefore each symbol occurs an even number of times in the union
of the diagonal cells of An; and so each member of C must appear oddly in at least
two diagonal cells of An: Therefore jCjp1

2
ðq1 þ?þ qsÞ and, if this inequality is an

equality, each member of C must appear oddly in exactly two diagonal cells of An:
However, by (OS3),

jFj ¼ decðf1;y; sgÞp1
2
ðp1 þ?þ psÞ � 1

2
ðq1 þ?þ qsÞ ¼ n � 1

2
ðq1 þ?þ qsÞ

and so 1
2
ðq1 þ?þ qsÞpn � jFj ¼ jCj: Therefore jCj ¼ 1

2
ðq1 þ?þ qsÞ and each

member of C appears oddly in exactly two diagonal cells of An: In other words each
member of C belongs to exactly two of the sets C1;y;Cs:
We observe that

r1 þ?þ rs ¼ 1
2
ðp1 þ?þ psÞ � 1

2
ðq1 þ?þ qsÞ ¼ n � jCj ¼ jFj: ð2Þ

For a ¼ 1;y; s let Pa be the set of those symbols in F which appear in the cell ða; aÞ
of An: Let Z be a subset of f1;y; sg: A symbol in F is diagonally confined to

f1;y; sg\Z in An if and only if it does not appear in the cell ða; aÞ of An for any aAZ;
i.e. if and only if it does not belong to

S
aAZ Pa: Therefore decðf1;y; sg\ZÞ ¼

jFj � j
S

aAZ Paj; and so (OS3) and (2) give

jFj �
[
aAZ

Pa

�����
�����p

X
aAf1;y;sg\Z

ra ¼ jFj �
X
aAZ

ra:

Hence j
S

aAZ PajX
P

aAZ ra for every subset Z of f1;y; sg and so, by Hall’s
Theorem, there exist distinct representatives of the sets P1;P1;
y;P1;P2;P2;y;P2;y;Ps;Ps;y;Ps; where P1 is listed r1 times and P2 is listed
r2 times andy and Ps is listed rs times. From this and (2), it follows that F is the
union of disjoint sets F1;y;Fs such that jFaj ¼ ra and FaDPa for a ¼ 1;y; s:
Since the sets F ¼ F1,?,Fs; C ¼ C1,?,Cs are disjoint, we can define tak to

be 2 if skAFa and 1 if skACa and 0 if skeFa,Ca for k ¼ 1;y; n and a ¼ 1;y; s:
Let Nðk; a; bÞ denote the number of occurrences of a symbol sk in a cell ða; bÞ of An:
We observe that Nðk; a; aÞ and tak are, by the definitions of Ca and tak; both odd if
skACa and both even if skeCa:Moreover, Nðk; a; aÞXtak because Nðk; a; aÞ is odd
when skACa and (since CaDPaDFÞ is even and non-zero when skAFa: We may
therefore define ðG;fÞ to be an n-edge-coloured multigraph with s þ 1 vertices
r0; r1;y; rs such that

(i) dG/kSðra; rbÞ ¼ Nðk; a; bÞ when kAf1;y; ng and a; bAf1;y; sg and aab;
(ii) dG/kSðr0; raÞ ¼ tak for k ¼ 1;y; n and a ¼ 1;y; s;
(iii) dG/kSðra; raÞ ¼ 1

2ðNðk; a; aÞ � takÞ for k ¼ 1;y; n and a ¼ 1;y; s;

(iv) no loops of G are incident with r0:

We will now prove that ðG;fÞ is n-helpful.
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If kAf1;y; ng and aAf1;y; sg then

dG/kSðraÞ ¼ 2dG/kSðra; raÞ þ dG/kSðr0; raÞ þ
X

bAf1;y;sg\fag
dG/kSðra; rbÞ

¼
Xs

b¼1
Nðk; a; bÞ ¼ 2pa

by (i)–(iii) and (OS1). Since F ¼ F1,?,Fs; C ¼ C1,?,Cs and F1;y;Fs are
disjoint and each member of C belongs to exactly two of C1;y;Cs it follows thatPs

a¼1 tak ¼ 2 and consequently, by (ii) and (iv), dG/kSðr0Þ ¼ 2 for k ¼ 1;y; n: Since
the degree of any vertex in G is the sum of its degrees in G/1S;y;G/nS; it follows
that

dGðraÞ ¼ 2pan ða ¼ 1;y; sÞ; dGðr0Þ ¼ 2n ð3Þ

and consequently jEðGÞj ¼ ðp1 þ?þ ps þ 1Þn ¼ ð2n þ 1Þn: These calculations
show that ðG;fÞ satisfies (H0)–(H2). For a; b ¼ 1;y; s it follows from (ii) that

dGðr0; raÞ ¼
Xn

k¼1
tak ¼ 2jFaj þ jcaj ¼ 2ra þ qa ¼ pa

and from (i) and (OS2) that

dGðra; rbÞ ¼
Xn

k¼1
Nðk; a; bÞ ¼ papb if aab:

From this and (3), it follows that ðG;fÞ satisfies (H3). If kAf1;y; ng then, by (i),
every two distinct vertices in the set fr1;y; rsg are joined by the same number of
edges in G/kS as in FðAn; skÞ; which is connected by (OS4), and so G/kS� r0 is
connected. From this and (iv) and the fact that dG/kSðr0Þ ¼ 2; it follows that G/kS
is connected. Hence ðG;fÞ satisfies (H4). This completes the proof that ðG;fÞ is n-
helpful and so has by Proposition 8.6 a ð2n þ 1Þ-complete Hamiltonian detachment
ðD;fÞ:
By the definition of detachment, there exists a DG-amalgamator O: The definition

of a DG-amalgamator implies that dGðraÞ ¼
P

dDðxÞ: xAO�1ðfragÞ; which is
2njO�1ðfragÞj since ðD;fÞ is ð2n þ 1Þ-complete, and so (3) implies that

jO�1ðfr0gÞj ¼ 1 and jO�1ðfragÞj ¼ pa ða ¼ 1;y; sÞ: We can clearly take any 2n þ
1 objects to be the vertices of D: so we may suppose that O�1ðfragÞ ¼ %pa�1s %pa for
a ¼ 1;y; s; where %p0 ¼ 0; %pa ¼ p1 þ?þ pa ða ¼ 1;y; sÞ and xsy denotes the

subset fx þ 1; x þ 2;y; yg of Z2n: Let v denote the unique element of O�1ðfr0gÞ:
Then VðD � vÞ ¼ Z2n and so D � v can be identified with the graph K2n considered
in Section 3. Let ½x; y� denote the edge joining any two distinct vertices x; y in D; and
let A be the symmetric 2n � 2n matrix such that for i; j ¼ 1;y; 2n and k ¼ 1;y; n;

Aði; jÞ ¼ sk when iaj and ½i; j�AEðD/kSÞ;

Aði; iÞ ¼ sk when ½v; i�AEðD/kSÞ:
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Since ðD;fÞ is Hamiltonian, each D/kS is a Hamiltonian cycle of D: therefore each
symbol sk occurs exactly twice in each row of A and twice in each column of A; and
so A is a double latin square. For any two distinct elements i; j of Z2n; the definition
of A implies that ½i; j� is in D/kS and consequently in D/kS� v if and only if
Aði; jÞ ¼ Aðj; iÞ ¼ sk: therefore, in the notation of Section 3, D/kS� v ¼ HðA; skÞ:
Since each D/kS is a Hamiltonian cycle of D; it follows that D/kS� v ¼ HðA; skÞ
is a Hamiltonian path of K2n for k ¼ 1;y; n and so, by Theorem 3.3, A is an
SHLSð2nÞ:
Consider any a; bAf1;y; sg and any kAf1;y; ng: Let eab/kS denote the number

of edges of D/kS which join elements of O�1ðfragÞ to elements of O�1ðfrbgÞ and
eva/kS denote the number of edges of D/kS which join v to elements of O�1ðfragÞ:
Let Aab be the pa � pb submatrix of A formed by the entries Aði; jÞ with
%pa�1oip %pa; %pb�1ojp %pb: Since O�1ðfragÞ ¼ %pa�1s %pa and O�1ðfrbgÞ ¼ %pb�1s %pb;

the definition of A implies that sk occurs exactly eab/kS times in Aab when aab and
exactly 2eaa/kSþ eva/kS times in Aaa: Moreover eaa/kS ¼ dG/kSðra; raÞ;
eab/kS ¼ dG/kSðra; rbÞ and eva/kS ¼ dG/kSðr0; raÞ since O is a DG-amalgamator,

and so (i)–(iii) give eab/kS ¼ Nðk; a; bÞ when aab and 2eaa/kSþ eva/kS ¼
Nðk; a; aÞ: Hence sk occurs exactly Nðk; a; bÞ times in Aab for all a; bAf1;y; sg and
all kAf1;y; ng; and so An is the ðS;SÞ-amalgamation of A: &

Condition (OS3) in the definition of a symmetric S-outline Hamiltonian double

latin square can be replaced by the following condition ðOS3nÞ:
ðOS3nÞ There is a multiset S of 2n ordered pairs ðsk; ða; aÞÞ such that if S

contains ðsk; ða; aÞÞ x times then symbol sk occurs at least x times in cell ða; aÞ
of An; and:

(A) each symbol sk occurs twice in ordered pairs of S;
(B) each diagonal cell ða; aÞ occurs pa times in ordered pairs of S; and
(C) for 1pars; if a symbol sk occurs an odd number of times in cell ða; aÞ of An;

then ðsk; ða; aÞÞ occurs exactly once in S:

Proposition 8.7. If S ¼ ðp1; p2;y; pnÞ is a composition of 2n and An is the ðS;SÞ-
amalgamation of an SHLSð2nÞ on symbols s1; s2;y; sn; then An satisfies condition

ðOS3nÞ:

Proof. Let A be the SHLSð2nÞ of which An is the ðS;SÞ-amalgamation. Recall that
in the definition of an ðS;TÞ-amalgamation in Section 6, when S ¼ T ¼ ðp1;y; psÞ;
the matrix A is partitioned into submatrices Aab ða; b ¼ 1;y; sÞ: The multiset S
corresponds to the set of 2n ordered pairs ðsk; ða; aÞÞ where sk occurs in a diagonal
cell d of A and d occurs in the submatrix Aaa: (A) follows from Lemma 4.2, (B) is
true since Aaa is a pa � pa submatrix of A; and (C) follows from (A) and the
symmetry of the submatrix Aii: &
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Theorem 8.8. Let S ¼ ðp1; p2;y; pnÞ be a composition of 2n and An be a symmetric

s � s multiple entry matrix on symbols s1;y; sn satisfying conditions (OS1), (OS2)

and (OS4). Then An is a symmetric S-outline Hamiltonian double latin square

if and only if An satisfies ðOS3nÞ: [Thus An satisfies (OS3) if and only if An satisfies

ðOS3nÞ:�

Proof. Necessity: If An satisfies (OS3) then, by Theorem 8.2, An is the ðS;SÞ-
amalgamation of an SHLSð2nÞ; so by Proposition 8.7, An satisfies ðOS3nÞ:

Sufficiency: Let X be a subset of f1;y; sg and let SX be the submultiset of S
consisting of all ordered pairs of S; occurring with the same multiplicity as in S; of
the form ðsk; ða; aÞÞ with aAX : If a symbol ak is diagonally confined to X in An; then
all occurrences of sk in S must actually occur in SX and so, by (A), occur exactly
twice in SX : Therefore at least 2decðXÞ elements in SX (counting repetitions) contain

symbols which are diagonally even in An: If a symbol sk appears oddly in a cell ða; aÞ
of An; then by (C) the symbol ðsk; ða; aÞÞ occurs exactly once in

P
: Therefore at leastP

aAX qaðAnÞ entries in SX contain symbols which are diagonally odd in An: By (B),
SX ¼

P
aAX pa: Therefore

2decðX Þ þ
X
aAX

qaðAnÞpSX ¼
X
aAX

pa;

proving (OS3). &

9. Embedding

If A0 is an s0 � t0 matrix and sAf1;y; s0g; tAf1;y; t0g then A0½s; t� will denote the
s � t submatrix of A0 in its top left-hand corner, i.e. obtained from A0 by deleting its
last s0 � s rows and its last t0 � t columns. We shall say that an s � t ordinary matrix
A can be extended to A0 if A ¼ A0½s; t�: More generally, we shall say that an s � t

unfilled matrix M can be extended to A0 if M can be converted into A0½s; t� by
inserting a symbol into each unoccupied cell of M: We shall allow the possibility of
extending an s � t ordinary matrix A to an s0 � t0 multiple-entrymatrix A0: this will be
taken to mean that A0½s; t� ¼ A but any cell ði; jÞ of A0 for which i4s or j4t may
contain more than one symbol. Extending an s � t ordinary matrix (or more
generally an s � t unfilled matrix) A to an s0 � t0 ordinary matrix A0 can be viewed as
an instance of the notion of ‘‘embedding’’ mentioned in Section 6: it amounts to

embedding in A0 an s0 � t0 matrix Â such that Â½s; t� ¼ A and all cells of Â outside

Â½s; t� are unoccupied.
Let R be an s � t unfilled matrix on the symbols s1;y; sn and let Sm be the

statement that each symbol occurs at most m times in each row of R and at most m

times in each column of R: We shall call R (i) an unfilled sublatin rectangle (on

s1;y; snÞ if S1 is true, (ii) an unfilled latin square (on s1;y; snÞ if S1 is true and
s ¼ t ¼ n; (iii) an unfilled subdouble latin rectangle (on s1;y; snÞ ifS2 is true. In each
case, the word ‘‘unfilled’’ may be omitted if R has no unoccupied cells, i.e. is an
ordinary matrix. An unfilled subdouble latin rectangle R on s1;y; sn is acyclic if for
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k ¼ 1;y; n there is no sk-cycle in R; the term ‘‘sk-cycle’’ being defined as in Section
1. The number of occurrences of a symbol s in a matrix R will be denoted by NRðsÞ
and, if R is a square matrix, DRðsÞ will denote the number of occurrences of s on its
main diagonal. If R is an unfilled matrix then NRðriÞ; NRðcjÞ will denote the number
of occupied cells in its ith row and jth column, respectively, and UR will denote the
number of unoccupied cells in R:We shall say that two cells ði; jÞ; ði0; j0Þ of a matrix
are contiguous if either ði ¼ i0 and jaj0Þ or ðiai0 and j ¼ j0).
Ryser [20] has proved that an s � t sublatin rectangle on symbols s1;y; sn can be

extended to a latin square of order n if and only if NRðskÞXs þ t � n for k ¼ 1;y; n:
Our next result is a similar theorem concerning Hamiltonian double latin squares. It
is essentially equivalent to [17, Theorem 7], but we now present its statement and
proof in the language of the present paper.

Theorem 9.1. Suppose that s; tAf1;y; 2n � 1g and R is an s � t subdouble latin

rectangle on symbols s1;y; sn: Then R can be extended to anHLSð2nÞ if and only if R

is acyclic and for each kAf1;y; ng either

(a) NRðskÞ42ðs þ t � 2nÞ or

(b) NRðskÞ ¼ 2ðs þ t � 2nÞ and BðR; skÞ has at least one component of

even order.

Proof. Assume first that R can be extended to an HLSð2nÞ L on the symbols
s1;y; sn: For kAf1;y; ng there can be no sk-cycle in R since there is no sk-cycle of
length less than 4n in L: Therefore R must be acyclic. Now let kAf1;y; ng and let
Nði4s; j4tÞ ¼ x; where NðY;QÞ denotes the number of cells ði; jÞ such that Lði; jÞ ¼
sk and i; j satisfy conditions Y;Q: Then, since sk occurs twice in each row and twice
in each column of L; we have Nðips; j4tÞ ¼ 2ð2n � tÞ � x and hence

NRðskÞ ¼ Nðips; jptÞ ¼ 2s � Nðips; j4tÞ ¼ 2ðs þ t � 2nÞ þ x: ð4Þ

Let P be a shortest path in the cycle BðL; skÞ such that P connects some ruðu4sÞ to
some cvðv4tÞ: Then jVðPÞj is even since each edge of BðL; skÞ joins some ri to some
cj: If x ¼ 0 then ru; cv cannot be joined by an edge of BðL; skÞ and so ðP � ruÞ � cv is

a component of BðR; skÞ of even order. From this and (4), it follows that (a) or (b) is
true.
Now assume that R is acyclic and that for each kAf1;y; ng either (a) or (b) is

true. Let uki ðp2Þ; vkjðp2Þ be the number of occurrences of sk in the ith row and

jth column, respectively, of R: Extend R to an ðs þ 1Þ � ðt þ 1Þmultiple-entry matrix
An on s1;y; sn by making sk occur 2� uki times in the cell ði; t þ 1Þ of An and

2� vkj times in the cell ðs þ 1; jÞ of An and NRðskÞ � 2ðs þ t � 2nÞ times in the cell
ðs þ 1; t þ 1Þ of An for k ¼ 1;y; n and i ¼ 1;y; s and j ¼ 1;y; t: Let S;T be the
compositions ð1; 1;y; 1; 2n � sÞ and ð1; 1;y; 1; 2n � tÞ of 2n; respectively. We will
show that An;S;T satisfy (OH1)–(OH4).

It is clear that any symbol sk occurs exactly twice in each of the first s rows of An

and, since vk1 þ vk2 þ?þ vkt ¼ NRðskÞ; the number of occurrences of sk in the
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ðs þ 1Þth row of An is 2ð2n � sÞ: Therefore An;S satisfy (OH1), and for similar

reasons An;T satisfy (OH2). Clearly the cell ði; jÞ of An contains exactly one symbol
if ips and jpt: Since u1i þ u2i þ?þ uni is the number t of symbols in the ith row of

R; the cell ði; t þ 1Þ of An contains exactly 2n � t symbols for i ¼ 1;y; s: Similarly,
the cell ðs þ 1; jÞ of An contains exactly 2n � s symbols for j ¼ 1;y; t: SincePn

k¼1 NRðskÞ is the total number st of symbols in R; the cell ðs þ 1; t þ 1Þ of An

contains exactly st � n:2ðs þ t � 2nÞ ¼ ð2n � sÞð2n � tÞ symbols. Hence An;S;T

satisfy (OH3). To prove (OH4), let kAf1;y; ng and let BR ¼ BðR;skÞ; Bn ¼
BðAn; skÞ; so that BR ¼ ðBn � rsþ1Þ � ctþ1: Since sk occurs exactly twice in each of

the rows 1;y; s and columns 1;y; t of An; each vertex of BR has degree 2 in Bn:
Moreover BR contains no cycle since R is acyclic. Therefore each component of BR is

a path, each of whose endvertices is adjacent in Bn to rsþ1 or ctþ1: In case (b), one of
these components is a path P of even order, which must be contained in a path from

rsþ1 to ctþ1 in Bn because each endvertex of P is adjacent to rsþ1 or ctþ1 and every

edge of Bn joins some ri to some cj : In case (a), our definition of An implies that sk

occurs at least once in its cell ðs þ 1; t þ 1Þ and so rsþ1; ctþ1 are adjacent in Bn: In

both cases, we infer that rsþ1; ctþ1 are in the same component of Bn: Since we have

seen that each component of BR ¼ Bn � rsþ1 � ctþ1 has a vertex adjacent in Bn to

rsþ1 or ctþ1; it follows that Bn is connected. This proves (OH4).

We have thus shown that An is an ðS;TÞ-outline Hamiltonian double latin square.
Therefore An is by Theorem 7.2 the ðS;TÞ-amalgamation of an HLSð2nÞ and so R

can be extended to an HLSð2nÞ: &

Corollary 9.2. For sAf1;y; 2n � 1g; an s � 2n subdouble latin rectangle on n symbols

can be extended to an HLSð2nÞ if and only if it is acyclic.

Proof. Let sAf1;y; 2n � 1g and R be an s � 2n subdouble latin rectangle on
symbols s1;y; sn: Then each sk occurs exactly twice in each row of R: If R can be
extended to an HLSð2nÞ L then it is acyclic since for each kAf1;y; ng there is no
sk-cycle of length less than 4n in L and consequently no sk-cycle in R:
Now assume that R is acyclic. Let Q ¼ R½s; 2n � 1� and let kAf1;y; ng: Since R is

acyclic and sk occurs exactly twice in each of its rows and at most twice in each of its
columns, BðR; skÞ contains no cycle and has no vertex of degree greater than 2 and
r1;y; rs all have degree 2 in BðR; skÞ: Therefore the component of BðR; skÞ
containing c2n is a path P from some cu to some cv: Each component of P � c2n has
even order since each edge of BðR; skÞ joins some ri to some cj ; and any component
of P � c2n is a component of BðR; skÞ � c2n ¼ BðQ; skÞ: Therefore BðQ; skÞ has a
component of even order provided that VðPÞafc2ng; i.e. provided that c2n has
non-zero degree in BðR; skÞ; i.e. provided that sk occurs at least once in the
2nth column of R:Moreover since sk occurs twice in each row of R and at most twice
in its 2nth column, NQðskÞX2s � 2 ¼ 2ðs þ ð2n � 1Þ � 2nÞ and this inequality is
strict unless sk occurs twice in the last column of R; in which case we have seen that
BðQ; skÞ has a component of even order. Therefore BðQ; skÞ can by Theorem 9.1 be
extended to an HLSð2nÞ L: Since each sk occurs exactly twice in each row of R and
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in each row of L and since L½s; 2n � 1� ¼ Q ¼ R½s; 2n � 1�; it follows that L½s; 2n� ¼ R

and so R can be extended to an HLSð2nÞ: &

We can alternatively prove Corollary 9.2 by a simplified version of the proof of
Theorem 9.1 in which R is extended to an ðs þ 1Þ � 2n multiple-entry matrix, which
is proved using Theorem 7.2 to be the ðS;TÞ-amalgamation of an HLSð2nÞ where
S ¼ ð1; 1;y; 1; 2n � sÞ; T ¼ ð1; 1;y; 1Þ:

Corollary 9.3. Suppose that 1psp2n � 1 and R is an s � ð2n � sÞ unfilled acyclic

subdouble latin rectangle on symbols s1;y; sn: Then R can be extended to anHLSð2nÞ
if and only if NRðskÞ ¼ 0 for at most UR symbols sk:

Proof. Assume first that R can be extended to an HLSð2nÞ L on s1;y; sn: Since the
matrix M ¼ L½s; 2n � s� can be extended to L; each sk must satisfy condition (a) or
(b) of Theorem 9.1 with R; t replaced by M; 2n � s: This implies that NMðskÞ40 for
k ¼ 1;y; n; since BðM; skÞ would have no edges if NMðskÞ were 0 and thus all
components of BðM; srÞ would be single vertices, and thus have odd order.
Therefore NRðskÞ can only be 0 for symbols sk in the UR cells of M which are
unoccupied in R:
Now assume that jOjpUR; where O is the set of symbols sk with NRðskÞ ¼ 0:

Inserting each element of O into a different one of the UR unoccupied cells of R will
convert R into an s � ð2n � sÞ unfilled acyclic subdouble latin rectangle S with UR �
jOj unoccupied cells and NSðskÞ40 for k ¼ 1;y; n: Then transform S into an s �
ð2n � sÞ subdouble latin rectangle T on s1;y; sn by filling its UR � jOj unoccupied
cells one by one and, when filling any cell ði; jÞ; using a symbol which is already
present in at most one of the 2n � 2 cells contiguous to ði; jÞ: This rule ensures that
inserting a symbol sk into a cell never completes a sk-cycle, and so T is acyclic. Since
NTðskÞXNSðskÞ40 for k ¼ 1;y; n; we can by Theorem 9.1 extend T ; and hence
also R; to an HLSð2nÞ: &

Corollary 9.4. If s; t are positive integers and s þ to2n then every s � t unfilled acyclic

subdouble latin rectangle on n symbols can be extended to an HLSð2nÞ:

Proof. Let R be an s � t unfilled acyclic subdouble latin rectangle on symbols
s1;y; sn: Let S be the s � ð2n � sÞ unfilled acyclic subdouble latin rectangle on
s1;y; sn such that S½s; t� ¼ R and all cells in the last 2n � s � t columns of S are
unoccupied. If the first row of R contains m distinct symbols and u unoccupied cells
then 2m þ uXt since R is subdouble. Since NSðskÞ ¼ 0 for at most n � m symbols sk

and USXu þ sð2n � s � tÞX1
2
u þ 1

2
s þ 1

2
ð2n � s � tÞ ¼ n þ 1

2
ðu � tÞXn � m; it

follows from Corollary 9.3 that S can be extended to an HLSð2nÞ and therefore
so can R: &

We note also the following consequence of Corollary 9.3:
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Corollary 9.5. Any n � n unfilled latin square on n symbols can be extended to an

HLSð2nÞ:

An n � n unfilled latin square on symbols s1;y; sn can be extended to a 2n � 2n
latin square on symbols s1;y; s2n: This was observed by Evans [12], and can be
proved by an argument somewhat like the latter part of the proof of Corollary 9.3,
using Ryser’s theorem on extending sublatin rectangles in place of Theorem 9.1. One
wonders whether this observation and Corollary 9.5 can be subsumed in a single
statement in the following way.

Problem 9.6. Can every n � n unfilled latin square on symbols s1;y; sn be extended
to a 2n � 2n latin square on symbols s1;y; s2n which becomes an HLSð2nÞ when
snþk is replaced by sk for each kAf1;y; ng?

The following statement is contained in [16, Theorem 11]:

Proposition 9.7. Suppose that s; tAf1;y; 2ng and uAf1;y; ng and R is an s � t

unfilled subdouble latin rectangle on symbols s1;y; su: Then R can be extended to a

2n � 2n double latin square on symbols s1;y; sn without inserting any of s1;y; su

into unoccupied cells of R if and only if

(i) URpst þ 2su þ 2tu � 2nðs þ t þ 2u � 2nÞ;
(ii) NRðskÞX2ðs þ t � 2nÞ for k ¼ 1;y; u;
(iii) NRðriÞX2u þ t � 2n for i ¼ 1;y; s;
(iv) NRðcjÞX2u þ s � 2n for j ¼ 1;y; t:

If s; tAf1;y; 2ng and s þ to4n and uAf1;y; ng and R is an s � t unfilled
subdouble latin rectangle on s1;y; su then (i)–(iv) are by Proposition 9.7 necessary

conditions for R to be extendible to an HLSð2nÞ without inserting any of s1;y; su

into unoccupied cells of R: Since we are now assuming that s þ to4n; a further
necessary condition is that R be acyclic. In view of Theorem 9.1, these necessary
conditions seem unlikely to be sufficient when some of the inequalities in (i)–(iv) are
actually equalities, but we propose the following conjecture.

Conjecture 9.8. Suppose that s; tAf1;y; 2ng and s þ to4n and uAf1;y; ng and R is

an s � t unfilled acyclic subdouble latin rectangle on symbols s1;y; su: If

URost þ 2su þ 2tu � 2nðs þ t þ 2u � 2nÞ;

NRðskÞ42ðs þ t � 2nÞ for k ¼ 1;y; u;

NRðriÞ42u þ t � 2n for i ¼ 1;y; s

and

NRðcjÞ42u þ s � 2n for j ¼ 1;y; t
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then R can be extended to an HLSð2nÞ without inserting any of s1;y; su into

unoccupied cells of R:

We now consider embedding problems like the foregoing, with the additional
condition of symmetry imposed. We begin with the following counterpart of
Theorem 9.1:

Theorem 9.9. Suppose that so2n and R is an s � s symmetric subdouble latin rectangle

on symbols s1;y; sn: Then R can be extended to an SHLSð2nÞ if and only if R is

acyclic and for k ¼ 1;y; n we have

(a) DRðskÞp2;
(b) NRðskÞ þ DRðskÞ44ðs � nÞ:

Proof. If R can be extended to an SHLSð2nÞ L on s1;y; sn then R is acyclic by
Theorem 9.1 and DRðskÞp2 for k ¼ 1;y; n by Lemma 4.2. Moreover, if sk occurs
in exactly x cells ði; jÞ of L with i4s; j4s then the argument leading to (4)
(with s ¼ tÞ gives NRðskÞ ¼ 4ðs � nÞ þ x; which implies (b) since xX2� DRðskÞ by
Lemma 4.2.
Now assume that R is acyclic and (a) and (b) hold for k ¼ 1;y; n: Since R is

symmetric, NRðskÞ � DRðskÞ is even and so (a) and (b) imply that NRðskÞX4ðs � nÞ
for k ¼ 1;y; n: Let ukiðp2Þ be the number of occurrences of sk in the ith row of R:
Extend R to a symmetric ðs þ 1Þ � ðs þ 1Þ multiple-entry matrix An on s1;y; sn by

making sk occur 2� uki times in each of the cells ði; s þ 1Þ; ðs þ 1; iÞ of An and

NRðskÞ � 4ðs � nÞ times in the cell ðs þ 1; s þ 1Þ of An for k ¼ 1;y; n and i ¼
1;y; s: Let p1 ¼ ? ¼ ps ¼ 1; psþ1 ¼ 2n � s and S be the composition

ðp1;y; psþ1Þ ¼ ð1; 1;y; 1; 2n � sÞ of 2n: We must verify that An and S satisfy
(OS1)–(OS4).
The verification of (OS1) and (OS2) resembles the verification of (OH1)–(OH3)

in the proof of Theorem 9.1, and may be left to the reader. To verify (OS3),
define decðX Þ as in (OS3) for every set XDf1;y; s þ 1g: Let F be the set of

symbols sk which diagonally even in An and Om be the set of symbols sk for
which DRðskÞ ¼ m and let wm ¼ jOmj: Then fs1;y; sng ¼ O0,O1,O2 by

(a) and so w0 þ w1 þ w2 ¼ n; w1 þ 2w2 ¼ s and consequently w0 ¼ n � 1
2
s � 1

2
w1 ¼

1
2
ðpsþ1 � w1Þ: If sk appears oddly in the cell ðs þ 1; s þ 1Þ of An then NRðskÞ � 4ðs �

nÞ is odd by the definition of An and so NRðskÞ is odd and therefore, since NRðskÞ �
DRðskÞ is even, DRðskÞ is odd and so skAO1 by (a). Therefore qsþ1ðAnÞpw1: If skAF
then sk cannot occur exactly once in any diagonal cell of An and so cannot

occur in any diagonal cell of R ¼ An½s; s� and consequently DRðskÞ ¼ 0: Therefore
FDO0 and for each skAF we have NRðskÞ44ðs � nÞ by (b) and so sk appears in

the cell ðs þ 1; s þ 1Þ of An: Therefore decðX Þ ¼ 0 for every set XDf1;y; sg and
decðXÞpjFjpw0 ¼ 1

2
ðpsþ1 � w1Þp1

2
ðpsþ1 � qsþ1ðAnÞÞ for every set XDf1;y; s þ 1g:

Moreover, since each diagonal cell of An½s; s� contains exactly one symbol,
qaðAnÞ ¼ 1 ¼ pa for a ¼ 1;y; s: Hence decðX Þp1

2

P
aAX ðpa � qaðAnÞÞ for every
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set XDf1;y; s þ 1g and (OS3) is verified. To verify (OS4), suppose that

FðAn; skÞ is disconnected. Then it has a component C which does not

include rsþ1: Since sk occurs exactly twice in each of the first s rows of An;

each of r1;y; rs is incident with exactly two edges (one of which may be a

loop) in FðAn; skÞ: Therefore C is either a cycle or a path augmented by adding
two loops, one incident with each of its endvertices. In each of these cases, it is

easily seen that An½s; s� ¼ R contains a sk-cycle, contradicting the hypothesis that
it is acyclic.

We conclude that An is a symmetric S-outline Hamiltonian double latin square.

Therefore An is by Theorem 8.2 the ðS;SÞ-amalgamation of an SHLSð2nÞ and so R

can be extended to an SHLSð2nÞ: &

Corollary 9.10. Suppose that R is an n � n symmetric unfilled acyclic subdouble latin

rectangle on symbols s1;y; sn with d unoccupied diagonal cells and 2e unoccupied off-

diagonal cells. Then R can be extended to an SHLSð2nÞ if and only if DRðskÞp2 for

k ¼ 1;y; n and NRðskÞ ¼ 0 for at most d+e symbols sk:

Proof. Assume first that R can be extended to an SHLSð2nÞ L on s1;y; sn:
Moreover DRðskÞp2 for k ¼ 1;y; n by Lemma 4.2. Since the matrix M ¼ L½n; ng
can be extended to L; each sk must satisfy condition (b) of Theorem 9.9 with R; s

replaced by M; n: Since DMðskÞpNMðskÞ; this implies that NMðskÞ40 for k ¼
1;y; n: Therefore NRðskÞ can only be 0 for symbols sk in the d þ 2e cells of M ¼
L½n; n� which are unoccupied in R; and there are at most d þ e such symbols since L

is symmetric.
Now assume that DRðskÞp2 for k ¼ 1;y; n and jOjpd þ e; where O is

the set of symbols sk with NRðskÞ ¼ 0: Convert R into an n � n symmetric unfilled
acyclic subdouble latin rectangle S with NSðskÞ40 for k ¼ 1;y; n by inserting
each skAO into either one unoccupied diagonal cell of R or two unoccupied off-
diagonal cells ðik; jkÞ; ðjk; ikÞ of R: Then transform S into an n � n symmetric
subdouble latin rectangle T on s1;y; sn by a succession of operations each
of which either (i) inserts into an unoccupied diagonal cell ði; iÞ a symbol
which is already present in at most one of the 2n � 2 cells ði; jÞ ðjaiÞ; ðj; iÞ ðjaiÞ
or (ii) inserts into each of two unoccupied off-diagonal cells ði; jÞ; ðj; iÞ a symbol
which is already present in at most one of the 2n � 2 cells contiguous to ði; jÞ: If
kAf1;y; ng then, since T is a symmetric subdouble latin rectangle, it is easily seen
that any sk-cycle in T which included a diagonal cell ði; iÞ would have to include both
another diagonal cell and a cell ði; jÞ ðjaiÞ: Moreover any sk-cycle in T which
included a cell ði; jÞ would have to include two cells contiguous to ði; jÞ:
Consequently, neither of procedures (i), (ii) can complete a sk-cycle and so T is
acyclic. Since DRðskÞp2 and consequently DSðskÞp2 for k ¼ 1;y; n; procedure (i)
ensures that DT ðskÞp2 for k ¼ 1;y; n: Moreover NT ðskÞXNSðskÞ40 for k ¼
1;y; n: Therefore, by Theorem 9.9, we can extend T ; and hence also R; to an
SHLSð2nÞ: &
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Corollary 9.11. For son; an s � s symmetric unfilled acyclic subdouble latin rectangle

R on symbols s1;y; sn can be extended to an SHLSð2nÞ if and only if DRðskÞp2 for

k ¼ 1;y; n:

Proof. If R can be extended to an SHLSð2nÞ then DRðskÞp2 for k ¼ 1;y; n by
Lemma 4.2. Now assume that DRðskÞp2 for k ¼ 1;y; n: Let S be the n � n

symmetric unfilled acyclic subdouble latin rectangle on s1;y; sn such that S½s; s� ¼
R and all cells of S outside S½s; s� are unoccupied. This S has at least one unoccupied
diagonal cell and at least 2n � 2 unoccupied off-diagonal cells. Consequently, by
Corollary 9.10, S can be extended to an SHLSð2nÞ and therefore so can R: &

References

[1] B. Alspach, J.C. Bermond, D. Sotteau, Decompositions into cycles 1: Hamiltonian decompositions,

in: Cycles and Rays, NATO ASI Series C, Kluwer, Dordrecht, 1990, pp. 9–18.

[2] B. Alspach, K. Heinrich, G. Liu, Orthogonal factorizations of graphs, in: J.H. Dinitz, D.R. Stinson

(Eds.), Contemporary Design Theory, A Collection of Surveys, Wiley, New York, 1992, pp. 13–40.

[3] L.D. Andersen, A.J.W. Hilton, Generalized latin rectangles II: embedding, Discrete Math. 31 (1980)

235–260.

[4] L.D. Andersen, A.J.W. Hilton, Thank Evans!, Proc. London Math. Soc. (3) 47 (1983) 507–522.

[5] L.D. Andersen, A.J.W. Hilton, C.A. Rodger, A solution to the embedding problem for partial

idempotent latin squares, J. London Math. Soc. (2) 26 (1982) 21–27.

[6] Z. Baranyai, On the factorization of the complete uniform hypergraph, in: A. Hajnal, R. Rado, V.T.

Sós (Eds.), Infinite and Finite Sets, North-Holland, Amsterdam, 1975, pp. 91–108.

[7] B. Bollobás, Modern Graph Theory, Springer, Berlin, 1998.

[8] D. Bryant, B.M. Maenhaut, I. Wanless, A family of perfect factorizations of complete bipartite

graphs, J. Combin. Theory A 98 (2002) 328–342.

[9] H. Buchanan, Graph factors and Hamiltonian decompositions, Doctoral Thesis, West Virginia

University, 1997.

[10] A. Cruse, On embedding incomplete symmetric latin squares, J. Combin. Theory Ser. A 16 (1974)

18–22.

[11] J. Edmonds, Submodular functions, matroids and certain polyhedra, in: R.K. Guy, H. Hanani, N.

Sauer, J. Schönheim (Eds.), Combinatorial Structures and their Applications, Proceedings of the

Calgary International Conference, Gordon and Breach, New York, 1970, pp. 69–87.

[12] T. Evans, Embedding incomplete latin squares, Amer. Math. Monthly 67 (1960) 958–961.

[13] A. Hedayat, D. Raghavarao, E. Seiden, Further contributions to the theory of F -squares design,

Ann. Statist. 3 (1975) 712–716.

[14] A. Hedayat, E. Seiden, F -square and orthogonal F -squares design: a generalization of latin square

and orthogonal latin squares design, Ann. Math. Statist. 41 (1970) 2035–2044.

[15] A.J.W. Hilton, Hamiltonian decompositions of complete graphs, J. Combin. Theory Ser. B 36 (1984)

125–134.

[16] A.J.W. Hilton, Outlines of latin squares, Ann. Discrete Math. 34 (1987) 225–242.

[17] A.J.W. Hilton, C.A. Rodger, Hamiltonian decompositions of complete regular s-partite graphs,

Discrete Math. 58 (1986) 6378.

[18] M. Mays, http://www.math.wva.edu/~mays/moshls.htm

[19] C.St.J.A. Nash-Williams, Amalgamations of almost regular edge-colourings of simple graphs,

J. Combin. Theory Ser. B 43 (1987) 322–342.

[20] H.J. Ryser, A combinatorial theorem with an application to latin rectangles, Proc. Amer. Math. Soc.

2 (1951) 550–552.

A.J.W. Hilton et al. / Journal of Combinatorial Theory, Series B 87 (2003) 81–129128

http://www.math.wva.edu/~mays/moshls.htm
http://www.math.wva.edu/~mays/moshls.htm


[21] I.M. Wanless, Perfect factorizations of bipartite graphs and Latin squares without proper

subrectangles, Electron. J. Combin. 6 (1999) R9.

[22] D.J.A. Welsh, Matroid Theory, London Mathematical Society Monograph 8, Academic Press, New

York, 1976.

[23] D. deWerra, Equitable colorations of graphs, Rev. Fran. Inform. Rech. Oper. 5 (1971) 3–8.

A.J.W. Hilton et al. / Journal of Combinatorial Theory, Series B 87 (2003) 81–129 129


	Hamiltonian double latin squares
	Definition and elementary construction
	Orthogonality
	Connections with graph theory
	Symmetry
	Orthogonality and symmetry
	Amalgamation and embedding: introductory remarks
	Amalgamating Hamiltonian double latin squares: an elementary proof
	Amalgamating symmetric Hamiltonian double latin squares: a matroid proof
	Edmonds [11,22, Section 69; Section 8.5]
	Embedding
	References


