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Abstract

A double latin square of order 2n on symbols oy, ..., 0, is a 2n x 2n matrix 4 = (a;) in
which each a;; is one of the symbols o1, ..., s, and each o occurs twice in each row and twice
in each column. For k=1,...,n let B(4,0;) be the bipartite graph with vertices
Pis ey Pons> C1s ---, €2 and 4n edges [p;, ¢;] corresponding to ordered pairs (7,7) such that a; =
ox. We say that A is Hamiltonian if B(A4,0%) is a cycle of length 4n for k=1, ...,n. Two
double latin squares (a;), (a;-j) of order 2n on symbols a1, ..., 6, are said to be orthogonal if for
each ordered pair (o, 0,) of symbols there are four ordered pairs (i,j) such that a; = oy,
aﬁj = O0f.

We explore ways of constructing Hamiltonian double latin squares (HLS), symmetric HLS,
sets of mutually orthogonal HLS and pairs of orthogonal symmetric HLS. We identify those
arrays which can be obtained from HLS by amalgamating rows and amalgamating columns in
a certain sense, and we prove a similar result concerning symmetric arrays obtainable in this
way from symmetric HLS. These results can be proved either by using matroids or by a more
elementary method, and we illustrate both approaches. From these results we deduce a
characterisation of those matrices which are submatrices of HLS on # symbols, a similar result
concerning symmetric submatrices of symmetric HLS and some related results. Much of our
discussion uses graph-theoretic language, since HLS on »n symbols are equivalent to
decompositions of K>, into Hamiltonian cycles and symmetric HLS on n symbols are

*Corresponding author.

E-mail address: a.j.w.hilton@reading.ac.uk (A.J.W. Hilton).
!This research is supported by ONR Grant N00014-95-10769 and Grant DMS-9531722.
2Sadly Crispin Nash-Williams died while this version of this paper was being written.

0095-8956/02/$ - see front matter © 2002 Elsevier Science (USA). All rights reserved.
PII: S0095-8956(02)00029-1


https://core.ac.uk/display/82201374?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

82 A.J.W. Hilton et al. | Journal of Combinatorial Theory, Series B 87 (2003) 81-129

equivalent to decompositions of K, into Hamiltonian paths (and these are equivalent to
decompositions of K5, | into Hamiltonian cycles).
© 2002 Elsevier Science (USA). All rights reserved.

1. Definition and elementary construction

A double latin square of order 2n is a 2n x 2n matrix containing n symbols, such
that each cell contains exactly one symbol and each symbol occurs exactly twice in
each row and twice in each column. The occurrences of a symbol o describe a set of
disjoint cycles in a double latin square: if ¢ occurs in 2r distinct cells

(i1, )1), (i1, 12)s (02,)2), (12, 73), (i3, 73)5 (3,J4) 5 «ov s (izsjie), (i s i)

then these cells are said to constitute a cycle, or more specifically a g-cycle, of length
2/. In a double latin square of order 2n, the lengths of the cycles described by any
one symbol have sum 4n. A cycle of length 4n, the maximum possible length, is called
a Hamiltonian cycle of the double latin square.

In this paper we study double latin squares in which the occurrences of each
symbol describe a Hamiltonian cycle. Such double latin squares are called
Hamiltonian double latin squares. The expression “Hamiltonian double latin
square(s) of order 2n” will be abbreviated to HLS(2n).

We let A(i,j) denote the entry in the cell (i,j) of a matrix A. If 4 is an n X n matrix
and y is a permutation of the set {1, ..., n} then 7,(4) will denote the matrix obtained
from A by applying the permutation y to its columns and n’(A) will denote the
matrix obtained from 4 by applying the permutation y to its rows: thus n,(4) = B,
n'(4) = C where B(i,y(j)) = C(y(i),j) = A(i,j) for i,j=1,...,n. The following
theorem (which incorporates an improvement suggested by a referee) describes an
easy way to construct several HLS(2n) from two latin squares of order 7.

Theorem 1.1. If A, B are latin squares of order n on the same n symbols and v is a
permutation of {1, ...,n} which has just one cycle (i.e. 1,y'(1),y*(1),7*(1), ...,y"~ (1)
are distinct) then

A B
L(A,B;y) = (MA) B)

is an HLS(2n).

Proof. If a symbol ¢ occupies a cell (i,j) of A then it must also occupy the cell
(i,y(j)) of my(A) and some cell (i, k) of B and some cell (4, 7(j)) of A. Consequently, ¢
describes a cycle in L = L(A, B;y) in which five successive cells are (i,j), (i,n + k),
(n+in+k), (n+1i,9()), (h,y(j)). Hence, starting with the occurrence of ¢ in the
first column of A4, we find that in L there is a g-cycle which visits in succession the
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columns
1, ko, y" (1), k1,2 (1), k2,7 (1), K3y o, 9" (1), ki, 1 of L,
for some ko, ki, ..., kp1e{n+1,n4+2,...,2n}. Since 1,y(1),7%(1),...,y""'(1) are
distinct, it follows that ¢ describes a Hamiltonian cycle in L. Since this argument

applies to every symbol, L is Hamiltonian. [J

Example. If

W = AN
= N WA

SN =
N A=W

and y is the permutation 1+ 32411 then L(4, 4;7) is

123 412 3 4
2 4132413
31423142
4 321 4 3 21
4 3121234
31242413
2 4313142
1 243 4321

If we permute the rows and columns of an HLS(2#n) we obtain another HLS(2n).

Proposition 1.2. If' A is an HLS(2n) and v, are permutations of {1,2, ...,2n} then
' (ns(A)) is an HLS(2n).

Proof. If a symbol describes a Hamiltonian cycle
(i1,71)s (i1,)2)5 (i2,2)5 (2,3) +++, (B2msJan)s (B2ms 1)

in A then it describes a Hamiltonian cycle

(7(@1),6(1)), ((ir), 6(12)), (v(i2),0(12)), (7(i2), 6 (j3)),

ey (9(i2n), 0(ian))s ((i2n), 0(1))

in 7/(ns(A4)). O
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2. Orthogonality

Let A, B be double latin squares of order 2n on the same symbols oy, ...,0,. We
say that A, B are orthogonal if for each ordered pair (g;,0;) of symbols there are four
ordered pairs (r,s) such that A(r,s) = o; and B(r,s) = g;. We abbreviate “mutually
orthogonal Hamiltonian double latin square(s) of order 2n” to MOHLS(2n).

For n>2, let H(2n) be the maximum number of MOHLS(2r) and N(n) be the
maximum number of mutually orthogonal latin spares of order n, or MOLS(n).

Lemma 2.1. H(2n) =N (n) for all n=2.

Proof. Let y be a permutation of {1, ...,n} which has just one cycle. If Ay, ..., Ay
are MOLS(n) then the N(n) double latin squares L(4,,4,;y) (r=1,...,N(n)) are
clearly mutually orthogonal, and are Hamiltonian by Theorem 1.1. [

Problem 2.2. It is well known that N(n)<n — 1, with equality occurring for some
values of n. What is the comparable bound for H(2n)?

A bound due to Hedayat et al. [13,14] for the maximum number of mutually
orthogonal frequency squares implies that H(2n)<(2n — 1)*/(n— 1) (since double
latin squares are special cases of frequency squares), but it seems unlikely that this
bound is the right one.

In contrast to the fact that N(n) = 1 when n is 2 or 6, we have the following result:

Theorem 2.3. H(2n)>2 for all n=2.
Proof. When n¢{2,6}, Lemma 2.1 gives H(2n)>N(n)>2, and so it remains to

check that there exist two MOHLS(4) and two MOHLS(12). An example of the
former is

112 2 211 2
2 11 2 2211
2211 1 2 21
1 2 21 112 2

To obtain a pair of MOHLS(12), start with the latin squares

1 2563 4 1256 3 4 216543

216 543 216 543 1256 3 4

56 3412 341256 4 3216 5
A: B: B’:

6 54 3 21 43216375 341256

341256 56 3412 6 54 3 21

4 32165 6 54321 563 412
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Here A and B are obtained by using a direct product of a pair of MOLS(3) with an
LS(2) and B’ is obtained from B by interchanging three pairs of symbols. If 7 is the
permutation 1654321 then L(4,A4;7) and L(B,B;y) are
MOHLS(12). O

Not surprisingly, orthogonality of HLS(2n) is preserved by permutations of the
rows or columns.

Theorem 2.4. If {A,...,A,} is a set of MOHLS(2n) and 7,0 are permutations of
{1, ...,n} then {n"(ns(A4,)), ..., n"(ns(A,))} is also a set of MOHLS(2n).

Proof. This is easy to see using Proposition 1.2. [

3. Connections with graph theory

We use the following graph-theoretic language and conventions. As usual, V' (G)
and E(G) denote the sets of vertices and edges, respectively, of a graph G. A spanning
subgraph of G is a subgraph S of G such that V(S) = V(G). A {1,2}-factor of G is a
spanning subgraph S of G such that each vertex of G has degree 1 or 2 in S (i.e. such
that each component of S is a path of non-zero length or a cycle). For the purposes
of this paper, a decomposition of G is a set {S1, ..., S,} of spanning subgraphs of G
such that each edge of G is in exactly one of them. This decomposition will be called
(1) a Hamiltonian decomposition of G if Sy, ..., S, are Hamiltonian cycles of G, (ii) a
Hamiltonian path decomposition of G if Sy, ..., S, are Hamiltonian paths of G, (iii) a
{1,2}-factorisation of G if Sy, ..., S, are {1,2}-factors of G. An edge of a graph
joining vertices x,y will be denoted by [x,y]. A path or cycle in a graph will be
denoted by <xi,x2,...,X,» or {X1,X2, ..., Xm, X1 », respectively, if it has m distinct
vertices X, ..., X,; and its edges are [x|, x2], [x2, X3], ..., [Xm—1, %] and, in the case of a
cycle, [x,, x1]. We use the customary notations K, and K, , for complete graphs and
complete bipartite graphs.

We describe here two connections between Hamiltonian double latin squares and
graph theory.

For the first of these, consider any 2n x 2n matrix 4 in which each cell contains
exactly one of the symbols ¢y, ..., 0,. Let K5,,, be a complete bipartite graph with
vertices py, Pa, ..., Pan, €15 €2, ..., €2, and edges [p;, ¢;] (i,j =1, ...,2n): we think of the
vertices p;, ¢; as representing the ith row and the jth column of 4, respectively. Let Sk
be the spanning subgraph of K, », such that [p;, ¢;] € E(S)) if and only if the cell (i,/)
of A contains gy (i,j =1,...,2n). Then {S|, ..., S2,} is a decomposition of Ky, 2,
which represents 4 in an obvious sense, and it is easily seen that {S},...,S»,} is a
Hamiltonian decomposition of K5, », if and only if 4 is a Hamiltonian double latin
square. Thus we have:

Lemma 3.1. An HLS(2n) is equivalent to a Hamiltonian decomposition of Kapy.
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For a general reference about Hamiltonian decompositions, see [1], and for some
conceptually similar current work, see [8,21].

The second connection with graph theory is less obvious. It concerns symmetric
Hamiltonian double latin squares. We abbreviate “symmetric HLS(2r)” to
SHLS(2n). We shall make use of {1,2}-factorisations of K5, which comprise exactly
n {1,2}-factors: these include Hamiltonian path decompositions of K, by the
following (trivial) lemma:

Lemma 3.2. If @ is a Hamiltonian path decomposition of Ky, then |2| = n and each
vertex of Ky, is an endvertex of exactly one member of 9.

Proof. Since |E(K3,)| = n(2n — 1) and each member of & has 2n — 1 edges, it follows
that |2| = n. Since the degrees of a vertex in the n» members of & add up to 2n — 1, it
must be an endvertex of exactly one of them. [

For any positive integer m, let Z,, denote the ring of residue classes modulo m.
Expressions which denote integers will also be used as names for the corresponding
residue classes modulo m, leaving the context to indicate the intended meaning.
Throughout Sections 3-5, we shall for convenience take V(Ky,) to be Z,.
Consequently, expressions which denote integers can also serve as names for
vertices of K5,, and two such expressions serve as different names for the same vertex
if they denote integers differing by a multiple of 2n.

Given a symmetric double latin square 4 of order 2n on symbols oy, ...,d,, let
H,=H(A,0,) be the spanning subgraph of K, such that E(H,) =
{[i,J): i#j and A(i,j) = A(j,i) = o,}. Then {H,,...,H,} is a decomposition of
K5, and the presence of o, in the cells (i,/), (, i) of A (Where i#/) is witnessed by the
edge [i,/] of Ky, being in H,. If re{l,...,n} and ie{l, ..., 2n}, the symbol o, appears
twice in the ith row of A, but only appearances of g, off the main diagonal of 4 give
rise to edges of H,. Therefore, the degree in H, of the vertex i is 2 if A(i, i) #0, and 1
if A(i,i) = o,. Consequently each H, is a {1, 2}-factor of K,, whose vertices of degree
1 correspond to the occurrences of g, on the main diagonal of A. It follows that
{Hi,...,H,} is a {l1,2}-factorisation of K,, which we shall call the {1,2}-
factorisation corresponding to A.

If a particular H, is a Hamiltonian path {i}, i, ..., i, » of K5, then g, describes a
Hamiltonian cycle

(il I i1)7 (ll I i2)a (i37 i2)> (i37 i4)a (i57 i4)7 AR (l.znfh l.2n72)7 (iznfl ’ i2n)7 (i2n7 izn))
(izny i2n71)7 (i2n72» iznfl)a sy (i47 i5)7 (i47 i3)a (iZa i3)? (i27 ll)

in 4. Conversely, if a particular symbol g, describes a Hamiltonian cycle in 4 then
the corresponding {1, 2}-factor H, must clearly be connected, and so must be either a
Hamiltonian path or a Hamiltonian cycle of Kj,; but H, cannot be a Hamiltonian
cycle <iy,ia, ..., Iy, i1 » because then g, would describe two disjoint cycles

(i1, 1), (i3,12), (13, ia), (is, i4), ..., (Bon—1, B2n—2), (B2n—1, f2n), (i1, F2n)
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and
(i27 il)) (i2a i3)7 (i4> i3)7 (i47 i5)7 AR (i2n727 l.2n71)7 (izna i2n71)7 (i2n> ll)

We conclude that o, describes a Hamiltonian cycle in A if and only if H, is a
Hamiltonian path of K,. Consequently, 4 is Hamiltonian if and only if {H}, ..., H,}
is a Hamiltonian path decomposition of K5,; and we have established the following
theorem:

Theorem 3.3. A symmetric double latin square of order 2n is Hamiltonian if and only if
the corresponding {1,2}-factorisation of Ky, is a Hamiltonian path decomposition.

Moreover, Lemma 3.2 implies that any Hamiltonian path decomposition
{Py, ..., P,} of Ky, is the {1,2}-factorisation corresponding to a symmetric double
latin square 4 on n symbols ¢y, ..., 0, such that

A(i,j) = o, when i#j and [i,jle E(P,),
A(i,i) = 6, when i is an endvertex of P,.

From this observation and Theorem 3.3, we see that an SHLS(2n) is equivalent to a
Hamiltonian path decomposition of K5,. This, in turn, implies the following further
equivalence, which will be exploited in Section 8:

Corollary 3.4. An SHLS(2n) is equivalent to a Hamiltonian decomposition of Ky, .

Proof. We may clearly regard K5,.; as being obtained from K5, by adding a new
vertex v and edges joining v to the vertices of K,,. By Lemma 3.2, any Hamiltonian
path decomposition {Hj, ..., H,} of K, gives rise to a Hamiltonian decomposition
{H{,...,H}} of K51, in which H] is obtained from H, by adding v and the edges of
K5,41 joining v to the endvertices of H,. Conversely, any Hamiltonian decomposition
of K5, 1 becomes a Hamiltonian path decomposition of K5, when we delete v and its
incident edges from the Hamiltonian circuits concerned. Therefore, Hamiltonian
decompositions of K5, | are equivalent to Hamiltonian path decompositions of K5,
and hence to symmetric Hamiltonian double latin squares of order 2n. [

4. Symmetry

We have just seen that an SHLS(2n) is equivalent to a Hamiltonian path
decomposition of K3, and also to a Hamiltonian decomposition of Kj,;. It is well
known (see, for example, [7, Chapterl, Theorem 11]) that such decompositions exist
for every positive integer 7, and so we have:

Theorem 4.1. An SHLS(2n) exists for every positive integer n.
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In fact, each of Corollary 4.10, Theorems 8.2 and 9.1 below implies Theorem 4.1.

Lemma 4.2. In a symmetric Hamiltonian double latin square, each symbol occurs
exactly twice on the main diagonal.

Proof. Let 4 be an SHLS(2n) on symbols gy, ..., d,. Then the corresponding {1,2}-
factorisation {H,, ..., H,} of K;, is obtained, as explained in Section 3, by taking H,
tobe H(A4,0,) forr =1, ...,n. By Theorem 3.3, each H, is a Hamiltonian path of K5,
and so has exactly two vertices of degree 1. It follows that each a4, occurs exactly
twice on the main diagonal of A because, as explained in Section 3, 4(i, i) is ¢, if and
only if the vertex 7 has degree 1 in H,. [

If A is an SHLS(2n) on symbols gy, ..., o, then there is by Lemma 4.2 a partition
i} i 2ty oo {ins gt} of {1,2, ..., 2n} into n subsets of cardinality 2 such that
A(ir, iy) = A(jr,jr) = o, for r=1,...,n. This partition will be called the diagonal
partition induced by 4.

For some purposes, it may be convenient to take the symbols in a double latin
square of order 2n to be the numbers 1, ..., n rather than arbitrary objects oy, ..., g;,.
If 4 is an SHLS(2n) on the symbols 1,...,n whose main diagonal is
(1,2,...,n,1,2,...,n), we shall say that 4 is in normal form. Thus A4 is in normal
form if A(r,r)=A(n+r,n+r)=rforr=1,...,n.

Example 4.3. The following SHLS(10) are both in normal form:

112233441535 1 543132524
122 3344551 521542 4313
2233445511 4 132153542
2 33 4455112 35243214135
3344551122 1 413543252
3445511223 3252415431
4 455112233 2 431352154
4 55112233734 5354241321
5511223344 2141535243
511223344375 4 3252141335

By Proposition 1.2 and Lemma 4.2, any SHLS(2#r) on the symbols 1, ..., n can be
transformed into an SHLS(2#) in normal form by applying a suitable permutation to
its rows and the same permutation to its columns.

We shall say that a double latin square A4 of order 2n on the symbols 1, ....,n 1
cyclic if A(l',j) = A(i,j) + 1 (modn) whenever =i+ 1(mod2n) and j
j+ 1 (mod 2n). In other words, A4 is cyclic if A(i+1,j+ 1) = A(i,j) + 1 for i,j
1, ...,2n, with i + 1,j + 1 interpreted modulo 2n and A(i,j) + 1 interpreted modulo

w
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n. In a cyclic double latin square of order 2n, if we start at a cell containing 1 and
travel “South-East”, we encounter the symbols 1,2, ...,n,1,2,...,n in that order,
provided that on reaching a cell (i,2n) (i<n), (2n,j) (j<n) or (2n,2n) we move next
to the cell (i 4+ 1,1), (1,7 + 1) or (1, 1) respectively. An example of a cyclic HLS(10)
which is not symmetric is

W = AN = BN W W
N W N W W o A= A
= A W= AN NN WKW
N & N W W o= W == AN
N W = &N AN N W -
AN W WL W= AN
W = A = AN WK W N W
R NV W= A W= A
=W = AN VB AR DN WKW
BN W oW o= AN

The SHLS(10) in Examples 4.3 are also both cyclic.

If a cyclic HLS(2n) is also symmetric, it is by Theorem 3.3 associated with a
Hamiltonian path decomposition of K5,. We now examine those Hamiltonian path
decompositions of K5, which correspond to cyclic SHLS(2nr). We also seek ways of
constructing such decompositions, which is tantamount to constructing examples of
cyclic SHLS(2n).

If e denotes an edge [x,y] of K», and reZ, then e+ r will denote the edge
[x+r,y+r] of Ky, If U is a subset of V(Ky,) = Zy, or of E(Ky,) then U + r will
denote the set {u+r: ue U} and U —r will denote U + (—r). If S is a spanning
subgraph of K5, then S+ r, S — r will denote the spanning subgraphs of K, such
that E(S+7r) = E(S) +r,E(S —r) = E(S) — r, respectively. We shall call S a cyclic
spanning subgraph and call {S+1,S +2,..., S+ n} a cyclic decomposition of K3,
generated by S if each edge of K>, belongs to exactly one of the spanning subgraphs
S+1,S+2,....,S+n.

Lemma 4.4. If S is a cyclic spanning subgraph of K, then S +n=S.

Proof. Since {E(S+1),E(S+2),...,E(S+n)} is a partition of E(Kj,), it follows
that {E(S+1)—1,E(S+2)—1,...,E(S+n)— 1} is also a partition of E(K,), i.e.
{E(S),E(S+1),....,E(S+n—1)} is a partition of E(Kp,). Since both {E(s+
1),E(S+2),....,E(S+n)}and {E(S),E(S+1),..., E(S4+ n— 1)} are partitions of
E(K»,), it follows that E(S 4+ n) = E(S),and so S+n=S. O

Lemma 4.5. If a symmetric double latin square of order 2n is cyclic then the
corresponding {1,2}-factorisation of K, is cyclic. Conversely, every cyclic {1,2}-
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factorisation of Ky, is the {1,2}-factorisation corresponding to some cyclic symmetric
double latin square of order 2n.

Proof. Let
fry=r+1 (r=1,....20-1), f(2n) =1,
gry=r+1 (r=1,...,n—-1), gln)=1.

Suppose that 4 is a cyclic symmetric double latin square of order 2n. Then the
corresponding {1,2}-factorisation of K5, is {Hj, ..., H,}, where H, = H(A,r) for
r=1,...,n. Suppose that i,je {1, ...,2n}, i#j, re{l,...,n} and e is the edge [i,j] of
Ky, Then e+ 1=1[i+1,j+ 1] =[f(i),f(j)] because i + 1 = f(i) and j + 1 = f(j) in
2y, = V(Ks,). Therefore e+ 1€ E(H,y) if and only if A(f(i),f(j)) = g(r), which
(since A4 is cyclic) is true if and only if A(i,j) = r, which is true if and only if
e = [i,jle E(H,). Hence E(H,)) = E(H,)+ 1. Since this is true for r=1,...,n it
follows that E(H,) = E(H,) +r for r =1, ...,n and therefore H, = H, + r for r =
1, ...,n. Therefore the {1,2}-factorisation {H|, ..., H,} corresponding to A4 is cyclic.

Now suppose that # is a cyclic {1, 2}-factorisation of K»,. Then # = {S +1,S +
2, ...,8 + n} for some cyclic spanning subgraph S of K,. Since S+n+ 1 =S+ 1by
Lemma 4.4, it follows that S+r+ 1= S+ g(r) for r =1, ..., n. Each vertex of K5,
has degree 2n — 1, and so must have degree 1 in just one member of % and degree 2
in the others. Consequently, # = {S+ 1,5+ 2, ..., S + n} is the {1, 2}-factorisation
of K5, corresponding to the symmetric double latin square B defined by

B(i,j) =r when i#j and [i,j]e E(S +r),
B(i,i) =r when the vertex i has degree 1 in S+ r.

If i,je{l,...,n} and i#j and B(i,j) =r then [i,j]le E(S +r) and so [f(i),f(j)] =
[+1,j+1eE(S+r+1)=E(S+g(r)) and therefore B(f(i),f(j)) =g(r). If
ie{l,...,n} and B(i,i) = r then the vertex i has degree 1 in S+ r and so the vertex
i+ 1 =f(i) has degree 1 in S+ r+ 1 =S+ ¢g(r) and therefore B(f(i),f(i)) = g(r).
Hence B(f(i),f(j)) = g(B(i,))) for i,j =1, ..., 2n. Therefore B is cyclic, and so F is
the {1,2}-factorisation corresponding to a cyclic symmetric double latin square of
order 2n. [

Corollary 4.6. If an SHLS(2n) is cyclic then the corresponding {1,2}-factorisation of
K>, is a cyclic Hamiltonian path decomposition of Ka,. Conversely, every cyclic
Hamiltonian path decomposition of Ko, is the {1,2}-factorisation corresponding to
some cyclic SHLS(2n).

Proof. This follows from Theorem 3.3 and Lemma 4.5. O
Thus, searching for cyclic SHLS(2r) is equivalent to searching for cyclic

Hamiltonian path decompositions of Kj,, which is equivalent to searching for
generators of such decompositions, i.e. cyclic Hamiltonian paths of K5,.
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We let p denotes the automorphism of Kj, such that p(x) =x+ 1 for each
xeV(Ky,) = Zy,. Clearly, p induces a permutation of E(K,) whose orbits are
Ey, ..., E,, where

E ={[1,1+7r,[2,247],...,[2n,2n+r]}
forr=1,...,n—1 and
E,={[1,14+n],2,2+mn], ..., [n2n]}.

Lemma 4.7. A spanning subgraph S of Ky, is cyclic if and only if |E(S)NE,| = 1 and
there are edges ey, ...,e,—1 of Ky, such that E(S)NE, = {e;,e, +n} for r=1, ...,
n—1.

Proof. By definition, S is cyclic if and only if each edge of K5, is in exactly one of
S+1,8+2,....,5 4+ n This condition is satisfied by the edges in E, if and only if
|E(S)nE,| =1, and is satisfied by the edges in E,, where re{l,...,n— 1}, if and
only if E(S)nE, = {e,,e, + n} for some edge ¢,. [

Definition. We shall say that a set 4 is a transversal of disjoint sets By, ..., By, if
AcByu---UB, and |[AnB, =1 for r=1,...,m. For n=2, we define an n-
procession to be a sequence si,...,s, of n elements of Z,, which satisfies the
conditions

(P1) {s1,...,8,} is a transversal of the sets {0,n},{l,n+ 1}, {2,n+2},...,{n—
1,2n— 1}
(P2) {s2 —s1,83 — 82, ...,8, — sy—1} is a transversal of the sets {I,—1},{2, -2},

{3,-3}, ..., {n—1,—(n—1)}.

We define an n-gradation (n>=2) to be a sequence aj, ...,a,-1 of n— 1 elements of
Z,, which satisfies the conditions

G {a1,a1 + ar,a1 + ar + a3, ...,a; +a> + --- + a,_ } is a transversal of the sets
{17”+ 1}7{27”+2}7{3,n+3}7 __.,{I’l— 172”_ 1},

(G2) {ai,ay, ...,a,—1} is a transversal of the sets {1,—1},{2,-2},{3,-3}, ..., {n —
17—(7’1— 1)}

These are, in a sense, equivalent concepts, since a sequence is an n-gradation if and
only if it is s, — 81,53 — 82, ...,8, — S,_1 for some nm-procession si,...,s, and a
sequence is an n-procession if and only if it is x,x+a;,x+a; +ay,x+a; + a» +
as, ..., x+a+ - +a,_, for some xeZ,, and some n-gradation ay,...,a, .
Convenience will dictate whether we use n-processions or n-gradations in any
particular part of our discussion.

Illustration. For any integer n>=2, an obvious example of an n-gradation is the
sequence 1,-2,3,—4,5 —6,...,(—1)"(n—1). An associated n-procession is the
sequence x,x + 1,x — I,x+2,x —2,x+ 3,x — 3, ... ending with its nth term x +5

n—1

or x — =, where x is any element of Z,.
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It is easily checked that the only 4-gradations are the eight sequences

1a2a37 1572737 7172a737 71772773a
32,1 3,-2,1: —3,2,—1: —3,-2 —1.

In the arithmetic of Zg, these are just the sequences u, v, 3u where ue{—3,—1,1,3},
ve{-2,2}. It follows that there are just sixty-four 4-processions, namely the
sequences X, X + u, X + u + v,x + 4u + v where xeZg, ue{-3,—1,1,3},ve{-2,2}-
or, more simply, the sequences x,x + u,x + u + v, x — v with x, u, v as stated.

Definition. If a sequence sy, ..., s, of elements of Z,, satisfies (P1) then H(sy, ...,s,)
will denote the Hamiltonian path <{sy,s5, ..., 8,8, +1,8,_1 + 1,82 +n,...,8 +1n)
of K,; if we let s, denote s,_;41 +n for i=1,...,n, then H(sy,...,s,) is the
Hamiltonian path {sy,ss,...,82, . If a sequence «ay, ...,a,_; of elements of 7,
satisfies (G1) then Hlay, ...,a,-1] will denote the Hamiltonian path H(0,a;,a; +
a,ay +a +az,...,a; +ay + -+ +an—l) of K>,.

Lemma 4.8. A4 Hamiltonian path Q of Ky, (n=2) is cyclic if and only if Q=
H(sy, ...,8) for some n-procession sy, ..., Sy.

Proof. Assume first that Q = H(sy, ...,s,) where sy, ..., s, is an n-procession. Then it
follows from (P2) that E(Q)nE,={[sy,s,+n]} and that E(Q)nE,
E(Q)nE,, ...,E(Q)nE,_ are the sets

{[s1,82], [s1 + my 80 + 0]}, {[s2, 53], [s2 + my83 + 0]}, ooy {[Su—1s Sl [Su—1 + 1y 80 + 1]}

in some order. Therefore Q is cyclic by Lemma 4.7.

Now assume that Q is cyclic. Then, by Lemma 4.4, the automorphism x+ x + n of
K, induces an automorphism of Q. Since this automorphism of Q is not the identity
automorphism, it must be the one which interchanges the endvertices of Q, and so Q

must be {81,582, ..., S, Sp + 1, 84—1 + 1,82 + 1, ...,51 + 1) for some si, ..., 8, €Zay.
Since the vertices s$1,82, ...,8:,8, + 1,81 +1n,...,51 +n of Q are distinct, the
sequence sy, ..., s, satisfies (P1). Since the edge [s,,s, + 1] of Q belongs to E,, it
follows from Lemma 4.7 that each of Ej, ..., E, ; includes two of the remaining
2n—2 edges of Q, and so sy,...,s, must satisfy (P2). Hence si,...,s, is
an  n-procession. Moreover Q= {51,82, ..., Sn, Sy F 1,81 + 1, .8 0y =

H(sy,...,s,). O

Corollary 4.9. A Hamiltonian path Q of Ky,(n=2) is cyclic if and only if
Q= Hiay, ...,a,_1] + x for some n-gradation ay, ...,a,_, and some x€Zy,.

Proof. If Q is cyclic then by Lemma 4.8 there is an n-procession sy, ..., s, such that

Q:H(SI) "'7Sn) :H[S2 — 51,83 — 82, '--asn_sn—l] +Sl7
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which is of the required form since s, — 51,53 — 82, ..., 8, — S,—1 1s an n-gradation.
Conversely, if ay, ...,a,_; is an n-gradation and x e Z,, then

Hiay,...,ap |+ x=H(x,x+ai,x+a +az, ....x+a;+ -+ +ap_1),
which is a cyclic Hamiltonian path by Lemma 4.8 since x, x + aj,x +a; + a2, ..., x +

ap + -+ + a,_1 is an n-procession. [

Corollary 4.10. There exists a cyclic SHLS(2n) for every positive integer n.

11
11
Corollary 4.9 that H[1,-2,3,-4,5,—6,...,(=1)"(n—1)] is a cyclic Hamiltonian
path of K5, and so generates a cyclic Hamiltonian path decomposition of K5,,, which
by Corollary 4.6 implies the existence of a cyclic SHLS(2n). O

Proof. The double latin square is a cyclic SHLS(2). For n>=2, it follows from

(This proof of Corollary 4.10 is really just a disguised version of the usual way of
proving that K5, has a Hamiltonian path decomposition for every n.)

Searching for cyclic SHLS(2n) is by Corollary 4.6 equivalent to searching for
cyclic Hamiltonian paths of K5,,, which is by Corollary 4.9 equivalent (when n>2) to
searching for n-gradations. It is therefore worth noticing three simple transforma-
tions which generate new n-gradations from known ones.

Firstly, it is easily seen that if aj, ..., a,_ is an n-gradation then so is kay, ..., ka,_
for any integer k& coprime to 2n. The multiplication by k is of course performed in
Z,,. For example, the 10-gradation 1,—2,3,—4,5,—6,7,—8,9 yields another 10-
gradation 3,—6,9,8,—5,2, 1, —4,7 when we multiply its terms by 3 in the arithmetic
of Zz().

Secondly, if a1, ay, ...,a,_ is an n-gradation then so is a,_1,a, 2, ..., a;. Reversing
the order of the terms obviously preserves property (G2) of an n-gradation, and it
also preserves (G1) because (G1) is equivalent to saying that none of the elements
ai+ai+aio+ - +a+a (1<i<j<n—1) of Z,, belongs to its subgroup
{0,n}. Combining this observation with the preceding one, we see that if ay, ..., a,_;
is an n-gradation then so is —a,_1, —da,_», ..., —a; and therefore Hlay,as, ..., a,-1],
H[-a,_1,—ay,...,—aj] generate two cyclic Hamiltonian path decompositions
2,9 of K»,. For any Hamiltonian path P = {x1, X2, ..., X2, » of K>,, let #* denote
the Hamiltonian path {x;,,Xx,_1, ..., X1, X2, X211, ..., Xnt1 » Obtained from P by
removing its middle edge [x,, x,:1] and adding the edge [xi, x2,] of K3,. Then it is
easily checked that

Hl[—ay 1, —ay 2, ...,—ai) = Hlay, @z, ..., a, 1" — (a1 + -+ + ay_1)

and consequently * = {P*: PeZ}.

Thirdly, adding # (in the arithmetic of Z,,) to some of the terms of an n-gradation
will preserve property (G1). It may not in general preserve (G2), but it will clearly do
so if we add n to those terms which belong to Su(—S) where S is a subset of
{1,...,n— 1} such that S =n—S. (As usual, —S and n — S mean {—r: reS} and
{n —r: re S} respectively.) For example, taking n = 12 and S = {2,3,6,9, 10}, the
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12-gradation 5, —10,3, -8, —11,6,—1,—4,9,—2 7 becomes a new 12-gradation
5,2,-9,-8,—11,—6,—1,—4,—3,10,7 when we add 12 (in Z4) to each of its terms
-10,3,6,9, 2.

Corollary 4.9 says that the sequence of vertices of a cyclic Hamiltonian path of K5,
can be derived from a shorter sequence, namely an n-gradation. In many cases, this
in turn can be derived from an even shorter sequence, as indicated by Theorems 4.11
and 4.12 below. These theorems require a preliminary definition. If m(>0) and x are
integers, let [x],, denote the residue class of x modulo m (so that [x], €Z,, and, in
fact, [x],, is the element of Z,, which we commonly denote by just the symbol x).
Then the representatives of [x],, in Z»,, are the elements [x],,,, [x + m],,, of Zs,,.

Theorem 4.11. If ay,...,a, 1is an n-gradation and a; is a representative of a; in
Zay (i=1,...,n—1) and oe{-1,1} then ay,a,...,a,-1,0n,2n— a,_1,2n—

dn_2, ...,2n — ay is a 2n-gradation.

Proof. That a,,a, ...,a,_1,0n,2n — a,_,2n — a,_», ...,2n — a, satisfies (Gl) fol-
lows from the observation that in Z,,

ata+--+a+n=a+ - +a-1+on+ 2n—a,_)
+2n—ay,_)+ -+ (2n—ai).

That (G2) is satisfied follows by observing that in Z4, one of @; and 2n — &; is in the

set {1,2,....n—1}u{-1,-2,...,—(n—1)} and the other in the set
{n+1,n+2, ... 2n-1}u{-(n+1),-(n+2),...,—2n—-1)}. O

Theorem 4.12. If ai,...,a,_1€Z5,—1 and both {ay,...,a,1} and {a,a1 + az,
atatas,...,ai+ar+ - +ap_1} are transversals of the sets
{1,-1},{2,-2},....{n—1,—(n— 1)} and a; is a representative of a; in Zs,_» (i =
l,...,n—1) then dp_1,n_2, ..., d0,d1,2n— 1 +ay,2n—1+a,...,.2n— 1+

ay-2,2n— 1+ ay_y is a (2n — 1)-gradation.

Proof. First, we prove that the sequence a,_i,a,—2, ...,a,(2n—1)+ap,...,(2n —
1) 4+ a,— satisfies (G2). We need to show that this sequence is a transversal of
{1,-1},{2,-2}, ..., {2n — 2, —(2n — 2)}. Observe that the sequence has the correct
number of elements. Therefore, to show that the sequence is a transversal, we only
need to show that no two elements are in the same set. If one of a; and (2n — 1) + a;
equals one of @; and (2n — 1) + a; for some i#j, 1 <i, j<n —1in Z4,_», then q; = q;
in Z,,-1, a contradiction since {a;,ay, ...,a,_1} is a transversal.

Next we show that the given sequence satisfies (G1). We need to show that, writing
A=a+ay+ - +a, .,

Gn1,Gn1 +Gp2y ooy Gt + A2+ - + a1, A+ (20— 1) +a,
A+22n—1)+a+az, ..., A+n—1)2n— 1)+ - +ay+a + - + a1
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is a transversal in Zg4,_, of the sets
{L,2n—-1)+1},{2,2n—1)+2},....,{2n—=2),2n— 1) + (2n — 2)}.

The number of terms, 2n — 2, is the same as the number of sets. Therefore to show
that the sequence is a transversal, we only need to show that no two elements are in
the same set.

Suppose @1 + -+ + dp—i€{dp-1 + -+ + @n—j,@n—1 + - + @y—_; + (2n — 1)} where
i#j, 1<i,j<n—1,in Z4, 5. Then in Z,,_; we find that

ap—1+ -+ api=ay 1+ - +anﬁj~
Subtracting these from a; + --- + a,_; we obtain
ay+ -+ apiop =ar+ - +dp—j1,

contradicting the assumption that {aj,a| + az, ...,a1 +ax + -+ + a,_1} is a trans-
versal. A similar argument shows that A +i(2n—1)+a + - +a;¢{4+j(2n —
D+a + - +a,A+j2n—1)+a + - +a+ (2n— 1)} if i#j, 1<i,j<n— 1.

If @i+ +ae{d+jCn—1)+a + - +a,A+j2n—1)+a + - +
a; + (21’[ — 1)}, I<ij<n—1, in Z4,_», then, in Z,_1,

i+ tapi=(@+a+ - ta)+at o +a
so that
ar+ar+ - +aj=—(ar + - + ap_).

But this contradicts the assumption that aj,a; +as,...,a1 +a+ -+ +a, is a
transversal of the sets {1,—1},{2,-2},....{n—1,—-(n—1)}. O

Recall that p denotes the automorphism x+— x + 1 of K5,. Consequently, p” is the
automorphism of K5, which interchanges each pair of vertices x, x 4+ n. If, in K5,, we
identify pairs of vertices which are interchanged by p” and identify pairs of edges
which are interchanged by p”, we obtain a multigraph K* with n vertices, in which
each vertex is incident with one loop and each pair of distinct vertices are joined by
two edges. Under these identifications, the automorphism p of K,, induces an
automorphism p* of K which permutes its vertices cyclically. Moreover, under the
foregoing identifications, a cyclic Hamiltonian path decomposition of K;, becomes a
decomposition of K¥ into spanning subgraphs each consisting of a Hamiltonian path
with a loop attached to one of its endvertices, and p* permutes the members of this
decomposition cyclically. Some of our observations about n-gradations are
interpretable in terms of such decompositions of K;*. Studying these decompositions
might therefore yield further information and insight.

5. Orthogonality and symmetry

We shall abbreviate “mutually orthogonal symmetric HLS(2r)” to MOSHLS(2n).
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Example 5.1. For n=1,2,3,4 a pair 4,, B, of MOSHLS(2n) is given below:

112 2 1 2 2 1

1 1 11 1221 2211

A=l B=l1 1 2=|221 1] B2=]2112

211 2 1122
1122 3 3 1 3 3 2 12
122331 321132
223311 313221
B=ly 33112 B={212133
331122 1 32321
311223 221313

1 1322 3 4 4 114232 3 4

1 2423341 12144323

34314122 41322413

4 =|2 2141433 , 24243311

412 3411 42 3 4713 42311 4 2

33144212 2 3431241

4 4232131 32114432

4 123321 4 4 331212 4

We are indebted to a referee for the pair A3, B3 and to D.A. Pike who found the pair
Ag, B4 on a computer.

The two SHLS(10) in Example 4.3 are also mutually orthogonal.

Lemma 5.2. If two SHLS(2n) are orthogonal then they induce the same diagonal
partition.

Proof. Let 4,B be MOSHLS(21n) on symbols oy,...,0,. If p,qe{l,...,2n},
A(p,p) = 0. = A(q,q) and B(p,p) = 0,# B(q, q) then, by Lemma 4.2, p is the only
value of i such that A(i,i) = o, and B(i, i) = g,. Therefore the orthogonality of 4, B
requires that there be exactly three ordered pairs (i,7) such that i#j, A(i,j) = ¢, and
B(i,j) = a4, which contradicts the symmetry of 4, B. This contradiction shows that if
p,qe{l,2,...,.2n} and A(p,p) = A(q,q) then B(p,p) = B(q, q), thus proving Lemma
52. 0O

Proposition 5.3. If there exist p MOSHLS(2n) then there exist p MOSHLS(2n) in
normal form.

Proof. Let A,,...,4, be MOSHLS(2n). Then A,,...,A, all induce the same
diagonal partition by Lemma 5.2, and so there exists a permutation y of {1,2, ..., 2n}
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such that n¥(n,(4,)) = B, (say) induces the diagonal partition {{1,n+1},{2,n+
2}, ..., {n,2n}} forr =1, ..., p. Moreover By, ..., B, are Hamiltonian by Proposition
1.2, and are symmetric and mutually orthogonal since Ai,...,4, have these
properties. For r =1, ..., p let C, denote the double latin square obtained from B,
when each symbol ¢ is replaced throughout B, by the number ie {1, ..., n} such that
B.(i,i) = B,(n+i,n+1i) = ¢. Then Cy, ..., C, are MOSHLS(2n) since By, ..., B, are
MOSHLS(2n); and Ci, ..., C, are in normal form. [

Recalling that symmetric double latin squares of order 2n can be represented by
{1,2}-factorisations of K,, we now consider how orthogonality of symmetric
double latin squares translates into a property of the corresponding {I,2}-
factorisations.

Definition. Let V1(G) denote the set of vertices which have degree 1 in a graph G. We
shall say that two {1,2}-factors H,H' of K, are orthogonal if 2|E(HH')| +
|[Vi(H)nVi(H")| = 4. We shall say that two {1,2}-factorisations #, 7' of K,, are
orthogonal if each member of # is orthogonal to each member of .

For a general reference about orthogonality in graphs, see [2].

Lemma 5.4. Two symmetric double latin squares of order 2n on the same symbols are
orthogonal if and only if the corresponding {1,2}-factorisations of K, are orthogonal.

Proof. Let A, B be symmetric double latin squares of order 2n# on the same symbols
61, ...,0n. Let the corresponding {1,2}-factorisations of K, be {Hj, ..., H,} and
{H}{,...,H,} where H, = H(A,0,) and H, = H(B,0,) for r =1, ...,n. Suppose that
i,je{l,2,...,2n} and r,se{l, ...,n}. If i#j then

A(iaj) =0y = A(j? i) =0y = [ivj]EE(Hl‘)7

B(laf) =05 <= B(ja i) =05 = [la]]EE(H;)
Moreover, as explained in Section 3,

A(ii) =0, < ieVi(H,),

B(i,i) =0, < i€V (H)).
Therefore, there are exactly 2|E(H,nH,)| + |Vi(H,)nVi(H])| ordered pairs (i,/)
such that A(i,j) = o, and B(i,j) = ag;. It follows that A, B are orthogonal if and only

if 2|E(H,nH))| + |V1(H,)nVi(H])| =4 for all r,se {1, ...,n}, i.c. if and only if the
{1,2}-factorisations {H\, ..., H,} and {H], ..., H,} are orthogonal. [

In particular, Lemma 5.4 implies that two SHLS(2n) are orthogonal if and only if
the corresponding Hamiltonian path decompositions of K3, are orthogonal. In this
connection, the following further lemma is helpful.



98 A.J.W. Hilton et al. | Journal of Combinatorial Theory, Series B 87 (2003) 81-129

Lemma 5.5. Two Hamiltonian path decompositions of K, are orthogonal
if and only if they can be expressed in the forms {H,,...,H,} and {H},...,H)}
where

(i) for each re{l, ...,n}, H, has the same endvertices as H/;
(i) |[E(H nH)|=1forr=1, ..., n
(iii) |E(H,nH])| =2 when r,se{l,...,n} and r#s.

Proof. Assume first that {H;,...,H,} and {Hj,...,H,} are Hamiltonian path
decompositions of K, satisfying (i)—(iii). Then |V (H,)nV (H| =2forr=1,....n
by (i); and Vi (H,) " Vi(H.) = 0 when r#s by (i) and Lemma 3.2. These observations
and (ii) and (i) imply that 2|E(H.nH,)|+ |Vi(H,)nVi(H])| =4 for all
r,se{l,...,n} and so {H,, ..., H,} and {H], ..., H,} are orthogonal.

Now assume that 2, %’ are orthogonal Hamiltonian path decompositions of K»,,.
Then |Z| = |2'| = n by Lemma 3.2, and |[E(HNH'|<2 for all HeZ, H' € %' since
2,9 are orthogonal. Since each Hamiltonian path of K,, has 2n — 1 edges, it
follows that each member of & shares one edge with one member of %' and two
edges with each of the other n — 1 members of &' and that the same is true with 2, '
interchanged. Therefore, we can choose an ordering Hy, ..., H, of the members of &
and an ordering Hj, ..., H), of the members of &' such that (ii) and (iii) are true. Then
(i) follows from (ii) and the fact that 2|E(H,nH))| + |Vi(H,)nVi(H])| =4 for
r=1,...,n. O

By Corollary 4.6 and Lemma 5.4, two cyclic SHLS(2n) are orthogonal if and only
if the corresponding cyclic Hamiltonian path decompositions of K5, are orthogonal.
Moreover, a cyclic Hamiltonian path decomposition of K5, is generated by a cyclic

Hamiltonian path which, by Lemma 4.8, is H(sj, ...,s,) for some n-procession
S1, ..., 8. So we might ask what conditions on two n-processions si, ...,s, and
t1,...,t, ensure that H(sy,...,s,) and H(t,...,t,) generate orthogonal cyclic

Hamiltonian path decompositions of Kj,. This will in effect provide a test for
orthogonality of two cyclic SHLS(2n).

This question is answered by Theorem 5.7, whose statement is slightly simplified
by assuming that s; = ¢;. This assumption involves no real loss of generality, in view
of the following simple observation:

Lemma 5.6. If 9 is a cyclic Hamiltonian path decomposition of K, and xeZ»,
then there exists an n-procession s\, ...,s, such that s =x and H(s,...,s,)
generates 9.

Proof. Since Z is a cyclic Hamiltonian path decomposition, it is generated by some
cyclic Hamiltonian path H, and H = H(sy, ..., s,) for some n-procession sy, ..., s, by
Lemma 4.8. Let y =x—s;. By Lemma 4.4 (or by an easy inference from the
definition of H(sy,...,s,)), H+n=H and so {H+y+ 1, H+y+2,....H+y+
n}={H+1,H+2,...,H+n} =9. Therefore & is generated by H + y = H(s; +
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V824, ...,8n +y), where si+y,55+,...,s,+p is an n-procession with first
term x. [

Definition. If s, 7€ Z,,, the statement s = ¢ (mod n) will mean that s =z or s =+ n.
We recall that U 4 r means {u + r: ue U} when U =7, and reZ,,.

Recall that, in Zy,, (51,52, ...y S21) = (51,52, cory Sy Sy + 1y Syt + 1, ..., 81 + R).

Theorem 5.7. Let s1,...,5, and ty,...,t, be n-processions such that sy =t;. Then
H(sy,...,s,) and H(ty, ..., t,) generate orthogonal cyclic Hamiltonian path decom-
positions of K, if and only if

(i) s, = t, (mod n),

and

(i) for each ke {1, ...,n — 1} there exists exactly one pair (x,y) with xe {1, ...,n —
1yo{n+1,....2n =1} and ye{l,....n—1} such that {sy,sx1} = {ty,t,11}+
k (mod 2n).

Proof. Let H = H(sy,...,s,),H = H(t,...,t,) and let H; = H + i, H] = H' + i for
each i€ Z,,. The cyclic Hamiltonian path decompositions generated by H(sy, ..., s,)
and H(t,...,t,) are {Hy,...,H,} and {H{,...,H,}. Since s; =t and H; has
endvertices s + £,s; +n + i and H,’ has endvertices #; +j, t; +n+j, it follows that
H;, H]’ have the same endvertices when i = j and have no common endvertex when
i#j (mod n). Therefore {H, ..., H,} and {H], ..., H,} are orthogonal if and only if

(a) [E(HinH])|=1fori=1,...,n

and

(b) |[E(H;nHj)| =2 when i,je{l,...,n} and i#].

It therefore remains to be proved that (a) and (b) are both true if and only if (i)
and (ii) are both true.

Assume first that (i) and (i) are true. By (i), the edge [s, + i, 5, +n—+i] of H;
coincides with the edge [t, +i,t, +n+i of H fori=1,...,n. Ifi,je {1,...,n} and
i#j then, by (ii), there exist xe {1, ...,n—1}u{n+1,...,2n— 1} and ye{l,...,n —
1} such that {sy,sci1} = {ty,t,41} +j —i(mod 2n). Therefore, the edges [s.+
i,Sxy1 + 1] of H; and [t, +j, t,41 + /] of Hl/ coincide, and the edges [sy +n + 7, 5511 +
n+il of H; and [ty +n+j, 1,11 +n+j] of H coincide. Hence |E(H;H))[>1 for
i=1,...,nand |E(H,-mH})|>2 when i,je{l, ...,n} and i #j. This implies (a) and (b)
because Y| |E(H;nH])| = |E(H;)| = 2n — 1 for each i.

Now assume (a) and (b). From the definition of H(sy, ...,s,) it follows that H =
H+n=H, and H = H' +n = H). Therefore |[E(HNnH')| = |E(H,nH,)| =1 by
(a). Since H=H +n and H = H' + n it follows that E(HNH') = E(HNnH')+n
and so the unique edge of H n H' must be [p, p + n] for some p. By (P2), the only edge
of this form in H is [s,, s, + n] and the only such edge in H' is [t,, t, + n]. Therefore
[Sn, S0 +n] and [f,,1, +n] must be the same edge and so (i) is true. Now let
ke{l,...,n—1}.Since H = H,, it follows from (b) that at least one edge of H other
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than [s,,s, + 7] must be in H. Therefore there exists xe{l,...,.n—1}u{n+
1,...,2n — 1} such that [sy,s.1] is in H}, and consequently both of the edges
[Sx;Sxr1] and [sy + 1, Scy1 + 1] must be in H) because H, = H' +k = (H' +n) +k =
Hj + n. By (b) there can be only one such x. By (P2), [sy,sv1] and [sy + n, 8¢ + 7]
must be edges of H) other than [t, + k, t, + n+ k|, and so the pair {[sy,Sx1], [sx +
n,syi1 +nl} of edges of H must coincide with a pair {[t, +k,t,.1 + k], [t, +n+
k,t,41 +n+ k] of edges of H for some ye{l,...,n— 1}. Clearly there is precisely
one such y. If [sy,sy11] = [ty + k., ty41 + k] then {sy,sci1} = {t,, 41} + k (mod 2n),
as asserted. If [sy +n,s.1 +n] =[t, + k, 1,11 + k] and x<n then s, +n = 523,141
and sy + 1 = Sy, SO [Sx + 1, Syi1 + 1] = [Sap—x, S2n—xt1]. Therefore {sy,svi1} =
{ty, t,11} + k (mod 2n), with x’ = 2n — x, where x'e {1, ....n — 1}u{n+1,....2n—
1}, If [sy +n,8c1 +n] = [t, + k,t,41 + k] with x>n then the same holds since
$2n-xt1 N = S2p_(2n—xt1)41 = Sx, SO Sx + 1 = $2_y11 In Zy,. This proves (i)). [

Call two n-gradations (ay, ...,a,—1) and (by, ..., b,_1) orthogonal if Hlay, ...,a,1]
and H[by, ...,b,—1] generate orthogonal cyclic Hamiltonian path decompositions of
K5, (or, equivalently, generate a pair of MOSHLS(2#)). Similarly, if (s, ..., s,) and
(t1,...,1,) are the n-processions corresponding to (ay, ...,a,-1) and (b, ..., b,—1),
also call (sy, ...,s,) and (¢, ..., t,) orthogonal.

Lemma 5.8. The following pairs of n-gradations are either all orthogonal, or all not
orthogonal:

(l) (Cll, ...,Clnfl) and (bl, ...,bnfl),
(i) (kay,...,kay,—\) and (kby, ..., kb,_1), where k is any integer coprime to 2n, the
multiplication being performed in Z,,,
(iii) (Cl,,_l, ...,a]) and (bn_], ...,b]).
iv) (dy,...,a, ) and (b}, ..., b, _|), where these are obtained from (a, ...,a,_1) and
(b1y ..., by_1) by adding n in Z,, to those terms which belong to S U (—S), where
S is a subset of {1, ...,n— 1} such that S =n—S.

Proof. (i) < (ii): Clearly (i) is just a special case of (ii), so (ii) = (i). To show the
converse, suppose that the n-gradations (ay,...,a,—1) and (by,...,b,_|) are
orthogonal. Let (sy, ...,s,) and (71, ...,,) be corresponding n-processions. Then
H(sy,...,s,) and H(t,...,t,) generate orthogonal cyclic Hamiltonian path
decompositions {H¢, ..., H} and {H,...,H"} of K,. As observed in Section 4,
since k is coprime to 2n, (kay, ...,ka,—1) and (kb, ..., kb,_) are n-gradations, and it
follows that H(ks,...,ks,) and H(kty,...,kt,) are cyclic Hamiltonian paths
generating Hamiltonian path decompositions {H¥, ..., H*} and {Hf®, ..., H*},
respectively.

Suppose that |E(H* ~ H*)| >3 for some r#s,r,se{l, ...,n}. Then there are at
least three pairs (i,j) (i#j,i,je{l,...,n}) such that {ks,_ +r ks; +r} = {kt;_; +
s,kt;+s}. But then {s; 1 +k 'rsi+k7'r} ={t;.1 + ks, t; + k" 's}, so that
|E(H{, ~nH!,|>3, contradicting Lemma 5.5. Therefore |E(HMnHM)<2.
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Similarly |[E(H* ~ H*)|<1. By counting edges, it follows that |E(H* ~ H*)| =2
and |E(H* ~H*)| = 1, so that by Lemma 5.5 {HX, ..., H*} and {H{®, ..., H*}
are orthogonal.
(i) <> (iii): This is similar to the proof that (i) < (ii), and may be left to the reader.
(i) <> (iv): Suppose first that (a, ...,a,-1) and (by, ..., b,_1) are orthogonal. We

wish to show that (a},...,a,_,) and (b}, ..., b,_,) are orthogonal.
We may set sy = t; = 0. Since (ay, ...,a,-1) and (b1, ..., b,_1) are orthogonal, by
Theorem 5.7, s, = t, (mod n) and, for each ke {1, ...,n — 1}, there exists exactly one

pair (x,y) with xe{l,....n—1}u{n+1,....,2n— 1} and ye{l, ...,n — 1} such that
{8x;Sx41} ={ty, 1,41} + k (in Z,). Then
s Ser1 b {820 Somwr1 1} = by 1} +k {tony, ton—y i1 } + k.
For such a pair (x,y), set z = t,;1 — t,. Then if z¢ SU(-S), it follows that
L =L =l —ty =2
and
Sl = Sy = Sxl — Sy =7,
and if ze SU(=S), it follows that
z;,H — z’y =t —t,+n=z+n
and
Sl =S =8 —Sx+n=z+n.
Since this holds for any value of x and y, it follows by summation that
/

!
S, =8¢ OF S, =8¢+ =5y _xt]

and that

6,=1t, or £, =t,+n=1ly .
Thus, if z¢ SU(-S)

{wa S;H} ={sx,Sxt1} or {3 x,5m x11}
and

{l;ﬂ tfv+1} ={ty;ty1} or {tay,tonyi1}
o)

s S b st o S 3 = G G0} + kA, 1,0} K} ()
Similarly, if ze Su (-S),

{wa S;H} = {sx,Smx} OF {811,589 x11}
and

(ot} = Aty tya} or {ty1,tnyir ),

so again (=) holds.
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It follows that there is a pair (x',)’) with x'e{1,....n—1}u{n+1,....2n — 1}
and y'e{1,...,n — 1} such that

{8} = {0, 0,1} + Kk,

and, by reversing the argument, it follows that there is exactly one such pair.

Clearly sy = ¢} =0and s, =, =5, = t, (mod n), so it follows from Theorem 5.7
that (a{, ...,da,_;) and (b}, ...,b,_,) are orthogonal.

The n-gradations (ay,...,a,—1) and (by,...,b,—;) may be obtained from
(dy,...,d,_,) and (b}, ...,b,_,) by adding n in Z,, to those terms which belong to
Su(—S), so the argument above shows that if (a}, ...,d,, ) and (&}, ..., ,) are
orthogonal, then so are (ay, ...,a,-1) and (b1, ..., b,—1). O

Ilustration. Examples of pairs of orthogonal n-processions are (0,1) and (0,—1)
when n=2, (0,1,—1) and (0,—2,—1) when n=3, and (0,1,—1,2,-2) and
(0,4,2,1,—-2) when n=75. In fact these could be used to generate Example 5.1
(4> and B,) when n =2, Example 5.1 (43 and B;) when n = 3, and Example 4.3
when n=5. An example of such a pair when n=71is (0,1,—-1,2,-2,3,-3) and
(0,-2,—6,2,3,6,—3), an example when n =9 is (0,1,—1,2,-2,3,-3,4, —4) and
(0,—1,3,-8,4,6,—2,—7,—4), an example when n=11 1is (0,1,—1,2,—
2,3,-3,4,—4,5,—5) and (0,—1,—4,-10,2,4,8,3,—6,9,—5), and an example when
n=13is (0,1,-1,2,-2,3,-3,4 —4,5 —5,6,—6) and (0,3,4,12,-7,2,8,10, -2,
—12,9, 5,—-6). Here, of course, in each example, whichever of a pair of sequences is
chosen to be (si,...,s,), then (syi1,...,82,) is found using the equation s; =
Son—iv1 (1<i<n). For further information about such pairs of sequences, see [18] or:
http://www.math.wvu.edu/2mays/moshls.htm.

Theorem 5.7 can be used to show, for example, that there do not exist two
orthogonal cyclic Hamiltonian path decompositions of Kg. To see this, suppose that
two such decompositions exist. Then by Lemma 5.6 there must exist 4-processions
s1, $2, 83, 84 and 1, b, t3, t4 such that s;=1¢ =0 and H(s,s2,53,54),
H(t),15,15,14) generate orthogonal cyclic Hamiltonian path decompositions of Kj.
This requires sy,57,53,54 and 1, tp, 13, t4 to satisfy the conditions of Theorem 5.7.
However, there are only 64 4-processions, which were specified in Section 4, and the
only ones with first term O are the eight sequences O0,u,u+ v,—v where
ue {-3,—-1,1,3}, ve{-2,2}. Tt is easily checked that no two of these eight
sequences satisfy the conditions of Theorem 5.7. Therefore Ky does not have two
orthogonal cyclic Hamiltonian path decompositions and so, by Corollary 4.6 and
Lemma 5.4, there do not exist two cyclic MOSHLS(S8).

Theorem 5.9. If there exist two orthogonal Hamiltonian path decompositions of K,
then there exist two orthogonal Hamiltonian path decompositions of Ky,,.

Proof. By associating two vertices v*, v™* of Ky, with each ve V(K>,), we can take
V (Kan) to be {v*: ve V(Ky,)} u{v™: veV(Ky,)}. For any edge e = [u,v] of Ky, we
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define subsets X, Y., Z, of E(K4,) by
X, = {[u*, %], [™, 0™}, Y. = {[u*, ™), ™ 0*]}, Z. =X, U Y..

For each ve V(Ky,) let b(v) be the edge [v*, v**] of K4,. If H is a Hamiltonian path of
K>, with endvertices u,v, let H denote the spanning subgraph of Ky, such that
E(H) = {b(u),b(v)}u Uec gy Ze- 1f, for each ee E(H), we take S, to be one of

X., Y,and T, to be the other, then clearly A has a Hamiltonian path decomposition
{P, O} such that

(P)=bwyo |J S EQ@={)o | T

eecE(H) ecE(H)

There are altogether 2%~! such Hamiltonian path decompositions of H because for
each ee E(H) we can choose whether S, is X, or Y,. Moreover, if {H}, ..., H,} is a
Hamiltonian path decomposition of Kj,, then {1—71, ...,Hn} is a decomposition of
K4, in view of the second assertion of Lemma 3.2. Consequently, taking {P,, Q,} to
be one of the 2%"~! Hamiltonian path decompositions of H, arising from the above
construction for r =1, ...,n yields 2"?"~1 different Hamiltonian path decomposi-
tions {Py, Q1, P2, 02, ..., Pn, Oy} of Ky,. This provides the key to our proof.

Now assume that there exist two orthogonal Hamiltonian path decompositions of
K5,. Then, by Lemma 5.5, we can take these to be {H\, ..., H,} and {H{, ...,H}},
where H, and H] have two common endvertices ,, v, and just one common edge ¢(r)
for r=1,...,n and H,, H, have just two common edges f(r,s), g(r,s) when r#s.
Forr=1,...,nlet P,, O, be the Hamiltonian paths of Ky, such that

E(P )_{bu,}u U X E©Q)={w)v |J Y.
ecE(H,) eeE(H,)
Let 2 denote the Hamiltonian path decomposition {Py, Q1, P2, 0>, ..., Py, O,} of
Ky,. For each ee E(Ky,), define S,, T, as follows:
Se=Y., T.=X, if e=c(r) for some r or
e =f(r,s) for some r,s(r#s);
Se=X,, To=7Y, if e=g(r,s) for some r,s(r#s).

For r=1,...,nlet P,, Q. be the Hamiltonian paths of K4, such that

E(P,) = {b(u;)}v U Ses  E(Q;) = {b(v:)}u U T..

ecE(H)) ecE(H!)

Let 2’ denote the Hamiltonian path decomposition {P}, Q}, Ps, 0, ..., P,, 0.} of
Kyy,. Since uy, vy, uy, 07, ..., u,, v, are by Lemma 3.2 distinct, it is clear that
(I) for r =1, ...,n we have

Vi(p )ﬂVl( D =A{0) Vi(Q) (@) = {uf,ur*},

Vi(P)aVi(Q)) = Vi(Q:)nVi(P)) =0,
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E(P,0P) ={b(u)}, E(Q:n Q)= {b(v,)},

E<Per;) = Xc(r)> E(QrmP:) = Yc(r);
(IT) when r,se{l, ...,n} and r#s we have
Vi(Pr) nVi(Py) = Vi(Qr) 0 Vi(Q)) = Vi(Pr) n V1i(Q))

§

=Vi(Q)nV1i(P) =0,

E(P,AP) =Xy, E(Qrn Q) = Yy,

g
E(P,n Q) = Xy(rs), E(QrnP)) = Yy,

Therefore |V1(J)nVi(J')| +2|E(JnJ")| = 4 for every pair JeZ, J'eZ' and so 2,
%' are orthogonal Hamiltonian path decompositions of Ky,. [

Corollary 5.10. If there exist two MOSHLS(2n) then there exist two MOSHLS (4n).
Proof. This follows from Theorem 3.3, Lemma 5.4 and Theorem 5.9. O

From Examples 4.3 and 5.1 and the examples after Lemma 5.8, we know that two
MOSHLS(2n) exist when ne{1,3,5,7,9,11}. Consequently, by repeated application
of Corollary 5.10, two MOSHLS(2n) exist whenever n is 2" or 3.2 or 5.2"
or 7.2™ or 9.2 or 11.2™ or 13.2" for some non-negative integer m. The first value
of 2n for which the existence of two MOSHLS(21) has not been demonstrated
is 30.

6. Amalgamation and embedding: introductory remarks

We define an wunfilled matrix (on symbols oy, ...,6,) to be a matrix in which
certain cells are left unoccupied and each remaining cell contains one symbol
(belonging to the set {o1,...,0,}). (For example, the cells which contain symbols
might be those of a specified submatrix.) We shall sometimes, for clarity, use the
term “‘ordinary matrix” for a matrix in which each cell contains exactly one symbol.
We shall regard an ordinary matrix as a special kind of unfilled matrix, i.e. the set of
unoccupied cells in an “unfilled” matrix may be empty. If we insert a symbol into
each unoccupied cell of an unfilled matrix M, we obtain an ordinary matrix M’ and
we shall say that M has been embedded in M’. This leads to questions about which
unfilled square matrices can be embedded in a latin square, or a symmetric latin
square, or some other desired type of array: see, for example, [3-5,10,12,16,20], etc.
In Section 9, we shall prove some results about embeddability in (i) Hamiltonian
double latin squares, and (ii) more specifically, symmetric Hamiltonian double latin
squares.

These results will be deduced, somewhat in the spirit of [16], from two Theorems
7.2 and 8.2 concerning “amalgamation” of Hamiltonian double latin squares, i.e. a
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process of “‘amalgamating” certain rows and “‘amalgamating’ certain columns in a
way explained below. Very roughly, Theorem 7.2 says that any array which looks as
though it might have been obtained from a Hamiltonian double latin square by such
amalgamation can in fact be obtained in this way. Theorem 8.2 is a similar result
concerning symmetric Hamiltonian double latin squares.

Theorems 7.2 and 8.2 are fairly easily deducible from two graph-theoretic
propositions, Propositions 7.5 and 8.6, respectively, whose proofs will therefore be
our main task. Proposition 7.5 is in fact a special case of [17, Theorem 1] but, to
make the required ideas more accessible, we shall here prove Proposition 7.5 in a
slightly different way and without complications arising from the greater generality
of the treatment in [17]. (Actually, it has recently come to light that the proof of
Theorem 1 in [17] is flawed.) Proposition 8.6 is [15, Theorem 1] but again it
may be helpful to present a different proof here. Propositions 7.5 and 8.6 and some
similar statements can be proved either by using matroids or by a somewhat
more elementary method. We have somewhat arbitrarily chosen to present an
elementary proof of Proposition 7.5 and a matroid proof of Proposition 8.6, thus
enabling the reader to see these two different methods of proof side by side.
Although we have for some while been aware of the possible use of matroids in such
proofs, we believe that it has not hitherto been mentioned in print. Illustrating it here
may help to make known a possible tool for tackling future amalgamation problems.
We may also note that our elementary proof makes use of laminar sets, and so is
different from the elementary proofs in [15,17] and elsewhere which use de Werra’s
theorem [23]; another elementary proof could also be found by using some results of
Buchanan [9].

Definition. A composition of a positive integer n is a sequence of positive integers
whose sum is n. A multiple-entry matrix on symbols ¢y, ..., 0, is a matrix in which
each cell contains finitely many symbols drawn from the set {1, ...,0,}, the same
symbol being allowed to occur more than once in a cell. For example,

01010303 |0104040,0404|0,03030,

M o= 1202 0| 05 05 05 O 0,y 03 03 05
01 010,0] | 04040505 010303030,
oy 01 04 04 05 0y 0y 0y 03 O3

is a 4 x 3 multiple-entry matrix on symbols a1, 63, 63,04, 05. We regard the symbols
in any one cell as being unordered: for example, changing the top left-hand entry in
the above matrix M to ¢3,01,03,0; would merely give a different notation for the
same multiple-entry matrix.

We can obtain a multiple-entry matrix from an ordinary matrix by “amal-
gamating” rows and ‘“amalgamating” columns in a certain sense. Before
defining this process formally, we illustrate it by an example. Let 4 be the 9 x 8
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matrix
1 23 412 3 4
2 413 2 41 2
31423142
4 321 4 3 21
4 12 3123 4
33412 413
2 314 31 4 2
1 4 3 2 43 21
34312225

and consider the composition S = (3,4,2) of 9 and the composition 7' = (2,3, 1,2)
of 8. We shall use S to decide which rows of 4 to amalgamate and use 7 to decide
which columns to amalgamate. First, since S = (3,4,2), we amalgamate the first
three rows and then amalgamate the next four rows and finally amalgamate the last
two rows, to produce the 3 x 8 multiple-entry matrix

123 | 124 | 134 | 234 | 123 | 124 | 134 | 224
2344 | 1333 | 1224 | 1134 | 1234 | 1234 | 1234 | 1234
13 4 | 33 12 | 24 | 23 | 22 15

Then, since T = (2,3, 1,2), we amalgamate the first two columns, then amalgamate
the next three columns, leave the next column alone, and finally amalgamate the last
two columns. This produces the 3 x 4 multiple-entry matrix

112234 112233344 124 | 122344
12333344 | 111122233444 | 1234 | 11223344
1344 122334 23 1225

which we call the (S, T')-amalgamation of A.

The general definition is as follows. Let m, n be positive integers and let S =
(1, .., ps) be a composition of m and T' = (q1, ..., q,) be a composition of n. Let 4
be an m x n matrix with one of the symbols oy, ..., g, in each of its cells. Then by
partitioning A4 into submatrices, we can write

A]] A12 Al[

A A |
4 = .21 .22 . .2t
Asl AA‘Z A.vt

where A,p is a p, X qp submatrix of 4 with the cell (p; + -+ + pa,q1 + --- + qp) of 4
in its bottom right-hand corner. We define the (S, T')-amalgamation of A to be the
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s x t multiple-entry matrix on symbols oy, ...,0, such that the number of
occurrences of oy in the cell (o, f) of 4™ is equal to the number of occurrences of
orin Aggfora=1,...,sand f=1,....,tand k=1, ...,u.

In discussing this concept, we shall continue to use graph theory, but we shall need
multigraphs, i.e. graphs which may have loops and/or multiple edges. Where
necessary, we extend our graph-theoretic language and notation to multigraphs in
obvious ways. We shall refer to “subgraphs” (rather than ‘“submultigraphs™) of
multigraphs, but it will be understood that a “‘subgraph” of a multigraph may have
loops and/or multiple edges. If u, v are vertices of a multigraph G then dg(u,v) will
denote the number of edges joining them and dg(v) will denote the degree of v in G:
thus dg(v) = 2p + ¢ if v is incident with p loops and ¢ other edges. We let G — v
denote the subgraph obtained from G by removing v and the edges incident with it.
The order of G is |V(G)|. The set of components of G will be denoted by (G). A
bridge of a multigraph is an edge which is not in any cycle.

If D, G are multigraphs and E(D) = E(G), we define a DG- amalgamator to be a
surjection Q: V' (D)— V(G) which, for each ee E(D) = E(G), maps the vertices
joined by e in D to those joined by e in G (so that, in particular, e must be a loop of G
ifin D it joins vertices x, y such that Q(x) = Q(y)). Thus a DG-amalgamator is, more
informally, an operation which transforms D into G by identifying (or “amalgamat-
ing”’) vertices. Amalgamating rows and columns of Hamiltonian double latin squares
will give rise to operations of this kind on certain graphs associated with these double
latin squares.

For the purposes of this paper, we define an n-edge-coloured multigraph to be an
ordered pair (G, ¢) such that G is a finite multigraph and ¢ is a function from E(G)
into the set {1, ...,n}. We shall say that an edge e has colour ¢(e) in (G, ¢p). We let
G (i) denote the spanning subgraph of G such that E(G {i)) is the set of edges of G
which have colour i. (Of course, this notation only makes sense in contexts where the
use of some particular ‘colouring function’ ¢ is understood.)

7. Amalgamating Hamiltonian double latin squares: an elementary proof

If 4 is an s x ¢ multiple-entry matrix on symbols a1, ...,q, and ke{l, ..., u}, we
define B(A4,0}) to be a bipartite multigraph on two sets of vertices {p, ..., p,} and
{c1, ..., ¢/} such that the number of edges joining p; to ¢; is equal to the number of
occurrences of oy in the cell (i,j) of A fori=1,...,sand j =1, ...,¢. For example,
the multiple-entry matrix M in Section 6 gives rise to bipartite multigraphs
B(M,a;) (k=1,2,3,4,5), of which B(M,a;) is shown in Fig. 1.

It is easy to verify the following proposition.

Proposition 7.1. If' S = (p1, ..., ps), t = (q1, ---, q;) are compositions of 2n and A* is
the (S, T)-amalgamation of an HLS(2n) on symbols o, ..., 0, then

(OH1) row o of A* contains each symbol 2p, times, for o =1, ..., s;
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(OH2) column B of A* contains each symbol 2qy times, for f =1, ..., t;

(OH3) cell (a,p) of A* contains p,qp symbols, counting repetitions, for o =1, ..., s
and f=1,...t

(OH4) B(A*,0y) is connected for k=1, ..., n.

The truth of (OH4) follows from the fact that, if 4 is the relevant HLS(2n), then
B(A*, o;) is obtained from B(4, o)) by identifying vertices and B(4,dy) is a cycle
(the cycle Si in the notation of the paragraph preceding Lemma 3.1).

If S=(pi1,...,ps), T = (qi, ...,q:) are compositions of 2n and if A* is an s x ¢
multiple-entry matrix on symbols a1, ..., g, satisfying the above conditions (OH1)-
(OH4), then we shall call 4* an (S, T)-outline Hamiltonian double latin square. By
Proposition 7.1, an (S, T)-amalgamation of an HLS(2n) is an (S, T)-outline
Hamiltonian double latin square. The main result of this section if the following:

Theorem 7.2. If S, T are compositions of 2n then each (S, T)-outline Hamiltonian
double latin square is the (S, T)-amalgamation of an HLS(2n).

In order to give our elementary proof of this theorem, we need a lemma from [15].
A set Z of sets will be said to be laminar if, for every pair X, Y of sets belonging to
Z , one of the statements X< Y, YSX, XY = 0 is true. If x, y are real numbers
then | y |, [ ¥ ] denote (as usual) the integers such that y — 1< | y | <y<[y] <y +1
and the statement x~y will mean that | y | <x<[y]. We observe that the relation
~ is reflexive and transitive but not symmetric.

Lemma 7.3. If 7, 9 are two laminar sets of subsets of a finite set M and h is a positive
integer then M has a subset L such that

ILnX|~|X|/h for every XeF L. (1)
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A proof of Lemma 7.3 may be found in [19]. It uses a fairly simple network flow
argument essentially contained in the paper [6] of Baranyai, who in turn attributes
the underlying idea to Lovasz.

We define an n-bimultigraph to be an ordered quadruple (G, ¢; P, Q) such that
(G, ¢) is an n-edge-coloured multigraph and P, Q are disjoint non-empty sets with
union V(G) and each edge of G joins an element of P to an element of Q.

We shall say that an n-bimultigraph (D, ¢; P, Q') is a detachment of an n-
bimultigraph (G, ¢; P, Q) if E(D) = E(G) and there exists a DG-amalgamator Q
such that Q(P") = P, Q(Q') = Q. An important special case will be that in which
V(D) = V(G)uw{v*} for some element v*¢ V(G) and there is a DG-amalgamator Q
such that Q(P') = P, Q(Q') = Q and Q(x) = x for every xe V(G). Then Q(v*) must
be some vertex v of G, and we shall say that the detachment (D, ¢; P, Q") of
(G, ¢; P, Q) is obtained by splitting off a new vertex v* from v. Clearly, in this case
either ve P, P’ = Pu{v*} and Q' = Q or veQ, P = P and Q' = Qu{v*}. In more
informal language, a detachment of (G,¢;P, Q) is obtained by splitting each
xe V(G) into one or more vertices (the elements of 2~'({x})). In this process, an
edge joining vertices x, y in G becomes an edge joining one of the vertices into which
x splits to one of the vertices into which y splits. The process does not change colours
of edges, since (G, ¢; P, Q) and (D, ¢; P', Q') involve the same ‘colouring function’ ¢.
If we merely split one vertex v of G into two vertices v, v¥, leaving all other vertices
intact, then the resulting detachment is “obtained by splitting off v* from v”.

Let (G, ¢; P, Q) be an n-bimultigraph. We shall say that (G, ¢; P, Q) is (i) 2n-
bicomplete if |P| =|Q| =2n and dg(x,y) =1 for all xe P,yeQ (ii) Hamiltonian if
G<{1>,G{2),...,G<{n)y are all Hamiltonian cycles of G. We shall say that
(G, ¢; P, Q) is n-admissible if it satisfies the following conditions:

(A1) dg(x)/2n is a positive integer for every xe V(G);

(A2) each vertex x of G is incident with dg(x)/n edges of each colour;
(A3) dg(x,y) = dg(x)dg(y)/4n* for all xe P, yeQ;

(A4) G{1>,G<(2>,...,G<{n) are connected.

It is easily seen (although we shall not need this fact in any of our proofs) that (Al)-
(A4) are necessary conditions for (G, ¢; P, Q) to have a 2n-bicomplete Hamiltonian
detachment, the integer dg(x)/2n in (A1) being the number of vertices into which x
must be split in forming such a detachment. In Proposition 7.5, we shall see that
these necessary conditions are also sufficient.

Lemma 7.4. If (G, ¢; P, Q) is an n-admissible n-bimultigraph, ve V(G) and dg(v) >2n
then an n-admissible detachment of (G, ¢; P, Q) is obtainable by splitting off a new
vertex from v.

Proof. Assume without loss of generality that ve P. (Clearly, a similar argument can
be given when ve Q.) Let M be the set of edges incident with vin G. For each ye Q let
M? be the set of edges joining v to y in G, and let # = {M?;yeQ}. Fork=1,....n
let M} be the set of edges of colour k in M and for each component C of G<{k)> —v
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let M be the set of those edges in M) which join v to elements of V'(C) in G. Let .4,
denote the set {Mf : Ce(G{k) —v)} of subsets of My and let ¥ be the set
MO MO O My O{ M, My, ..., M,, M} of subsets of M.

By (Al), dg(v) =2hn for some integer h; and h>=2 by our hypothesis that
dg(v)>2n. Since #, % are laminar sets of subsets of M, there exists by Lemma 7.3 a
subset L of M such that (1) is true. Let (D, ¢; Pu{v*}, Q) be the detachment of
(G, ¢; P, Q) obtained by splitting off a new vertex v* from v and taking the set of
edges incident with v* in D to be the set of edges of L. We will prove that
(D, ¢; PU{v*}, Q) is n-admissible.

Since M €% and |M| = dg(v) = 2hn, taking X = M in (1) gives dp(v=) = |L| = 2n
and so dp(v) = |M| — |L| = 2(h — 1)n. Moreover G satisfies (A1) and all vertices in
V(D)\{v,v*} have the same degrees in D as in G. Therefore D satisfies (Al). For
k=1,...,n we have |M}| = dg(v)/n = 2h by (A2) and so taking X = M €% in (1)
gives |[Ln M| = 2 and consequently | M} \L| = 2h — 2. Therefore v* is incident in D
with 2 = dp(v*)/n edges of each colour and v is incident in D with 24 — 2 = dp(v)/n
edges of each colour. Moreover (G, ¢) satisfies (A2) and all vertices in V' (D)\{v, v*}
are incident with the same edges in D as in G. Therefore (D, ¢) satisfies (A2).
If ye Q then (A3) gives |M”| = dg(v,y) = dg(v)ds(y)/4n* = hd(y)/2n and so (since
dg(y)/2n is an integer by (Al)) taking X = MY e Z in (1) gives |Ln M| = dg(y)/2n
and consequently |M\L| = (h—1)dg(y)/2n. Therefore dp(v*,y) =ds(y)
/2n = dp(y)/2n = dp(v*)dp(y)/4n* and dp(v,y) = (h—1)dG(y)/2n = (h — 1)dp(»)
/2n = dp(v)dp(y)/4n* for every ye Q. Moreover (G,¢;P, Q) satisfies (A3) and
dp(x,y) =dg(x,y), dp(x) = dg(x), dp(y) = dg(y) whenever xe P\{v},ye Q. There-
fore (D, ¢; Pu{v*}, Q) satisfies (A3).

Let ke{l,...,n}. By (Al) and (A2), each vertex of G has even degree in G{k)
and so G (k) has no bridges. Since G{k ) is connected by (A4) and has no bridges,
|M,CC|>2 for each component C of G<{k» — v. Therefore, for each such C, taking
x=MFe%in (1) gives |[Ln ME|<|MF|, and so not all edges joining v to vertices of
Cin G{k ) become incident with v* in D. Therefore v is adjacent in D {k ) to at least
one vertex of each component of G{(k) —v = (D<{k) —v*) —vand so D{k) — v*
is connected. Moreover, v* is adjacent in D{k ) to at least one vertex of D<{k) — v*
since we have seen that v* is incident in D with two edges of each colour. Therefore
Dk is connected. We have thus proved that (D, ¢) satisfies (A4).

We conclude that (D, ¢; Pu {v*}, Q) is n-admissible, as required. O

Proposition 7.5. Every n-admissible n-bimultigraph has a 2n-bicomplete Hamiltonian
detachment.

Proof. Let (G, ¢; P, Q) be an n-admissible n-bimultigraph. Let (D, ¢; P', Q') be an n-
admissible detachment of (G, ¢; P, Q) such that |V'(D)]| is as large as possible. If any
vertex had degree exceeding 21 in D then (D, ¢; P', Q') would by Lemma 7.4 have an
n-admissible detachment involving a graph with more vertices than D and, since this
detachment would also be a detachment of (G, ¢; P, Q), it would contradict the
maximality of |V (D)|. Therefore no vertex has degree exceeding 2n in D and so, by
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(A1), dp(x) = 2n for every xe V(D). Therefore, by (A3), dp(x,y) =1 for all xe P/,
ye @'. Considering any fixed xe P’ now gives

2n =dp(x) = Z dp(x,y) = Z 1=10|

yeQ' yeQ

and a similar argument gives |P'| = 2n. Therefore (D, ¢; P, Q') is 2n-bicomplete.
Since all vertices have degree 2n in D, it follows from (A2) and (A4) that each D<{k)
is a connected graph in which every vertex of D has degree 2, i.e. a Hamiltonian cycle
of D. Therefore (D, ¢; P, Q') is Hamiltonian. O

Proof of Theorem 7.2. Let S = (py,...,ps), T = (¢, ---,4;) be compositions of 2n
and let A* be an (S, T)-outline Hamiltonian double latin square on symbols
a1, ...,0,. Then A* satisfies (OH1)-(OH4). Let I' denote an n-bimultigraph
(G, ¢;{p1, ---,ps}, {c1, ..., ¢, }) such that dg iy (p,, ¢p) is the number of occurrences
of oy in the cell («,) of A* fora=1,...,sand f=1,...,tand k =1, ...,n. Thus
G (k) is precisely the multigraph B(4*, o4), and we can think of I as being obtained
by superposing B(A4* a1), ..., B(4*,06,) with their edges coloured 1, ...,n, respec-
tively, to distinguish between them.

For o =1, ...,s it follows from (OHI) that p, is incident in G with 2p, edges of
each colour, which implies that dg(p,) = 2p,n and that p, is incident in G with
dg(p,)/n edges of each colour. Similarly (OH2) implies that dg(cg) = 2qpn and ¢ is
incident in G with dg(cp)/n edges of each colour for f =1, ..., . Therefore I' satisfies
(A1) and (A2). By (OH3), dg(p,, ¢p) = paqp = dc(p,)dc(cp)/4n* for o =1, ...,s and
p=1,...,t and so I satisfies (A3). Since G<k) = B(4*,04) for k=1, ...,n, it
follows from (OH4) that I" satisfies (A4). Therefore I is n-admissible and so has, by
Proposition 7.5, a 2n-bicomplete Hamiltonian detachment (D, ¢; P, Q).

By the definition of detachment, there exists a DG-amalgamator Q such that
QP)={py,...,ps}, QQ)={ci,...,c;}. The definition of a DG-amalgamator
implies that dg(p,) = (dp(x): xeQ '({p,})), which is 2n|Q '({p,})| since
(D,¢;P,Q) is 2n-bicomplete. Therefore [Q'({p,})| =ds(p,)/2n=p, (2=
1, ...,s). Consequently, the elements of P can be arranged in an order pi, ..., p},
such that

Q(pl) =p, when p,1<i<p, (x=1,..,5),

where po = 0,5, = p1 + --- + p, (@ =1, ...,5). For similar reasons, the elements of Q
can be arranged in an order ¢}, ..., 5, such that

Q(¢) =cg when gg1<j<gp (B=1,....0),

where §o = 0,4 =q1+ - +qp (=1, ...,1). Let A be the 2n x 2n matrix such that
A(i,J) = ox whenever the edge joining p; to ¢} has colour k in (D, ¢). Then B(4, oy) is
the graph obtained from D<{k) on replacing p; by p; and ¢} by ¢; fori,j =1, ..., 2n.
Since (D, ¢; P, Q) is Hamiltonian, each D<{k) is a Hamiltonian cycle of D.
Therefore each B(A4,ay) is a cycle with vertices p, s, ..., Poys €1, €2, --., €2, and 80 A
is a HLS(2n).
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Let 4 be partitioned into submatrices as

Ay A - Ay

Ay A .4
A= .21 .22 . .2t )

Asl AsZ Ast

where A,p is the p, x gqp submatrix of A4 formed by the entries A(7,j) with
Do—1 <I< Py, §p—1 <j<gg. Then the number of occurrences of oy in A, is the number
of pairs (i,) such that p'e Q7' ({p,}), c}eQ*I({c/;}) and the edge joining pj to ¢} has
colour k in (D, ¢). This in turn is equal to the number of edges of colour k joining p,
to ¢p in (G, ¢), which is the number of occurrences of gy in the cell (a,f) of A*.
Therefore A* is the (S, T)-amalgamation of 4. O

8. Amalgamating symmetric Hamiltonian double latin squares: a matroid proof

Definition. A cell (i,/) of a square matrix will be called a diagonal cell if i = j and an
off-diagonal cell if i#j. Let A be an s x s multiple-entry matrix on symbols gy, ..., 0,
and let N(k;a, f) denote the number of occurrences of oy in the cell («, f) of 4. We
shall say that g appears in the cell (a, f) of 4 if N(k;o,f)>0 and that oy appears
oddly in this cell if N(k;a,f) is odd. If ae{l,...,s} then ¢,(A4) will denote the
number of symbols which appear oddly in the cell (o,0) of 4. A symbol oy is
diagonally even in A if N(k;o, o) is even for o = 1, ..., s and is diagonally odd in A if
N(k;a, o) is odd for at least one ae {1, ...,s}. A symbol gy is diagonally confined (in
A) to a subset X of {1,...,s} if N(k;a,a) =0 for every ae{l,...,s})\X. For k =
1,...,n we define F(A4,0y) to be a multigraph with s vertices p,, ..., p, in which p,
and pg are joined by N(k;o, p) edges for o, f =1, ..., s. (In particular, p, is incident
with N(k;a, o) loops.)

Proposition 8.1. If S = (pi,...,ps) is a composition of 2n and A* is the (S,S)-
amalgamation of an SHLS(2n) on symbols a1, ..., 0, then

(OS1) row o of A* contains each symbol 2p, times, for o =1, ..., s;

(OS2) cell (o, f) of A* contains p,pg symbols, counting repetitions, for o, f =1, ....s;

(OS3) dec(X)<1>,c v (P2 — qu(A%)) for every subset X of {1, ...,s}, where dec(X)
is the number of symbols which are diagonally even and diagonally confined to
X in A%

(OS4) F(A* oy) is connected for k =1, ... n.

We remark that in Proposition 8.7 and Theorem 8.8 we show that (OS3) can be
replaced by an alternative condition (OS3*) which does not involve a set of
inequalities.

Proof. It is easy to see that A* satisfies (OS1) and (OS2).
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Let A be the SHLS(2n) of which A* is the (S, S)-amalgamation. Since A is
Hamiltonian, F(4, o) is clearly connected for each symbol oy. Since F(A*, ay) is
obtained from F (A4, o;) by identifying vertices, (OS4) follows.

To prove (0S3), recall the definition of (S, T')-amalgamation in Section 6. When
T=S=(pi,...,ps), this definition involves partitioning A into submatrices
Ay (0, f=1,...,5). Let X be a subset of {1, ...,s} and let Dy be the set of all
cells on the main diagonal of A which are in the submatrices A,, (o€ X). Each
occurrence of a symbol in A4,, gives rise to an occurrence of that symbol in the cell
(o0, 0) of A*. Therefore, if a symbol oy is diagonally confined to X in A*, then all
occurrences of g; on the main diagonal of 4 must be in cells belonging to Dy and so,
by Lemma 4.2, two of these cells must contain g;. Consequently, at least 2dec(X)
cells in Dy contain symbols which are diagonally even in 4*. (We say ‘at least’ here
since a symbol ¢, that is diagonally even and occurs twice in Dy may not be
diagonally confined, as it could occur an even number of times in Az but not on the
main diagonal of Ags, for some f ¢ X). If a symbol o appears oddly in a cell («, o) of
A* then the number of occurrences of oy in 4,, is odd and so, since A4 is symmetric,
at least one cell on the main diagonal of 4,, must contain ay; in view of Lemma 4.2,
exactly one cell on the main diagonal of A,, contains o;. Consequently,
D sex G2(A*) cells in Dy contain symbols which are diagonally odd in A4*.
Hence

2dec(X) + Y qu(A4*)<|Dx| =" pa,

oeX aeX

and (OS3) is proved. O

If S = (p1,...,ps) is a composition of 2n and if 4* is a symmetric s x s multiple-
entry matrix on symbols gy, ..., g, satisfying conditions (OS1)—(0S4), then we shall
call A* a symmetric S-outline Hamiltonian double latin square. By Proposition 8.1, an
(S, S)-amalgamation of an SHLS(2n) is a symmetric S-outline Hamiltonian double
latin square. The main result of this section is the following:

Theorem 8.2. If' S is a composition of 2n then each symmetric S-outline Hamiltonian
double latin square is the (S, S)-amalgamation of an SHLS(2n).

Theorem 7.2 could be used to show that any symmetric S-outline Hamiltonian
double latin square is the (S, S)-amalgamation of an HLS(2#). (Hint: deduce (OH4)
from (OS3) and (0OS4); taking X = () in (OS3) shows that every symbol occurs on the
diagonal of 4*.) However, this approach would not guarantee that the HLS(2n)
concerned was symmetric. So we need a different argument, although it will bear
some resemblances to the proof of Theorem 7.2.

As already stated, our proof of Theorem 8.2 will use matroids. We recall that a
matroid is an ordered pair (M, 3) such that M is a finite set, J is a set of subsets of M
(which are called independent sets) and the following axioms are satisfied:

(i) 0e3;
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(i1) if Ie3 and J<=I then J€3;
(ii1) for each subset 4 of M, all maximal independent subsets of 4 have the same
cardinality (which is called the rank of A and denoted by r(4)).

We shall need the following Matroid Intersection Theorem of Edmonds.

Theorem 8.3 (Edmonds [11,22, Section 69; Section 8.5]). Let (M,3), (M,T') be
matroids with the same underlying set M and with rank functions r,v', respectively.
Then these matroids have a common independent set of cardinality c if and only if
r(A) + ¥ (M\A) =c for every subset A of M.

We shall say that an n-edge-coloured multigraph (D, ¢) is a detachment of an n-
edge-coloured multigraph (G, ¢) if E(D) = E(G) and there exists a DG-amalga-
mator. An important special case will be that in which V(D) = V(G)u {v*} for some
element v*¢ V'(G) and there is a DG-amalgamator Q such that Q(x) = x for every
xeV(G). Then Q(v*) must be some vertex v of G, and we shall say that the
detachment (D, ¢) of (G, ¢) is obtained by splitting off a new vertex v* from v. In
more informal language, a detachment (D, ¢) of (G, ¢) is obtained by splitting each
xeV(G) into one or more vertices (the elements of Q7'({x}) for some DG-
amalgamator Q). In this process, an edge joining vertices x, y in G becomes an edge
joining one of the vertices into which x splits to one of the vertices into which y splits.
The process does not change colours of edges, since (G, ¢) and (D, ¢) involve the
same ‘colouring function’ ¢. A loop ¢ incident with a vertex x in G becomes an edge
of D joining two of the vertices into which x splits. These two vertices need not be
distinct, and so / may become a loop of D incident with one of the vertices into
which x splits. If we merely split one vertex v of G into two vertices v, v*, leaving all
other vertices intact, then the resulting detachment is “obtained by splitting off v*
from v”.

Let (G,¢) be an n-edge-coloured multigraph. We shall say that (G, ¢) is (i)
(2n + 1)-complete if G is a complete graph of order 2n + 1, (ii) Hamiltonian if G{1),
G{2>,...,G{n) are all Hamiltonian cycles of G. We shall say that (G, ¢) is n-
helpful if it satisfies the following conditions:

(HO) |E(G)| = 2n* + n;

(H1) dg(x)/2n is a positive integer for every xe V(G);

(H2) dgky (x) = dg(x)/n for each xe V(G) and for k =1, ..., n;

(H3) dg(x,y) = dg(x)dg(y)/4n* for every pair x, y of distinct vertices of G;
(H4) G<1>,G<2),...,G<{n) are connected.

It is easily seen (although we shall not need this fact) that (HO)-(H4) are necessary
conditions for (G,¢) to have a (2n+ 1)-complete Hamiltonian detachment, the
integer dg(x)/2n in (H1) being the number of vertices into which x must be split in
forming such a detachment. In Proposition 8.6, we shall see that these necessary
conditions are in fact sufficient.
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Lemma 8.4. If (G, ) is an n-helpful n-edge-coloured multigraph and xeV(G) and
dg(x) = 2hn then x is incident in G with exactly (g) loops.

Proof. By (HO), 35 .y d6(v) =4n* +2n and 50 Y-y 1 do(v) = 4n” +2n —
2hn. By (H3) it follows that dg(x,y) = Ldg(y), so > vevienxy d6(x,y) =h(2n+
1 — h). Since dg(x) = 2hn, it follows that x must be incident with exactly h(h —1)/2
loops. O

Lemma 8.5. If (G,¢) is an n-helpful n-edge-coloured multigraph, ve V(G) and
dg(v)>2n then an n-helpful detachment of (G, ¢) is obtainable by splitting off a new
vertex from v.

Proof. By (H1), dg(v) = 2hn for some integer /; and s>2 by our hypothesis that
dg(v)>2n. Let M be the set of edges incident with v in G. For each ye V(G) let M”
be the set of edges joining v to y in G. (In particular, M" is the set of loops incident
with v in G.) Let 3 be the set of all subsets X of M such that |[X " M"|<h— 1 and
| X A M?|<dg(y)/2n for each ye V(G)\{v}. It is easy to see that (M, J) is a matroid.

For k=1,...,n let M} be the set of edges of colour k in M and for each
component C of G{k) — v let Mf be the set of those edges in M} which join v to
elements of V' (C) in G. Let % be the set of all components C of G{k)» — v such that
|ME| =2. Let I be the set of all subsets I of My such that [InMF|<1 for each
Ce%). Let I be the set of all sets of the form Iy ulL U -+ Ul, where I €3 for
k=1, ...,n. Since for each k the sets Mkc (Ce%y) are disjoint, it is easily seen that
(M}, 3,) is a matroid for k = 1, ..., n. Therefore (M,J') is a matroid.

Let r,7 be the rank functions of the matroids (M,3J), (M,T'), respectively.
Let A be a subset of M. Since |4 M°|<|M°| = h(h—1)/2 by Lemma 8.4 and 1>2
it follows that min(|[AnM"|,h—1)=2|AnM°|/h. If yeV(G)\{v} then |AnM*
<|M?| = hdg(y) /2n by (H3) and so min(|4 N M?|,dg(y)/2n)=|A M”?|/h. There-
fore

r(A) =min(|[A0M*|,h— 1)+ Y min(|An M|, dc(y)/2n)
yeV(G)\{v}

> (204nM |+ > [AnM| | /h=(2]AnM"|+|AM"|)/h.
yeV(G)\{v}

For each ke{l,...,n} the sets M (Ce%)) are disjoint subsets of M;\M" each of
which has cardinality 2, and so AnM; has a subset S; such that
ISk = (AN M) " M?| +3|(An M)\M*| and |Sxn M|<1 for each Ce%. There-
fore any subset of Sy of cardinality min(|Sk|,2) is a set [ €4 N My such that I, €3},
and

\Ii| =min(|4 Mg M°| +3|(4 0 Mi)\M"|,2).
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Moreover (H2) gives
2|AﬂMkﬂMv| + |(A(\Mk)\Mb|< 2|MkﬁMv| + |Mk\Mv|

=dg (V)
=dg(v)/n = 2h.

Therefore [k > (214~ My A M| + [(An M)\M)/h. Since ;U Ul,eS and
Lu---ul, = A4 it follows that

V(A)= Lol =Q2lAn M| + |A\M"|)/h.

Since r(A),r (A) are both at least (2|4 M"| + |A\M"|)/h for every A<= M, it follows
that

F(A) + ¥ (M\A)> M| + |M\MY)) /h = d(v) /h = 2n

for every A< M, and so there is by Theorem 8.3 a set Le 3nJ' such that |L| = 2n.
Let (D, ¢) be the detachment of (G, ¢) obtained by splitting off a new vertex v* from
v, taking L to be the set of edges incident with v* in D and requiring edges in L~ M"
to join v to v* in D (so that v* is not incident with any loops in D). We will prove that
(D, ¢) is n-helpful.

Since G satisfies (HO) and E(D) = E(G) it follows that D satisfies (H0). Since
dg(v) = 2hn and dp(v*) = |L| = 2n it follows that dp(v) = dg(v) — dp(v*) = 2(h —
1)n. Moreover G satisfies (H1) and all vertices in V' (D)\{v, v*} have the same degrees
in D as in G. Therefore D satisfies (H1). Since LeJ it follows that L = LU --- U L,
for some sets L1 €3}, ..., L,€J]. Since |L| = 2n and no set in any J)_ has cardinality
exceeding 2, it follows that |L;| = --- =|L,| =2 and so dp¢xy (v*) = |Ly| =2 =
|L|/n = dp(v*)/n for k =1,...,n. Moreover, for k=1,...,n we have dg(iy(v) =
dg(v)/n=2h since (G,¢) satisfies (H2) and consequently dp¢iy(v) =2h—
dp iy (V%) = 2h — 2 = dp(v)/n. Furthermore, since (G, ¢) satisfies (H2) it follows
that dpcky (x) = daciy (x) = dg(x)/n = dp(x)/n for all xeV(D)\{v,v*}. Hence
(D, ¢) satisfies (H2).

Since LeJ it follows that

[ILaoM°|<h—1=(dg(v)/2n) —1 and
Lo MY <dg(y)/2n for every ye V(G)\{v}.

Since
(d(v)/2n) =1+ > dg(y)/2n = (|E(G)|/n) = 1 =2n = |L]|
yeV(G)\{v}

by (HO), it follows that |LnM"| = (dg(v)/2n) — 1 =h— 1 and |[LnM?| = dg(y)/2n
for every ye V(G)\{v}. Therefore dp(v,v*) = |LAM®| =h— 1 = dp(v)dp(v*)/4n>
and

dp(v*,y) = |[LoM?| = dg(v)/2n = dp(y)/2n = dp(v*)dp(y) /4n®
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for every ye V(G)\{v} = V(D)\{v,v*}. Moreover, since G satisfies (H3),
dp(v,y) =dg(v,y) — dp(v*,y) = (dg(v)dg(v) — dp(v*)dp(»)) /4n*
— (Ao (v) — dp(t*))dp(v) 4" = dp(v)dp(y) /4
for every ye V(G)\{v} = V(D)\{v,v*} and
dp(x,y) = dg(x,y) = dg(x)dG(v) /4n* = dp(x)dp(y) /41’

for every two distinct elements x, y of V(G)\{v} = V(D)\{v,v*}. Hence D satisfies (H3).

Let ke{l,...,n}. By (H1) and (H2), each vertex of G has even degree in G<{k)
and so G<{ k) has no bridges. Since G<{k ) is connected by (H4) and has no bridges,
|ME|>2 for each component C of G{k) —vand so |[Mf|>2 = |Ly|>|Lyn Mf| for
each component C of G{k) — v such that C¢%). Since L;eJ it follows that
|Li nME|<1<2 = |Mf| for every Ce®%. Hence, for each component C of
G{ky —v, we have |M{|>|LynMf|=|LnMf|, and so not all edges joining v
to vertices of C in G{k)» become incident with v* in D. Therefore v is adjacent in
Dk to at least one vertex of each component of G{k> —v = (D{k)> —v*) —v
and so D<{k) — v* is connected. Moreover, v* is adjacent in D{k ) to at least one
vertex of D{k) —v* since we have seen that dp(xy(v*) =2 and no loops are
incident with v* in D. Therefore D{k) is connected. We have thus proved that
(D, ¢) satisfies (H4).

We conclude that (D, ¢) is n-helpful, as required. [

Proposition 8.6. Every n-helpful n-edge-coloured multigraph has a (2n + 1)-complete
Hamiltonian detachment.

Proof. Let (G, ¢) be an n-helpful n-edge-coloured multigraph. Let (D, ¢) be an n-
helpful detachment of (G, ¢) such that |V'(D)]| is as large as possible. If any vertex
had degree exceeding 2n in D then (D, ¢) would by Lemma 8.5 have an n-helpful
detachment involving a graph with more vertices than D and, since this detachment
would also be a detachment of (G, ¢), it would contradict the maximality of | V(D).
Therefore no vertex has degree exceeding 2n in D and so, by (H1), dp(x) = 2n for
every xe V(D). From this and (H3) and Lemma 8.4, it follows that D is a complete
graph, which must have order 2n+ 1 since each of its vertices has degree 2n.
Therefore (D, ¢) is (2n + 1)-complete. By (H2) and (H4), each D{k ) is a connected
graph in which every vertex of D has degree 2, i.e. a Hamiltonian cycle of D.
Therefore (D, ¢) is Hamiltonian. [

Proof of Theorem 8.2. Let S = (py, ...,p;) be a composition of 2n and let A* be a
symmetric S-outline Hamiltonian double latin square on symbols o, ..., o,. Then 4*
satisfies (OS1)-(0S4), and {0y, ...,0,} = PUY, ¥ =¥ U --- U¥, where &, ¥ are,
respectively, the sets of diagonally even and diagonally odd symbols in 4* and ¥, is
the set of those symbols which appear oddly in the cell (a, ) of A* fora =1, ...,s.
For simplicity write g, = ¢,(4*) (¢ =1, ...,s). By (OS2), any diagonal cell (o, o) of
A* contains p? symbols (counting repetitions) and so ¢, must have the same parity as
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p2. Therefore 1(p, — ¢,) is an integer, which is non-negative since dec({a}) <3(py —
¢») by (OS3). Let r, denote the non-negative integer 3(p, — ¢,) for a =1, ...,s

Since A* is symmetric, each symbol occurs an even number of times in the union of
its non-diagonal cells, and by (OS1) each symbol occurs an even number of times in
the whole of A*. Therefore each symbol occurs an even number of times in the union
of the diagonal cells of A4*, and so each member of ¥ must appear oddly in at least
two diagonal cells of 4*. Therefore |¥|<i(¢i + --- + ¢;) and, if this inequality is an
equality, each member of ¥ must appear oddly in exactly two diagonal cells of A*.
However, by (OS3),

9] = dec({1, .., sH) <1 + -+ +p0) = Yar + -+ +4) =n— a1+ +45)

and so 1(q1 + -+ +¢q)<n—|®| = |¥|. Therefore |¥|=1(q1 + --- +¢;) and each
member of ¥ appears oddly in exactly two diagonal cells of 4*. In other words each

member of ¥ belongs to exactly two of the sets ¥y, ..., ;.
We observe that
roA =44+ p) =Yg+ g) =n— V] = 2. (2)

Fora =1, ...,slet IT, be the set of those symbols in ¢ which appear in the cell (o, o)
of A*. Let Z be a subset of {1, ...,s}. A symbol in @ is diagonally confined to
{1,...,s\Z in A* if and only if it does not appear in the cell (a, &) of 4* for any o€ Z,
i.e. if and only if it does not belong to |J,., II,. Therefore dec({l,...,s}\Z) =
|®] — | U,z Ha|, and so (OS3) and (2) give

Uﬂwé Z ra:|<15\—2r%.
weZ ae{l,...s)\Z we”Z
Hence |, , II.|>)",., rx for every subset Z of {1,...,s} and so, by Hall’s
Theorem, there exist distinct representatives of the sets Iy, IIy,
LI I I, L I, L T T, L T, where T s listed ry times and 1T is listed
ry times and ... and II; is listed ry times. From this and (2), it follows that @ is the
union of disjoint sets @y, ..., &, such that |®,| =r, and ¢, =11, fora =1, ... s.
Since the sets ® = U --- VD, ¥ = P U - U P, are disjoint, we can define 7, to
be2if g,e®, and 1 if 6, eV, and 0 if o4 ¢ P, U W, fork=1,....nanda=1,...,s.
Let N(k; o, f) denote the number of occurrences of a symbol gy in a cell (o, ) of A*.
We observe that N(k;o,a) and 1,4 are, by the definitions of ¥, and ¢, both odd if
o, €V, and both even if oy ¢ ¥,. Moreover, N (k;a, o) =1, because N (k;o, o) is odd
when oy € ¥, and (since ¥, =11, <= ®) is even and non-zero when g, € @,. We may
therefore define (G,¢) to be an n-edge-coloured multigraph with s+ 1 vertices
P05 P15 ---» Pg Such that

(@) decry (py,pg) = N(k;o, f) when ke{l,...,n} and o, fe{1,...,s} and a#f;
(i) docky(pgs py) =tk fork=1,....nand a=1,...,s
(1) dgeiy (py py) = 3(N (ks ) — 1) for k=1,...,nand o =1, ...,s;
(iv) no loops of G are incident with p,.

@] -

We will now prove that (G, ¢) is n-helpful.
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If ke{l,...,n} and ae{l, ..., s} then

da iy (0,) =2dc iy (P2 0,) + daciy (00, p) + Y. daciy (pas pp)
pe{l,...sP\{a}

S
=Y N(k;o, p) =2p,
p=1
by (i)—(iii) and (OS1). Since @ =P, U -V, ¥V =V, U--- V¥, and Dy, ..., P, are
disjoint and each member of ¥ belongs to exactly two of ¥y, ..., ¥, it follows that
Yoy tw = 2 and consequently, by (ii) and (iv), dg¢xy (pg) = 2 for k =1, ..., n. Since
the degree of any vertex in G is the sum of its degrees in G<{ 1), ..., G{n ), it follows
that

dg(p,) =2pun (a=1,....s), dg(py) =2n (3)

and consequently |E(G)| = (p1+ - +ps+ 1)n=(2n+ 1)n. These calculations
show that (G, ¢) satisfies (H0)~(H2). For o, f = 1, ..., s it follows from (ii) that

n
dc(pg, py) = Z tuk = 2|Dy| + W, | = 21y + ¢y = py
k=1

and from (i) and (OS2) that
d(pyspp) = Y N(kio, ) = pupp  if 2B
k=1

From this and (3), it follows that (G, ¢) satisfies (H3). If ke{l, ...,n} then, by (i),
every two distinct vertices in the set {p,, ..., p,} are joined by the same number of
edges in G<{k) as in F(A* o;), which is connected by (OS4), and so G{k)» — p, is
connected. From this and (iv) and the fact that dgxy () = 2, it follows that G<{k )
is connected. Hence (G, ¢) satisfies (H4). This completes the proof that (G, ¢) is n-
helpful and so has by Proposition 8.6 a (2n + 1)-complete Hamiltonian detachment
(D, ¢).

By the definition of detachment, there exists a DG-amalgamator Q. The definition
of a DG-amalgamator implies that dg(p,) =Y. dp(x): xeQ '({p,}), which is
2n|Q '({p,})| since (D,$) is (2n+ 1)-complete, and so (3) implies that
127 '{po}) =1 and |Q'({p,})| =p. (=1, ...,5). We can clearly take any 2n +
1 objects to be the vertices of D: so we may suppose that Q' ({p,}) = p,_1 7, for
a=1,...,s, where po=0,p, =p1+ - +py (¢ =1,...,5) and xy denotes the
subset {x + 1,x+2,...,p} of Zy,. Let v denote the unique element of Q7' ({p,}).
Then V(D — v) = Z, and so D — v can be identified with the graph K5, considered
in Section 3. Let [x, y] denote the edge joining any two distinct vertices x,y in D, and
let A be the symmetric 2n X 2n matrix such that fori, j=1,...,2nand k =1, ..., n,

A(i,j) = o when i#j and [i,jle E(D{k)),
A(i,i) = o when [v,i]e E(D{k)).
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Since (D, ¢) is Hamiltonian, each D<{k ) is a Hamiltonian cycle of D: therefore each
symbol o occurs exactly twice in each row of 4 and twice in each column of 4, and
so A is a double latin square. For any two distinct elements 7, of Z,,, the definition
of A implies that [i,j] is in D<{k) and consequently in D{k) — v if and only if
A(i,j) = A(j,i) = oy therefore, in the notation of Section 3, D<k» —v = H(A, o).
Since each D< k) is a Hamiltonian cycle of D, it follows that D<{k) —v = H(4,0y)
is a Hamiltonian path of K5, for k=1, ...,n and so, by Theorem 3.3, 4 is an
SHLS(2n).

Consider any o, fe {1, ...,s} and any ke {1, ..., n}. Let e, (k) denote the number
of edges of D{k) which join elements of Q~!({p,}) to elements of Q’l({pﬁ}) and

e (k) denote the number of edges of D{k» which join v to elements of Q7' ({p,}).
Let A,; be the p, x py submatrix of 4 formed by the entries A(7,j) with
Pt <i<Py, Pp1<j<pp. Since Q' ({p,}) = px1 7Py and Q' ({pg}) = pp-1 7P,
the definition of 4 implies that o4 occurs exactly e,s (k) times in 4,5 when a# ff and
exactly 2e,,{k> +e,<{k) times in A,,. Moreover e,,<{k) =dgcis(Py Py);
exp kY =dccry(py, pp) and ew, <k > = dgcky (pg, p,) since Q is a DG-amalgamator,
and so (i)—(iii) give e, k) = N(k;a,f) when o#p and 2e,,{k) +en<k) =
N (k;o, o). Hence oy occurs exactly N(k;a, ) times in A, for all o, fe{1, ..., s} and
all ke{l, ...,n}, and so A* is the (S, S)-amalgamation of 4. O

Condition (OS3) in the definition of a symmetric S-outline Hamiltonian double
latin square can be replaced by the following condition (OS3*):

(OS3*) There is a multiset X of 2n ordered pairs (o, (o)) such that if ¥
contains (o, (a,0)) x times then symbol o; occurs at least x times in cell (o,o)
of A* and:

(A) each symbol g occurs twice in ordered pairs of X,

(B) each diagonal cell (o, ) occurs p, times in ordered pairs of X, and

(C) for I<a<s, if a symbol gy occurs an odd number of times in cell (o, ) of A,
then (o, (o, o)) occurs exactly once in .

Proposition 8.7. If S = (p1,p2, --.,pn) is a composition of 2n and A* is the (S, S)-
amalgamation of an SHLS(2n) on symbols 1,02, ...,0,, then A* satisfies condition
(OS3*).

Proof. Let A be the SHLS(2n) of which A* is the (S, S)-amalgamation. Recall that
in the definition of an (S, T')-amalgamation in Section 6, when S = T = (py, ..., ps),
the matrix A is partitioned into submatrices Ayp (o, f =1, ...,s). The multiset X
corresponds to the set of 2n ordered pairs (oy, (o, o)) where o} occurs in a diagonal
cell d of 4 and d occurs in the submatrix 4,,. (A) follows from Lemma 4.2, (B) is
true since A,, is a p, X p, submatrix of 4, and (C) follows from (A) and the
symmetry of the submatrix 4;;. [
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Theorem 8.8. Let S = (py,pa, ...,pn) be a composition of 2n and A* be a symmetric
s x s multiple entry matrix on symbols oy, ..., 0, satisfying conditions (OS1), (OS2)
and (OS4). Then A* is a symmetric S-outline Hamiltonian double latin square
if and only if A* satisfies (OS3*). [Thus A* satisfies (OS3) if and only if A* satisfies
(0S3%).]

Proof. Necessity: If A* satisfies (OS3) then, by Theorem 8.2, A* is the (S,S)-
amalgamation of an SHLS(2n), so by Proposition 8.7, 4* satisfies (OS3*).

Sufficiency: Let X be a subset of {1, ...,s} and let Xy be the submultiset of X
consisting of all ordered pairs of 2, occurring with the same multiplicity as in X, of
the form (o, (o, o)) with o€ X. If a symbol o is diagonally confined to X in A*, then
all occurrences of g, in 2 must actually occur in Xy and so, by (A), occur exactly
twice in Xy. Therefore at least 2dec(X) elements in Xy (counting repetitions) contain
symbols which are diagonally even in A4*. If a symbol g4 appears oddly in a cell (o, o)
of A*, then by (C) the symbol (ay, (o, a)) occurs exactly once in . Therefore at least
> ey du(A¥) entries in Xy contain symbols which are diagonally odd in 4*. By (B),
Xx =) ,cx D« Therefore

2dec(X) + Z 4 (A*)<Zy = Z Do

aeX aeX

proving (OS3). O

9. Embedding

If A" is an s’ x ¢ matrix and se {1, ...,s'}, re{l,...,¢} then A[s, ¢] will denote the
s X t submatrix of A’ in its top left-hand corner, i.e. obtained from 4’ by deleting its
last s — s rows and its last 7 — ¢ columns. We shall say that an s x ¢ ordinary matrix
A can be extended to A" if A = A'[s,t]. More generally, we shall say that an s x ¢
unfilled matrix M can be extended to A" if M can be converted into A’[s,?] by
inserting a symbol into each unoccupied cell of M. We shall allow the possibility of
extending an s x ¢ ordinary matrix 4 to an s’ x ¢ multiple-entry matrix A’: this will be
taken to mean that A'[s,7] = A but any cell (i,j) of A’ for which i>s or j>¢ may
contain more than one symbol. Extending an s x ¢ ordinary matrix (or more
generally an s x ¢ unfilled matrix) 4 to an s’ x ¢’ ordinary matrix A’ can be viewed as
an instance of the notion of “embedding” mentioned in Section 6: it amounts to

embedding in 4’ an s x ¢ matrix A such that A[s,7] = 4 and all cells of A outside
Als, 1] are unoccupied.

Let R be an s x ¢ unfilled matrix on the symbols oy, ...,0, and let &,, be the
statement that each symbol occurs at most m times in each row of R and at most m
times in each column of R. We shall call R (i) an unfilled sublatin rectangle (on
a1, ...,0,) if S is true, (i) an unfilled latin square (on oy, ...,0,) if & is true and
s = t = n, (iil) an unfilled subdouble latin rectangle (on o1, ..., a,) if &5 is true. In each
case, the word “unfilled” may be omitted if R has no unoccupied cells, i.e. is an
ordinary matrix. An unfilled subdouble latin rectangle R on gy, ..., g, is acyclic if for
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k =1, ...,n there is no gx-cycle in R, the term “ai-cycle” being defined as in Section
1. The number of occurrences of a symbol ¢ in a matrix R will be denoted by Ng(o)
and, if R is a square matrix, Dg(¢) will denote the number of occurrences of ¢ on its
main diagonal. If R is an unfilled matrix then Nz(p;), Nr(c;) will denote the number
of occupied cells in its ith row and jth column, respectively, and Ug will denote the
number of unoccupied cells in R. We shall say that two cells (i,7), (7,j') of a matrix
are contiguous if either (i =i and j#j') or (i#{ and j =).

Ryser [20] has proved that an s x ¢ sublatin rectangle on symbols ¢y, ..., 7, can be
extended to a latin square of order n if and only if Ng(ox)=s+t—nfork=1,...,n.
Our next result is a similar theorem concerning Hamiltonian double latin squares. It
is essentially equivalent to [17, Theorem 7], but we now present its statement and
proof in the language of the present paper.

Theorem 9.1. Suppose that s,te{l,...,2n— 1} and R is an s x t subdouble latin
rectangle on symbols a1, ...,6,. Then R can be extended to an HLS(2n) if and only if R
is acyclic and for each ke{1, ... n} either

(a) Ngr(ox)>2(s+1t—2n) or
(b) Nr(ox) =2(s+t—2n) and B(R,or) has at least one component of
even order.

Proof. Assume first that R can be extended to an HLS(2n) L on the symbols
61, ...,0n. For ke{l, ..., n} there can be no gx-cycle in R since there is no gx-cycle of
length less than 4n in L. Therefore R must be acyclic. Now let ke {1, ...,n} and let
N(i>s,j>1t) = x, where N(g, 2) denotes the number of cells (7, /) such that L(i,j) =
oy and i, satisfy conditions g, 2. Then, since o occurs twice in each row and twice
in each column of L, we have N(i<s,j>t) = 2(2n — t) — x and hence

Nr(ox) = N(i<s,j<t) =25 — N(i<s,j>1t) =2(s+t—2n) + x. 4)

Let P be a shortest path in the cycle B(L, gx) such that P connects some p,(u>s) to
some ¢,(v>1). Then |V(P)| is even since each edge of B(L, g;) joins some p; to some
¢;. If x = 0 then p,,, ¢, cannot be joined by an edge of B(L, gx) and so (P — p,) — ¢, is
a component of B(R, g;) of even order. From this and (4), it follows that (a) or (b) is
true.

Now assume that R is acyclic and that for each ke{l, ... ,n} either (a) or (b) is
true. Let uy; (<2), vg(<2) be the number of occurrences of gy in the ith row and
Jjth column, respectively, of R. Extend R to an (s + 1) x (¢ 4 1) multiple-entry matrix
A* on gy, ...,0, by making g occur 2 — uy; times in the cell (i, + 1) of A* and
2 — vy, times in the cell (s + 1,/) of A* and Ng(ox) — 2(s + ¢ — 2n) times in the cell
(s+1,t+1)of A*fork=1,...,nand i=1,...,sand j=1,...,¢. Let S, T be the
compositions (1,1,...,1,2n—s) and (1,1, ...,1,2n — 1) of 2n, respectively. We will
show that 4* S, T satisfy (OH1)-(OH4).

It is clear that any symbol o, occurs exactly twice in each of the first s rows of A4*
and, since vx) + vg2 + -+ + Vg = Nr(0x), the number of occurrences of g in the
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(s+ I)th row of A4* is 2(2n —s). Therefore A*, S satisfy (OHI1), and for similar
reasons A%, T satisfy (OH2). Clearly the cell (i,7) of A* contains exactly one symbol
if i<sand j<t. Since uy; + uy; + -+ + uy; is the number ¢ of symbols in the ith row of
R, the cell (i,z+ 1) of A* contains exactly 2n — ¢ symbols for i = 1, ..., s. Similarly,
the cell (s+1,j) of A* contains exactly 2n —s symbols for j=1,...,¢. Since
> i1 Nr(ok) is the total number sz of symbols in R, the cell (s+ 1,7+ 1) of A*
contains exactly st —n.2(s+t—2n) = 2n—s)(2n—t) symbols. Hence 4* S, T
satisfy (OH3). To prove (OH4), let ke{l,...,n} and let Bgr = B(R,a;), B* =
B(A*, 6y), so that Bg = (B* — p,,,) — ¢/11. Since oy occurs exactly twice in each of
the rows 1, ...,s and columns 1, ..., ¢ of A% each vertex of By has degree 2 in B*.
Moreover By contains no cycle since R is acyclic. Therefore each component of By is
a path, each of whose endvertices is adjacent in B* to p,,, or ¢;4;. In case (b), one of
these components is a path P of even order, which must be contained in a path from
Pss1 1O ¢41 in B* because each endvertex of P is adjacent to p,,; or ¢,41 and every
edge of B* joins some p; to some c¢;. In case (a), our definition of A* implies that gy
occurs at least once in its cell (s+ 1,7+ 1) and so p,,c.41 are adjacent in B*. In
both cases, we infer that p_ |, ¢4 are in the same component of B*. Since we have
seen that each component of Bg = B* — p.,; — ¢;41 has a vertex adjacent in B* to
Psi1 OF Cry1, it follows that B* is connected. This proves (OH4).

We have thus shown that A* is an (S, T')-outline Hamiltonian double latin square.
Therefore A* is by Theorem 7.2 the (S, T')-amalgamation of an HLS(2#n) and so R
can be extended to an HLS(2r). O

Corollary 9.2. For se{l,...,2n — 1}, an s x 2n subdouble latin rectangle on n symbols
can be extended to an HLS(2n) if and only if it is acyclic.

Proof. Let se{l,...,2n— 1} and R be an s x 2n subdouble latin rectangle on
symbols o1, ..., ,. Then each o) occurs exactly twice in each row of R. If R can be
extended to an HLS(2n) L then it is acyclic since for each ke{1, ...,n} there is no
ar-cycle of length less than 4n in L and consequently no oj-cycle in R.

Now assume that R is acyclic. Let Q = R[s,2n — 1] and let ke {1, ..., n}. Since R is
acyclic and g occurs exactly twice in each of its rows and at most twice in each of its
columns, B(R, g;) contains no cycle and has no vertex of degree greater than 2 and
P, .-, ps all have degree 2 in B(R,oy). Therefore the component of B(R,ay)
containing ¢, is a path P from some ¢, to some c¢,. Each component of P — ¢, has
even order since each edge of B(R, o) joins some p; to some ¢;; and any component
of P — ¢y, is a component of B(R,ar) — ¢y = B(Q,0%). Therefore B(Q, ;) has a
component of even order provided that V(P)#{ca}, i.e. provided that ¢y, has
non-zero degree in B(R,ay), i.e. provided that oy occurs at least once in the
2nth column of R. Moreover since ¢ occurs twice in each row of R and at most twice
in its 2nth column, Ng(oyx)>2s —2=2(s+ (2n — 1) —2n) and this inequality is
strict unless o4 occurs twice in the last column of R, in which case we have seen that
B(Q, 0x) has a component of even order. Therefore B(Q, o) can by Theorem 9.1 be
extended to an HLS(2n) L. Since each g occurs exactly twice in each row of R and
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in each row of L and since L[s,2n — 1] = Q = R[s,2n — 1], it follows that L[s,2n] = R
and so R can be extended to an HLS(2r). O

We can alternatively prove Corollary 9.2 by a simplified version of the proof of
Theorem 9.1 in which R is extended to an (s + 1) x 2n multiple-entry matrix, which
is proved using Theorem 7.2 to be the (S, T')-amalgamation of an HLS(2n) where
S=(,1,....,1,2n—3s), T=(1,1,...,1).

Corollary 9.3. Suppose that 1<s<2n—1 and R is an s x (2n — s) unfilled acyclic
subdouble latin rectangle on symbols o1, ..., a,. Then R can be extended to an HLS(2n)
if and only if Ng(oy) = 0 for at most Ug symbols ay.

Proof. Assume first that R can be extended to an HLS(2r) L on o, ..., g,. Since the
matrix M = L[s,2n — s] can be extended to L, each o} must satisfy condition (a) or
(b) of Theorem 9.1 with R, ¢ replaced by M, 2n — s. This implies that Nys(oy) >0 for
k=1,...,n, since B(M,o;) would have no edges if Ny (gr) were 0 and thus all
components of B(M,o,) would be single vertices, and thus have odd order.
Therefore Ng(ox) can only be 0 for symbols oy in the Ug cells of M which are
unoccupied in R.

Now assume that |Q|< Ug, where Q is the set of symbols g with Ng(ax) = 0.
Inserting each element of @ into a different one of the Ug unoccupied cells of R will
convert R into an s X (2n — s) unfilled acyclic subdouble latin rectangle S with Ug —
|Q| unoccupied cells and Ng(oy)>0 for k =1, ...,n. Then transform S into an s x
(2n — 5) subdouble latin rectangle 7 on gy, ..., 0, by filling its Ug — |2| unoccupied
cells one by one and, when filling any cell (i,/), using a symbol which is already
present in at most one of the 2n — 2 cells contiguous to (i,/). This rule ensures that
inserting a symbol gy into a cell never completes a ay-cycle, and so T is acyclic. Since
Nr(ox)=Ns(ox)>0 for k=1, ...,n, we can by Theorem 9.1 extend 7', and hence
also R, to an HLS(2rn). O

Corollary 9.4. If s, t are positive integers and s + t <2n then every s X t unfilled acyclic
subdouble latin rectangle on n symbols can be extended to an HLS(2n).

Proof. Let R be an s x ¢ unfilled acyclic subdouble latin rectangle on symbols
61,y ...,0,. Let S be the s x (2n —s) unfilled acyclic subdouble latin rectangle on
o1, ..., 0, such that S[s,7] = R and all cells in the last 2n — s — ¢ columns of S are
unoccupied. If the first row of R contains m distinct symbols and u unoccupied cells
then 2m + u>t since R is subdouble. Since Ng(ox) = 0 for at most n — m symbols oy
and Uszu+s@n—s—0zu+ls+ien—s—0)=n+iu—-t)=n—m, it
follows from Corollary 9.3 that S can be extended to an HLS(2n) and therefore
socan R. O

We note also the following consequence of Corollary 9.3:
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Corollary 9.5. Any n x n unfilled latin square on n symbols can be extended to an
HLS(2n).

An n x n unfilled latin square on symbols a1, ..., d, can be extended to a 2n x 2n
latin square on symbols o1, ..., 0,,. This was observed by Evans [12], and can be
proved by an argument somewhat like the latter part of the proof of Corollary 9.3,
using Ryser’s theorem on extending sublatin rectangles in place of Theorem 9.1. One
wonders whether this observation and Corollary 9.5 can be subsumed in a single
statement in the following way.

Problem 9.6. Can every n x n unfilled latin square on symbols oy, ..., g, be extended
to a 2n x 2n latin square on symbols gy, ..., 02, which becomes an HLS(2r) when
otk 18 replaced by oy for each ke{l,...,n}?

The following statement is contained in [16, Theorem 11]:

Proposition 9.7. Suppose that s,te{l,...,2n} and ue{l,....n} and R is an s x t
unfilled subdouble latin rectangle on symbols a1, ...,0,. Then R can be extended to a
2n x 2n double latin square on symbols oy, ..., 0, without inserting any of oy, ...,0,
into unoccupied cells of R if and only if

(1) Up<st+2su+2tu—2n(s+ 1+ 2u—2n);
(i) Nr(ox)=2(s+1t—2n) for k=1, ...,u;
(i) Nr(p))=2u+t—2nfori=1,...s

@iv) Nr(c))=2u+s—2nforj=1,..,t

I~~~

If s,te{l,...,2n} and s+ t<4n and ue{l,...,n} and R is an sx ¢ unfilled
subdouble latin rectangle on oy, ..., g, then (i)—(iv) are by Proposition 9.7 necessary
conditions for R to be extendible to an HLS(2n) without inserting any of g, ..., 0,
into unoccupied cells of R. Since we are now assuming that s+ t<4n, a further
necessary condition is that R be acyclic. In view of Theorem 9.1, these necessary
conditions seem unlikely to be sufficient when some of the inequalities in (i)—(iv) are
actually equalities, but we propose the following conjecture.

Conjecture 9.8. Suppose that s,te{l,...,2n} and s + t<4n and ue{l, ...,n} and R is
an s x t unfilled acyclic subdouble latin rectangle on symbols o1, ...,0,. If

Ur<st+ 2su+2tu —2n(s + t + 2u — 2n),
Nr(og)>2(s+t—2n) fork=1,...,u,

Nr(p)>2u+t—2n fori=1,...,s
and

Ng(¢))>2u+s—2n forj=1,...t
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then R can be extended to an HLS(2n) without inserting any of o, ...,6, into
unoccupied cells of R.

We now consider embedding problems like the foregoing, with the additional
condition of symmetry imposed. We begin with the following counterpart of
Theorem 9.1:

Theorem 9.9. Suppose that s<2n and R is an s x s symmetric subdouble latin rectangle
on symbols a1, ...,06,. Then R can be extended to an SHLS(2n) if and only if R is
acyclic and for k =1, ...,n we have

(a) DR(0/€)<2?
(b) Nr(ok) + Dr(ax)>4(s —n).

Proof. If R can be extended to an SHLS(2r) L on oy, ...,0, then R is acyclic by
Theorem 9.1 and Dg(ox) <2 for k =1, ...,n by Lemma 4.2. Moreover, if g, occurs
in exactly x cells (i,j) of L with i>s,j>s then the argument leading to (4)
(with s = 1) gives Ng(ox) = 4(s — n) + x, which implies (b) since x>2 — Dg(o%) by
Lemma 4.2.

Now assume that R is acyclic and (a) and (b) hold for k =1, ...,n. Since R is
symmetric, Ng(ox) — Dr(oy) is even and so (a) and (b) imply that Ng(ox)=4(s — n)
for k=1, ...,n. Let uy;(<2) be the number of occurrences of oy in the ith row of R.
Extend R to a symmetric (s + 1) x (s + 1) multiple-entry matrix 4* on a4, ..., 0, by
making o, occur 2 — uy; times in each of the cells (i,s+ 1),(s+ 1,i) of A* and
Ng(ox) —4(s —n) times in the cell (s+ 1,5+ 1) of 4* for k=1,...,n and i=
I,....,s. Let pj=--=ps=1, pa1=2n—s and S be the composition
(P1yo-sps1) = (1,1, ...,1,2n— 5) of 2n. We must verify that 4* and S satisfy
(OS1)—(0S4).

The verification of (OS1) and (OS2) resembles the verification of (OH1)-(OH3)
in the proof of Theorem 9.1, and may be left to the reader. To verify (OS3),
define dec(X) as in (OS3) for every set X<{l,...,s+ 1}. Let @ be the set of
symbols o, which diagonally even in A4* and Q,, be the set of symbols o, for
which Dg(ox) =m and let wy, =|2Q,|. Then {oy,...,0,} =QuQ U2, by
(a) and so wo 4wy +wy =n, w; + 2w, = s and consequently wo =n — s — 1w =
L(pss1 — wr). If o) appears oddly in the cell (s + 1,5+ 1) of A* then Ng(ox) — 4(s —
n) is odd by the definition of 4* and so Ng(oy) is odd and therefore, since Ng(oy) —
Dr(oy) is even, Dg(oy) is odd and so o4 € Q by (a). Therefore gy (A*)<wy. [f o, e ®
then ¢, cannot occur exactly once in any diagonal cell of 4* and so cannot
occur in any diagonal cell of R = 4*[s,s] and consequently Dg(oy) = 0. Therefore
®<=Q and for each o, € ® we have Ng(ar)>4(s —n) by (b) and so g, appears in
the cell (s+ 1,5+ 1) of A*. Therefore dec(X) =0 for every set X ={1,...,s} and
dec(X) <[P <wo = 31 — w1) <3(Pss1 — gsi1 (4¥)) for every set X ={1, ..., s+ 1}.
Moreover, since each diagonal cell of A*[s,s] contains exactly one symbol,
q.(A*) =1 =p, for o =1,...,s. Hence dec(X)<1> _\ (py — q.(4*)) for every
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set X<{l,...,s+1} and (OS3) is verified. To verify (OS4), suppose that
F(A* o) is disconnected. Then it has a component C which does not
include p,. ;. Since ox occurs exactly twice in each of the first s rows of A*,
each of py,...,p, is incident with exactly two edges (one of which may be a
loop) in F(A*,04). Therefore C is either a cycle or a path augmented by adding
two loops, one incident with each of its endvertices. In each of these cases, it is
easily seen that A*[s,s] = R contains a oy-cycle, contradicting the hypothesis that
it is acyclic.

We conclude that 4* is a symmetric S-outline Hamiltonian double latin square.
Therefore A* is by Theorem 8.2 the (S, S)-amalgamation of an SHLS(2#r) and so R
can be extended to an SHLS(2n). O

Corollary 9.10. Suppose that R is an n x n symmetric unfilled acyclic subdouble latin
rectangle on symbols o1, ..., 6, with d unoccupied diagonal cells and 2e unoccupied off-
diagonal cells. Then R can be extended to an SHLS(2n) if and only if Dr(ox) <2 for
k=1,...,nand Ng(ox) = 0 for at most d+e symbols oy.

Proof. Assume first that R can be extended to an SHLS(2xn) L on oy, ...,0,.
Moreover Dg(ox)<2 for k =1, ...,n by Lemma 4.2. Since the matrix M = L{n,n}
can be extended to L, each o, must satisfy condition (b) of Theorem 9.9 with R, s
replaced by M,n. Since Dy (or) <Ny (ok), this implies that Ny (ox)>0 for k =
1, ...,n. Therefore Ng(oy) can only be 0 for symbols o in the d + 2e cells of M =
L[n,n] which are unoccupied in R, and there are at most d + e such symbols since L
i1s symmetric.

Now assume that Dg(o;)<2 for k=1,...,n and |Q|<d+e, where Q is
the set of symbols g, with Ng(gx) = 0. Convert R into an n x n symmetric unfilled
acyclic subdouble latin rectangle S with Ng(ox)>0 for k= 1,...,n by inserting
each oy €Q into either one unoccupied diagonal cell of R or two unoccupied off-
diagonal cells (i,jk), (k,ix) of R. Then transform S into an n x n symmetric
subdouble latin rectangle 7 on oy,...,0, by a succession of operations each
of which either (i) inserts into an unoccupied diagonal cell (i,7) a symbol
which is already present in at most one of the 2n — 2 cells (i,j) (j#i), (j,i) (j#i)
or (i) inserts into each of two unoccupied off-diagonal cells (i,j), (f,i) a symbol
which is already present in at most one of the 2n — 2 cells contiguous to (i,j). If
ke{l,...,n} then, since T is a symmetric subdouble latin rectangle, it is easily seen
that any ox-cycle in T which included a diagonal cell (i, ) would have to include both
another diagonal cell and a cell (i,j) (j#i7). Moreover any oi-cycle in T which
included a cell (i,j) would have to include two cells contiguous to (i,j).
Consequently, neither of procedures (i), (il) can complete a g-cycle and so T is
acyclic. Since Dg(ag;) <2 and consequently Dg(oy) <2 for k =1, ..., n, procedure (i)
ensures that Dp(ox)<2 for k=1,...,n. Moreover Nr(ox)=>Ngs(ox)>0 for k=
1, ...,n. Therefore, by Theorem 9.9, we can extend 7, and hence also R, to an
SHLS(2n). O
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Corollary 9.11. For s<n, an s X s symmetric unfilled acyclic subdouble latin rectangle
R on symbols o1, ...,0, can be extended to an SHLS(2n) if and only if Dr(ox) <2 for
k=1,...,n.

Proof. If R can be extended to an SHLS(2n) then Dg(ox)<2 for k=1, ...,n by
Lemma 4.2. Now assume that Dg(gx)<2 for k=1,...,n. Let S be the nxn
symmetric unfilled acyclic subdouble latin rectangle on gy, ..., o, such that Sls, s] =
R and all cells of S outside S[s, s] are unoccupied. This S has at least one unoccupied
diagonal cell and at least 2n — 2 unoccupied off-diagonal cells. Consequently, by
Corollary 9.10, S can be extended to an SHLS(2#n) and therefore so can R. [
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