
journal of complexity 15, 128�147 (1999)

Efficient Algorithms for Approximate String Matching
with Swaps*

Dong Kyue Kim

Department of Computer Engineering, Seoul National University, Seoul 151-742, Korea

Jee-Soo Lee

Department of Computer Science, Korea National Open University, Seoul 110-791, Korea

and

Kunsoo Park and Yookun Cho

Department of Computer Engineering, Seoul National University, Seoul 151-742, Korea

Received June 26, 1997

Most research on the edit distance problem and the k-differences problem con-
sidered the set of edit operations consisting of changes, insertions, and deletions. In
this paper we include the swap operation that interchanges two adjacent characters
into the set of allowable edit operations, and we present an O(t min(m, n))-time
algorithm for the extended edit distance problem, where t is the edit distance
between the given strings, and an O(kn)-time algorithm for the extended k-differ-
ences problem. That is, we add swaps into the set of edit operations without
increasing the time complexities of previous algorithms that consider only changes,
insertions, and deletions for the edit distance and k-differences problems. � 1999

Academic Press

1. INTRODUCTION

Given two strings A[1 } } } m] and B[1 } } } n] over an alphabet 7, the edit
distance between A and B is the minimum number of edit operations needed

Article ID jcom.1998.0497, available online at http:��www.idealibrary.com on

128
0885-064X�99 �30.00
Copyright � 1999 by Academic Press
All rights of reproduction in any form reserved.

* This research was supported by KOSEF Grant 981-0925-128-2.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82201304?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

to convert A into B. The edit distance problem is to find the edit distance
between A and B. Most common edit operations are the following.

(i) change: replace one character of A by another single character of B.

(ii) deletion: delete one character from A.

(iii) insertion: insert one character into B.

These three edit operations are the ones commonly used in applications
[EGGI92, SK83,WF74, WM92], though only insertions and deletions are
considered in some work [My86]. A discrepancy between A and B that is
corrected by an edit operation is called a difference.

The problem of string matching with k-differences (or the k-differences
problem) is defined as follows: Given a pattern A of length m, a text B of
length n, and an integer k, find all positions of B where A occurs with at
most k differences.

Many algorithms have been developed for the edit distance problem and
the k-differences problem [BN96, GG88]. When the edit distance t
between A and B is small, an O(t min(m, n))-time algorithm due to
Ukkonen [Uk85] is the best one for the edit distance problem. When the
given difference k is small, O(kn)-time algorithms due to Landau and
Vishkin [LV89], Galil and Park [GP90], and Ukkonen and Wood
[UW93] are best for the k-differences problem.

In this paper we consider an additional edit operation:

(iv) swap: interchange two adjacent characters in A.

The swap operation was first considered in [LW75, Wa75] and it is a spe-
cial case of a reversal which is one of common genome rearrangements
[HP95]. Lowrance and Wagner [LW75] proposed an O(mn)-time algo-
rithm for the extended edit distance problem including the swap operation.
For the k-differences problem the swap operation has never been con-
sidered. The k-differences problem including the swap operation will be
called the extended k-differences problem.

Ukkonen [Uk85] considered transpositions in the edit distance problem.
Galil and Park [GP90] also considered transpositions in the k-differences
problem. A transposition is a correction of a difference that two adjacent
characters in A correspond to two adjacent characters in B. However, the
swap operation is more general than a transposition because deletions may
occur before a swap and insertions may occur after a swap, but a transposi-
tion must not accompany deletions or insertions.

Example 1. Let A=abcdeefg and B=ahceegif. The edit distance
between A and B is four, as shown in Fig. 1a: The character b in A is

129APPROXIMATE STRING MATCHING WITH SWAPS

FIG. 1. The edit distances between A and B.

changed to h in B, d in A is deleted, f and g in A are swapped to g and
f in B, and i in B is inserted. However, if only transpositions (but not
swaps) are allowed, a transposition cannot be applied to fg in A because
g and f in B are not adjacent. Hence the edit distance is five, as shown in
Fig. 1b.

We present efficient algorithms for the extended edit distance problem
and the extended k-differences problem. To compute the edit distance t
between A and B, our algorithm takes O(t min(m, n)) time, which is the
same as that of Ukkonen [Uk85]. Our algorithm for the extended k-dif-
ferences problem also takes O(kn) time as in [GP90, LV89, UW93]. That
is, we add swaps into the set of edit operations without increasing the time
complexities of [GP90, LV89, Uk85, UW93] that consider only changes,
insertions, and deletions for the edit distance and k-differences problems.

The paper is organized as follows. In the next section we describe the
tables to compute the edit distance between two strings, i.e., the D-table,
the CD-table, and the H-table. In Section 3 we compute the CH -table for
the extended edit distance problem, and in Section 4 we present an efficient
algorithm for the extended k-differences problem.

2. PRELIMINARIES

In this section we describe well-known algorithms for computing edit
distances.

2.1. D-Table and CD-Table

We will describe the D-table and the CD-table for the edit distance
problem between two strings A and B when the set of edit operations con-
sists of change, deletion, and insertion.

Wagner and Fischer [WF74] devised an algorithm that takes O(mn)
time to compute the D-table. Let D(i, j), 0�i�m and 0� j�n, be the edit
distance between A[1 } } } i] and B[1 } } } j]. An entry D(i, j) of the D-table

130 KIM ET AL.

is determined by the three entries D(i&1, j&1), D(i&1, j), and D(i, j&1).
The recurrence for the D-table is as follows: For all 1�i�m and 1� j�n,

D(i, j)=min[D(i&1, j&1)+$ij , D(i&1, j)+1, D(i, j&1)+1],

where $ij=0 if A[i]=B[j]; $ij=1 otherwise.
Ukkonen [Uk85] proved that D(i, j)=D(i&1, j&1) or D(i, j)=

D(i&1, j&1)+1 in the D-table and proposed the CD-table which
provided a more compact way to store the information of the D-table.

Let D-diagonal d be the entries D(i, j) such that d= j&i. For each
D-diagonal we store only the positions where the values increase. For a
D-diagonal d and a difference e, the entry CD(e, d) of the CD-table is the
largest column j such that D(j&d, j)=e. In other words, the entries of
value e on D-diagonal d end at column CD(e, d). Note that CD(e, d)&d is
the row of the last entry on D-diagonal d whose value is e.

The CD-table is computed by the algorithm Make-CD in Fig. 2, which is
essentially Ukkonen's algorithm [GP90, Uk85]. We add special characters
*a and *b (not in 7) at the end of A and B, respectively, to simplify
codes.

2.2. H-Table

In this subsection we describe the H-table for the extended edit distance
problem [LW75].

Wagner [Wa75] showed that the extended edit distance problem is in
general NP-complete and most of the restricted cases can be solved in
polynomial time. Lowrance and Wagner [LW75] considered a restricted
case of the problem, i.e., the cost of two swaps is at least as large as the
sum of costs of an insertion and a deletion, and computed the edit distance
in O(mn) time by constructing the H-table. When we count the number of

FIG. 2. Algorithm Make-CD for constructing the CD-table.

131APPROXIMATE STRING MATCHING WITH SWAPS

edit operations, the restriction above holds, and thus we can use the
H-table. Let H(i, j), 0�i�m and 0� j�n, be the edit distance between
A[1 } } } i] and B[1 } } } j] when swaps are added to the set of edit operations.

For 1�i�m and 1� j�n, let pij be the largest position less than i such
that A[pij]=B[j] and qij be the largest position less than j such that
A[i]=B[qij]. Such positions pij and qij are called the last-positions for
H(i, j).

To compute an entry H(i, j) of the H-table, we need the last-positions pij

and qij [LW75]. When we apply a swap at H(i, j), we should do the
following (see Fig. 3):

(i) delete the characters from pij+1 to i&1 in A,

(ii) swap A[pij](=B[j]) and A[i](=B[q ij]), and

(iii) insert the characters from qij+1 to j&1 in B.

Let d-length :ij (resp. i-length ;ij) be the number of deleted (resp. inserted)
characters to apply a swap at H(i, j), i.e., :ij=i& pij&1 and ; ij= j&
qij&1. Then the swap-cost s(i, j) is

s(i, j)=H(pij&1, qij&1)+:ij+; ij+1.

The recurrence used in the H-table is

H(i, j)=min[H(i&1, j&1)+$ij , H(i&1, j)+1, H(i, j&1)+1, s(i, j)].

(1)

If s(i, j) is less than min[H(i&1, j&1)+$ij , H(i&1, j)+1, H(i, j&1)+1],
then we say that a swap occurs at H(i, j).

3. THE EXTENDED EDIT DISTANCE PROBLEM

We will present a more efficient algorithm for the extended edit distance
problem. To achieve O(t min(m, n)) time complexity, our goal is to con-
struct the CH -table of two strings A[1 } } } m] and B[1 } } } n] when every
edit operation has a unit cost. The CH-table is to the H-table what the
CD -table is to the D-table. In this section we first show some properties of
the H-table. Then we describe where to consider swaps and how to find the
occurrences of swaps in the CH -table.

3.1. Properties of the H-Table
We will define three types of swap operations and prove the

diagonalwise monotonicity property in the H-table. When a swap occurs,

132 KIM ET AL.

FIG. 3. The swap-cost s(i, j) of a swap operation applying at H(i, j).

deletions and�or insertions may occur between two swapped characters as
Fig. 3 suggests. However, Lemma 1 shows that in case of unit costs a swap
cannot accompany both deletions and insertions. Hence, we no longer need
to consider those swaps that accompany both deletions and insertions.
(Changes are at least as cheap as such swaps.)

Lemma 1. Let :ij be the d-length and ;ij be the i-length for H(i, j). If
:ij>0 and ;ij>0 then s(i, j)�H(i&1, j&1)+1.

Proof. Let pij and qij be the last-positions for H(i, j). By recurrence (1),
H(x&1, y&1), H(x&1, y), and H(x, y&1) are larger than or equal to
H(x, y)&1 for every 1�x�m and 1� y�n. Hence, H(pij&1, qij&1)�
H(i&1, j&1)&max[i& pij , j&qij]. Since :ij=i& pij&1 and ;ij= j&
qij&1, we have

s(i, j)=H(pij&1, qij&1)+:ij+;ij+1

�H(i&1, j&1)&max[:ij+1, ;ij+1]+:ij+;ij+1

=H(i&1, j&1)+min[:ij , ;ij] (:ij>0, ;ij>0)

�H(i&1, j&1)+1. K

By Lemma 1 there are three types of swaps occurring at H(i, j):

(i) transposition: the case when pij=i&1 and qij= j&1. A[i&1]
and A[i] are swapped to B[j&1] and B[j].

(ii) d-swap: the case when pij<i&1 and qij= j&1. After the charac-
ters A[pij+1 } } } i&1] are deleted, A[pij] and A[i] are swapped to
B[j&1] and B[j].

133APPROXIMATE STRING MATCHING WITH SWAPS

FIG. 4. Three types of swaps.

(iii) i-swap: the case when pij=i&1 and qij< j&1. A[i&1] and
A[i] are swapped to B[qij] and B[j] and then the characters B[qij+
1 } } } j&1] are inserted between them.

Example 2. Figure 4 shows three types of swaps. The characters c and
e in A are swapped to e and c in B.

Lemma 2 means diagonalwise monotonicity of the H-table, which
implies that we can make the CH -table for a H-table as we did the
CD -table for a D-table.

Lemma 2. H(i, j)=H(i&1, j&1) or H(i, j)=H(i&1, j&1)+1 for
every i�1 and j�1.

Proof. We add the case of swaps into Ukkonen's proof [Uk85] for the
D-table. Since H(i, j) is always an integer, it suffices to show that H(i, j)
&1�H(i&1, j&1)�H(i, j). Recurrence (1) directly implies that H(i, j)
cannot be larger than H(i&1, j&1)+1. Hence, we have H(i, j)&1
�H(i&1, j&1).

We will prove H(i, j)�H(i&1, j&1) only for the case of swaps. Let :ij

be the d-length and ;ij be the i-length for H(i, j). Recall that s(i, j)�
H(i&1, j&1)+min[:ij , ;ij] in the proof of Lemma 1. Since a swap that
goes with both insertions and deletions cannot occur by Lemma 1,
min[:ij , ;ij]=0. Hence we have s(i, j)�H(i&1, j&1), and therefore
H(i, j)�H(i&1, j&1) when a swap occurs at H(i, j). K

Corollary 1. If a swap occurs at H(i, j), then H(i, j)=H(i&1, j&1).

Proof. If a swap occurs at H(i, j), swap-cost s(i, j) must be less than
the cost of a change applied at H(i, j). That is, s(i, j)<H(i&1, j&1)+1.
By Lemma 2, we have H(i, j)=s(i, j)=H(i&1, j&1). K

3.2. Swap-Positions in the CH-Table

We will construct the CH -table in the rest of Section 3. We first define
the CH-table and then describe where to consider swap operations during
the computation of the CH -table.

134 KIM ET AL.

Definition 1. Let H-diagonal d be the entries H(i, j) such that
d= j&i. For a H-diagonal d and a difference e, the entry CH(e, d) of the
CH -table is the largest column j such that H(j&d, j)=e.

We describe how to compute the CH -table. Consider the computation of
an entry CH(e, d). Assume by induction that CH(e&1, d&1), CH(e&1, d),
and CH(e&1, d+1) were computed correctly. This means that in the
H-table the entries of value e&1 reach column CH(e&1, d&1) on
H-diagonal d&1, CH(e&1, d) on H-diagonal d, and CH(e&1, d+1) on
H-diagonal d+1. Let c be the maximum of CH(e&1, d&1)+1,
CH(e&1, d)+1, and CH(e&1, d+1). H(c&d, c) gets value e from one of
the last entries of value e&1 on H-diagonal d&1, d, and d+1 by one of
insertion, change, and deletion, respectively. The entries of value e on
H-diagonal d continue to the smallest column c$�c such that
A[c$&d+1]{B[c$+1], and thus CH(e, d)=c$.

Now we consider the swap operation. If c$=c (i.e., A[c&d+1]{
B[c+1]) then H(c&d+1, c+1) would get value e+1 without swaps.
However, if a swap occurs at H(c&d+1, c+1), the value of H(c&d+1,
c+1) can still be e. In this case, the entries of value e on H-diagonal d
continue to the smallest column c">c$ such that A[c"&d+1]{
B[c"+1], and thus CH(e, d)=c". Hence, in the computation of CH(e, d)
we must check whether any swaps occur at H(c&d+1, c+1) or not.

Definition 2. At the beginning of the computation of CH(e, d), let
ci = CH(e&1, d&1)+1, ct=CH(e&1, d)+1, cd=CH(e&1, d+1), and
c=max[ci , ct , cd]. The positions u=c&d+1 and v=c+1 are called the
swap-positions for CH(e, d).

There are three types of swaps occurring at H(u, v):

(i) The case when c=ct . Characters A[u&1] and B[v&1] have
been changed to get H(u&1, v&1). Hence we need to consider an
occurrence of a transposition at H(u, v).

(ii) The case when c=cd . A[u&1] has been deleted to get H(u&1,
v&1), and thus we need to consider an occurrence of a d-swap at H(u, v).

(iii) The case when c=ci . B[v&1] has been inserted to get H(u&1,
v&1), and thus we need to consider an occurrence of an i-swap at H(u, v).

To determine CH(e, d), we need to compute the swap-cost s(u, v) for the
three cases above. By Lemma 3, however, we need to compute s(u, v) only
when c=ct . Proofs of Lemmas 3, 5�8 will be given in the appendix.

Lemma 3. Let u and v be the swap-positions for CH(e, d).

135APPROXIMATE STRING MATCHING WITH SWAPS

(a) If a d-swap occurs at H(u, v) then c=cd=ct .

(b) If an i-swap occurs at H(u, v) then c=ci=ct .

3.3. D-Swap and i-Swap Conditions

We now describe how to find the occurrences of swaps in the CH -table.
We can easily find a transposition occurring at H(u, v) for swap-positions
u=c&d+1 and v=c+1. Since a transposition must come from
H-diagonal d, it occurs at H(u, v) if A[u]=B[v&1], A[u&1]=B[v],
and c=ct [GP90, Uk85]. In this subsection we will describe the cases of
d-swaps and i-swaps in the computation of CH(e, d).

To find whether or not a swap occurs, we need to compute the swap-
cost s(u, v), which in turn requires that we know last-positions puv and quv .
Indeed, Lowrance and Wagner's algorithm [LW75] maintains all last-
positions as it computes the H-table. However, a difficulty in the CH-table
is that all positions of A and B may not appear in the CH -table. Instead
of maintaining last-positions, we will find occurrences of swaps using
two notions: ``change-dominated'' entries and ``effectiveness'' of insertions�
deletions. Informally, an entry H(i, j) is change-dominated if the value
H(i, j)=e is given by only a change operation in recurrence (1) (and not
by any of a deletion, an insertion, a swap, and a match). A d-effectiveness
(resp. i-effectiveness) indicates that a sequence of deletions (resp. insertions)
takes place in A (resp. in B).

We now give formal definitions of the two notions. We first define two
kinds of diagonals in the CH -table. Let A-diagonal x be the entries CH(e, d)
such that e+d=x and B-diagonal y be the entries CH(e, d) such that
e&d= y. See Fig. 5. Since the value of an entry in the CH-table is a posi-
tion of B, if CH(e, d)= j then we say that the position j of B appears on
B-diagonal e&d. If i=CH(e, d)&d then we say that the position i of A
appears on A-diagonal e+d.

Definition 3. An entry H(i, j) of the H-table is change-dominated if

H(i, j)=H(i&1, j&1)+1<min[H(i&1, j)+1, H(i, j&1)+1, s(i, j)].

When H(i, j) is change-dominated, we say that position i is change-
dominated on A-diagonal e+d and position j is change-dominated on
B-diagonal e&d, where e=H(i, j) and d= j&i.

Definition 4. Let u and v be swap-positions in the computation of
CH(e, d).

(a) A position p(�u&2) in A is d-effective on A-diagonal e+d if
every position from p to u&2 in A appears on A-diagonal e+d.

136 KIM ET AL.

FIG. 5. The case when position 3 of A is d-effective on A-diagonal e+d in the computa-
tion of CH(e, d)=CH(5, &3) between two strings A=abcdddefg and B=ahecfh.

(b) A position q(�v&2) in B is i-effective on B-diagonal e&d if
every position from q to v&2 in B appears on B-diagonal e&d.

Galil and Park [GP90] proposed a property of A-diagonals in Lemma
4. Based on Lemma 4, we will maintain some of the appeared positions on
A-diagonals and B-diagonals.

Lemma 4 [GP90]. The positions of A (resp. B) that appear on the same
A-diagonal (resp. B-diagonal) are strictly increasing in the CH -table until the
end position of A (resp. B).

We will describe some properties related with d-effectiveness and
i-effectiveness in Lemmas 5 and 6. Lemma 5 is used several times in proofs
and by Lemma 6 we can check effectiveness in constant time.

Lemma 5. (a) A position p in A is d-effective on A-diagonal e+d if
and only if H(u&1&i, v&1)=e&i and H(u&i, v)=e&i+1 for every
1�i�u&1& p.

(b) A position q in B is i-effective on B-diagonal e&d if and only if
H(u&1, v&1& j)=e& j and H(u, v& j)=e& j+1 for every 1� j�
v&1&q.

Lemma 6. (a) A position p in A is d-effective on A-diagonal e+d if and
only if CH(e&a, d+a)=c where a=u&1& p.

(b) A position q in B is i-effective on B-diagonal e&d if and only if
CH(e&b, d&b)=q where b=v&1&q.

137APPROXIMATE STRING MATCHING WITH SWAPS

Lemma 7 states a necessary and sufficient condition for occurrences of
swaps. Let puv and quv be the last-positions for H(u, v). Lemma 7 shows
that a d-swap or an i-swap occurs when puv or quv is effective and
H(puv , quv) is change-dominated. (See Fig. 6.)

Lemma 7. Suppose that c=ct and A[u]{B[v].

(a) A d-swap occurs at H(u, v) if and only if puv is d-effective on
A-diagonal e+d, quv=v&1, and H(puv , quv) is change-dominated.

(b) An i-swap occurs at H(u, v) if and only if puv=u&1, quv is i-effec-
tive on B-diagonal e&d, and H(puv , quv) is change-dominated.

By Lemma 7, we can check whether a d-swap or an i-swap occurs or not
if we maintain last-positions. However, in our algorithm we maintain
change-dominated positions instead of last-positions, by which we can save
space. Lemma 8 shows another condition that can replace the condition of
Lemma 7. Moreover, this new condition can be checked in constant time
using the following arrays.

We use two arrays LA and LB of size (2t+1) each, where t is the edit
distance between A and B. Array LA will be used for applying d-swaps and
array LB for i-swaps. In the computation of entry CH(e, d), we define
arrays LA and LB as follows. An element LA[x] is p if and only if p is the
largest position less than cd&d in A such that p is change-dominated and
appears on A-diagonal x=e+d. An element LB[y] is q if and only if q is
the largest position less than ci in B such that q is change-dominated and
appears on B-diagonal y=e&d. (The largest position that appears on
A-diagonal e+d (resp. B-diagonal e&d) is cd&d&1 (resp. ci&1). (See
(F3) in the appendix.)

Lemma 8. Let p=LA[e+d] and q=LB[e&d].

FIG. 6. The case when a d-swap or an i-swap occurs at H(u, v).

138 KIM ET AL.

(a) A[p]=B[v], A[u]=B[v&1], and p is d-effective on
A-diagonal e+d if and only if puv is d-effective on A-diagonal
e+d, quv=v&1, and H(puv , quv) is change-dominated.

(b) A[u]=B[q], A[u&1]=B[v], and q is i-effective on B-diagonal
e&d if and only if puv=u&1, quv is i-effective on B-diagonal e&d, and
H(puv , quv) is change-dominated.

Theorem 1. Suppose that c=ct and A[u]{B[v]. Let a=u&1& p and
b=v&1&q when p=LA[e+d] and q=LB[e&d].

(a) A d-swap occurs at H(u, v) if and only if A[p]=B[v],
CH(e&a, d+a)=c, and A[u]=B[v&1].

(b) An i-swap occurs at H(u, v) if and only if A[u]=B[q],
CH(e&b, d&b)=q, and A[u&1]=B[v].

Proof. It follows immediately from Lemmas 6, 7, and 8. K

3.4. An Extended Edit Distance Algorithm
We present algorithm Make-CH in Fig. 7 for constructing the CH -table.

Algorithm Make-CH works as algorithm Make-CD does except the parts
for swap operations. We initialize the CH -table and arrays LA and LB. For
each H-diagonal d and a difference e, we compute c. If c=ct and
A[u]{B[v], then we determine whether a swap occurs or not by
Theorem 1. We set a=min[e, u&1& p] and b=min[e, v&1&q] because
u&1& p or v&1&q may be larger than e, in which case no swaps occur
at H(u, v) because swap-cost s(u, v)>e. If one of a transposition (at line
11), a d-swap (at line 12), and an i-swap (at line 13) occurs, we increase
c. Then we follow the procedure of Make-CD and compute CH(e, d).

To perform CH(e, d) � c$ at line 18, it must be guaranteed that
H(c$+1&d, c$+1)=e+1. Since other cases are simple, we only show that
if there is at least one match at line 17 (i.e., c$>c and A[c$&d]=B[c$])
then no swaps occur at H(c$+1&d, c$+1). Let u$=c$+1&d and v$=
c$+1. Since A[u$&1]=B[v$&1], a transposition cannot occur at
H(u$, v$). In order for a d-swap or an i-swap to occur, a sequence of dele-
tions or insertions must take place before the swap as shown in Fig. 6. We
claim that H(u$&2, v$&1)>e&1 and H(u$&1, v$&2)>e&1. Otherwise,
c should have been at least c$(=v$&1) at lines 5 and 6, which is a con-
tradiction because c$>c. Thus, H(u$&1, v$&1) cannot get value e by a
deletion or an insertion. Therefore, a d-swap or an i-swap cannot occur at
H(u$, v$).

After the computation of CH(e, d)=c$, we update arrays LA and LB. If
c=ct and c>max[cd , ci] then H(c&d, c) is change-dominated by Defini-
tions 1, 2, and 3 and Corollary 1. If c$=c then positions c&d and c appear
on A-diagonal e+d and B-diagonal e&d, respectively. Hence, in case of

139APPROXIMATE STRING MATCHING WITH SWAPS

FIG. 7. Algorithm Make-CH for constructing the CH-table.

c$=ct and c$>max[cd , ci], we set LA[e+d]=c$&d and LB[e&d]=c$
(at lines 20 and 21).

Example 3. Let A=abcdddefg and B=ahecfh. Figure 8 shows the
H-table and the CH -table of A and B. The extended edit distance between
A and B is six. Consider the computation of CH(5, &3). We have ct=
CH(4, &3)+1=3, cd=CH(4, &2)=3, and ci=CH(4, &4)+1=2. Since
c=max[ct , cd , ci]=3, u=c&d+1=7 and v=c+1=4.

v An occurrence of a d-swap. CH(5, &3) is on A-diagonal e+d=2.
Consider CH(2, 0). Because CH(1, 0)+1=3 and max[CH(1, &1)+1=2,
CH(1, 1)=2]<3, position 3 (=CH(2, 0)&0) of A is change-dominated
on A-diagonal 2. Hence LA[2] has position p=3. Let a=u&1& p=3.
Since CH(e&a, d+a)=CH(2, 0)=3, A[3]=B[4]=c, and A[7]=
B[3]=e, we have found a d-swap occurring at H(7, 4) by Theorem 1.

140 KIM ET AL.

FIG. 8. The H-table and the CH-table of strings abcdddefg and ahecfh.

Since swap-cost s(7, 4)=H(2, 2)+(7&3&1)+1=5, we have H(7, 4)=
s(7, 4)=5.

v The computation of CH(5, &3). Since we found a d-swap, we
increase c. Then c$=4. Because there is a continuing match at column 5 on
H-diagonal &3 (i.e., A[8]=B[5]=f), we increase c$. Since there is a mis-
match at column 6 (i.e., A[9]{B[6]), the value of CH(5, &3) becomes 5.

v Updating LA and LB. After we compute CH(5, &3)=c$=5, we
check the conditions to update LA and LB. Since c$>ct=cd=3 in this
case, we need not update elements LA[2] and LB[8].

Theorem 2. Algorithm Make-CH solves the extended edit distance
problem in O(t min(m, n)) time, where t is the edit distance between A and B.

Proof. Algorithm Make-CD takes O(t min(m, n)) time and O(t2) space.
To check whether or not a swap occurs, it takes constant time to perform
lines 7�15 and lines 19�22 for each entry in the CH -table. Hence algorithm
Make-CH also takes O(t min(m, n)) time. K

4. THE EXTENDED k-DIFFERENCES PROBLEM

In this section we present an algorithm for the extended k-differences
problem. Landau and Vishkin [LV89], Galil and Park [GP90], and
Ukkonen and Wood [UW93] proposed O(kn)-time algorithms for the
k-differences problem when the set of edit operations consists of changes,

141APPROXIMATE STRING MATCHING WITH SWAPS

deletions, and insertions. Here we do not mention preprocessing because
preprocessings are all different in [GP90, LV89, UW93] and preprocessing
time is absorbed into O(kn) when n is sufficiently larger than m.

We can apply the method used in Section 3 to any of the three algo-
rithms. The algorithms can proceed A-diagonal by A-diagonal since the
maximal difference k is given. There are (n&m+1+k) A-diagonals in the
CH -table, but we need one variable LA only for all A-diagonals because
the CH-table is computed A-diagonal by A-diagonal.

We maintain array LB of size (2k+1). When we compute an entry
CH(e, x&e) on A-diagonal x, we need the element LB[y] such that y=
2e&x. Since 0�e�k, we should keep the positions of B associated with
the entries on B-diagonal y such that &x� y�2k&x. Since (2k+1)
B-diagonals are needed for each A-diagonal, let b= y mod(2k+1). Then
we can use LB[b] as the array LB in the algorithm for the extended
k-differences problem. After the computation of CH(k, x&k) on each
A-diagonal x, we do not need LB[2k&x] any more and need
LB[&(x+1)]. Let b$=(2k&x) mod(2k+1)=(&x&1) mod(2k+1).
Hence we reset variable LA and element LB[b$] in order to use them for
the next A-diagonal x+1 and B-diagonal &x&1.

Example 4. Figure 9 shows the CH -table when k=3 and there are 18
A-diagonals. The dotted parallelogram is the region where the entries of
the CH-table exist. Consider the computation of the entries on A-diagonal
x=10. Since &10=&x� y�2k&x=&4, we maintain array LB for
B-diagonals in the range of [&10, &4]. After the computation of CH(3, 7),
we reset LA and LB[3].

FIG. 9. The CH -table and array LB for the extended k-differences problem.

142 KIM ET AL.

Theorem 3. The extended k-differences problem can be solved in O(kn)
time, not including preprocessing.

5. CONCLUSION

We have presented efficient algorithms for the extended edit distance and
k-differences problems. By applying dynamic programming techniques with
the CH -table, we added swaps into the set of edit operations without
increasing the time complexities of previous algorithms that consider only
changes, insertions, and deletions for the edit distance and k-differences
problems. It will be interesting to consider swaps in various applications of
approximate string matching.

APPENDIX: PROOFS OF LEMMAS

First we list some facts during the computation of CH(e, d) that will be
used in the following proofs.

(F1) H(c&d, c)=e.

(F2) u=c&d+1 and v=c+1.

(F3) The largest position of A (resp. B) that appears on A-diagonal
e+d (resp. B-diagonal e&d) is CH(e&1, d+1)&(d+1)=cd&(d+1)
(resp. CH(e&1, d&1)=ci&1).

(F4) :uv=u& puv&1 for d-length :uv and last-position puv .

Facts (F1) and (F2) directly come from Definition 2. Fact (F3) follows
from Lemma 4 because the largest appearing position in A (resp. B)
corresponds to the previous entry on A-diagonal e+d (resp. B-diagonal
e&d). Fact (F4) is the relation between a last-position and its d-length.

Proof of Lemma 3. In the following proofs, we will prove (a) only
because (b) is analogous. If a d-swap occurs at H(u, v), then c=cd . Hence
c=cd�ct .

Suppose that cd>ct . Since cd=CH(e&1, d+1) and ct=
CH(e&1, d)+1, we have

H(cd&(d+1), cd)=e&1 (2)

and H(ct&d, ct)=e by Definition 1. Consider H(ct&(d+1), ct). By
recurrence (1), H(ct&(d+1), ct)�H(ct&d, ct)&1=e&1. Since cd>ct ,
H(ct&(d+1), ct)�H(cd&(d+1), cd)=e&1 by Lemma 2. Hence

H(ct&(d+1), ct)=e&1. (3)

143APPROXIMATE STRING MATCHING WITH SWAPS

From (2) and (3), the value of every entry from H(ct&(d+1), ct) to
H(cd&(d+1), cd) on H-diagonal d+1 must be e&1. Note that
H(u&2, v&1)=H(cd&(d+1), cd) by (F2) and cd=c. Since cd>ct , the
previous entry H(u&3, v&2) on H-diagonal d+1 has value e&1, too.
The swap-cost s(u, v) of the d-swap occurring at H(u, v) is

s(u, v)=H(puv&1, v&2)+:uv+1

�[H(u&3, v&2)&(u&3& puv+1)]+(u&1& puv)+1

=H(u&3, v&2)+2=H(u&2, v&1)+2�H(u&1, v&1)+1.

Because swap-cost s(u, v) is at least as large as the cost of a change occur-
ring at H(u, v), a d-swap cannot occur at H(u, v) and this is a contradiction.
Therefore, we have cd=ct when a d-swap occurs at H(u, v). K

Proof of Lemma 5. (If) Since H(u&1&i, v&1)=e&i and H(u&i, v)
=e&i+1, we have CH(e&i, d+i)=v&1 for every 1�i�u&1& p by
Definition 1. See Fig. 5. Hence every position from p to u&2 in A appears
on A-diagonal e+d, and thus p is d-effective on A-diagonal e+d.

(Only if) If p is d-effective, positions p, ..., u&2 in A appear on
A-diagonal e+d. To show H(u&1&i, v&1)=e&i and H(u&i, v)=
e&i+1 for every i, we will prove CH(e&i, d+i)=v&1. We proceed by
induction on i. In order for u&2(=c&d&1) to appear on A-diagonal
e+d, cd must be equal to c because the largest position that appears on
A-diagonal e+d is cd&(d+1) by (F3) and cd&(d+1)�c&d&1 by
cd�c. Hence CH(e&1, d+1)=cd=c=v&1. Assume that CH(e&i, d+i)
=v&1 for i�1. Let c$=CH(e&i $, d+i $) where i $=i+1. Before the com-
putation of CH(e&i, d+i), the largest position that appears on A-diagonal
e+d is c$&d&i $. In order for u&1&i $(=c&d&i $) to appear on
A-diagonal e+d, we must have c$=c because c$&(d+i $)�c&d&i $ by
c$�c. Hence CH(e&i $, d+i $)=c=v&1. K

Proof of Lemma 6. (Only if) If p is d-effective then H(u&1&a,
v&1)=e&a and H(u&a, v)=e&a+1 on H-diagonal v&(u&a)=d+a
by Lemma 5. Hence CH(e&a, d+a)=v&1=c by Definition 1.

(If) We show that H(u&1&i, v&1)=e&i and H(u&i, v)=e&i+1 for
every 1�i�a if CH(e&a, d+a)=v&1=c. The position of A that
appears on A-diagonal e+d corresponding to CH(e&a, d+a) is
v&1&(d+a)=u&1&a= p. Then we have H(p, v&1)=e&a by Defini-
tion 1. As there are a+1 entries from H(p, v&1) to H(u&1, v&1) on
column v&1 in the H-table and H(x&1, y)�H(x, y)&1 for every x and
y by recurrence (1), we have H(u&1&i, v&1)=e&i for every i.

144 KIM ET AL.

To show that H(u&i, v)=e&i+1, suppose that there exist some
1<l<a such that H(u&l, v)=e&l. Then, H(u& j, v)�e& j for every
1� j�l by recurrence (1). Since H(u&1& j, v&1)=e& j, H(u& j, v)=
e& j by Lemma 2. By Definition 1, CH(e&1, d+1)�v(=c+1), which is
a contradiction because c�cd=CH(e&1, d+1). Hence H(u&i, v)=e&i+1
for every i by Lemma 2. Therefore, p is d-effective on A-diagonal e+d by
Lemma 5. K

Proof of Lemma 7. (Only if) When a d-swap occurs at H(u, v), charac-
ters A[puv] and A[u] will be swapped to adjacent characters B[v&1] and
B[v]. Thus, A[u]=B[v&1] and we have quv=v&1 by definition of last-
positions. To show that puv is d-effective, we will prove CH(e&:uv , d+:uv)
=v&1 by Lemma 6 and (F4). That is, we will show H(puv , v&1)=e&:uv

and H(puv+1, v)=e&:uv+1.
When a d-swap occurs at H(u, v), characters from puv+1(=u&:uv) to

u&1 in A should be deleted. That is,

H(u&1, v&1)=H(u&2, v&1)+1= } } } =H(u&1&:uv , v&1)+:uv .

Since H(u&1, v&1)=e by (F1) and (F2),

H(puv , v&1)=H(u&1&:uv , v&1)=e&:uv .

Suppose that H(puv+1, v)=e&:uv . Then as in the proof of Lemma 6, we
would have CH(e&1, d+1)�v, which is a contradiction. Hence we have
H(puv+1, v)=e&:uv+1 by Lemma 2.

We will prove that H(puv , quv) is change-dominated. Since quv=v&1, we
want to show that

H(puv , v&1)=H(puv&1, v&2)+1

<min[H(puv , v&2)+1, H(puv&1, v&1)+1, s(puv , v&1)]

by Definition 3. Recall that H(puv , v&1)=e&:uv and H(puv+1, v)=
e&:uv+1 as shown above.

Since puv is d-effective, H(puv+1, v&1)=e&:uv+1 by Lemma 5. By
recurrence (1), we have H(puv+1, v&1)�H(puv , v&2)+1. Then,

H(puv , v&1)=e&:uv<H(puv+1, v&1)�H(puv , v&2)+1.

Since A[puv]=B[v], we have H(puv , v)=H(puv&1, v&1). Thus

H(puv , v&1)=e&:uv<H(puv+1, v)�H(puv , v)+1

=H(puv&1, v&1)+1.

145APPROXIMATE STRING MATCHING WITH SWAPS

Since H(puv , v&1)<H(puv , v&2)+1 and H(puv , v&1)<H(puv&1,
v&1)+1, H(puv , v&1) cannot come from an insertion or a deletion. Any
swaps must not occur at H(puv , v&1), because a character can be swapped
at most once [LW75]. Moreover, as A[puv]=B[v]{A[u]=B[v&1],
H(puv , v&1) cannot come from a match. Hence, H(puv , v&1) can get the
minimum value e&:uv only by a change. Therefore, H(puv , v&1)=
H(puv&1, v&2)+1 and H(puv , quv) is change-dominated.

(If) We show that a d-swap occurs at H(u, v) if puv is d-effective on
A-diagonal e+d, quv=v&1 and H(puv , quv) is change-dominated. Recall
that H(u&1, v&1)=e. Since A[u]{B[v], $uv=1. Then H(u, v) cannot
have value e by a match and would get value e+1 by a change.

Since puv is d-effective on A-diagonal e+d, H(u&1, v)=e by Lemma 5.
Hence H(u, v) would get value e+1 by a deletion.

Since ci�c, CH(e&1, d&1)=ci&1<c&1=v&2. By A[u]=B[v&1]
(i.e., quv=v&1), we have H(u&1, v&2)=H(u, v&1) on H-diagonal d&1.
This implies that CH(e&1, d&1)<v&2 by Definition 1, and thus
H(u&1, v&2)�e. Since H(u, v&1)�e by Lemma 2, H(u, v) would be
H(u, v&1)+1�e+1 by an insertion.

However, consider the swap-cost s(u, v). Since puv is d-effective, we have
H(puv , v&1)=e&:uv by Lemma 5. Since H(puv , quv) is change-dominated,

s(u, v)=H(puv&1, quv&1)+:uv+1=H(puv , v&1)+:uv=e.

Hence s(u, v)<min[H(u&1, v&1)+$uv , H(u&1, v)+1, H(u, v&1)+1],
and therefore a d-swap occurs at H(u, v). K

Proof of Lemma 8. A[u]=B[v&1] if and only if quv=v&1 by defini-
tion of last-positions. Now we will show that A[p]=B[v] and p is
d-effective if and only if puv is d-effective and H(puv , v&1) is change-
dominated.

(Only if) Since p is d-effective, H(u&1&i, v&1)=e&i and H(u&i, v)
=e&i+1 for every 1�i�a=u&1& p by Lemma 5. This implies that no
match can occur at H(u&i, v) for every i, i.e., A[u&i]{B[v]. Because
A[p]=B[v], p is the largest position less than u such that A[p]=B[v],
and hence p is the last-position puv . Therefore, puv is d-effective and also
change-dominated on A-diagonal e+d by definition of array LA. Because
H(puv , v&1)=e&:uv by Lemma 5 and v&1& puv=v&1&(u&1&:uv)
=d+:uv , H(puv , v&1) is change-dominated by Definition 3.

(If) Since puv is d-effective, H(u& j&1, v&1)=e& j for every 1� j�
:uv=u&1& puv by Lemma 5. That is, H(u& j&1, v&1)=H(u& j&2,
v&1)+1 for 1� j<:uv , and thus H(u&:uv , v&1), ..., H(u&2, v&1)
cannot be change-dominated by Definition 3. (Note that v&1&(u& j&1)
=d+ j.) It means that positions puv+1(=u&:uv), ..., u&2 cannot be

146 KIM ET AL.

change-dominated on A-diagonal e+d. Because H(puv , v&1) is change-
dominated, puv is the largest position less than u&1(=c&d=cd&d) such
that puv is change-dominated and appears on A-diagonal e+d, and thus
puv= p by definition of array LA. Therefore, p is d-effective and
A[p]=B[v] by definition of last-positions. K

ACKNOWLEDGMENT

We thank the referees for their helpful comments.

REFERENCES

[BN96] Baeza-Yates, R., and Navarro, G. (1996), A faster algorithm for approximate
string matching, in ``Proc. of the 7th Symp. on Combinatorial Pattern Matching,''
Lectures Notes in Comput. Sci., Vol. 1075, pp. 1�23, Springer-Verlag, New York�
Berlin.

[EGGI92] Eppstein, D., Galil, Z., Giancarlo, R., and Italiano, G. (1992), Sparse dynamic
programming. I. Linear cost functions, J. Assoc. Comput. Mach. 39, 519�545.

[GG88] Galil, Z., and Giancarlo, R. (1998), Data structures and algorithms for
approximate string matching, J. Complexity 4, 33�72.

[GP90] Galil, Z., and Park, K. (1990), An improved algorithm for approximate string
matching, SIAM J. Comput. 19, 989�999.

[HP95] Hannenhalli, S., and Pevzner, P. A. (1995), Transforming men into mice (polyno-
mial algorithm for genomic distance problem), in ``IEEE Sympos. Found.
Computer Science,'' pp. 581�592.

[LV89] Landau, G. M., and Vishkin, U. (1989), Fast parallel and serial approximate
string matching, J. Algorithms 10, 157�169.

[LW75] Lowrance, R., and Wagner, R. A. (1975), An extension of the string-to-string
correction problem, J. Assoc. Comput. Mach. 22, 177�183.

[My86] Myers, E. W. (1986), An O(ND) difference algorithm and its variations,
Algorithmica 1, 251�266.

[SK83] Sankoff, D., and Kruskal, J. B. (1983), ``Time Warps, String Edits, and Macro-
molecules: The Theory and Practice of Sequence Comparison,'' Addison�Wesley,
New York.

[Uk85] Ukkonen, E. (1985), Algorithms for approximate string matching, Inform. and
Control 64, 100�118.

[UW93] Ukkonen, E., and Wood, D. (1993), Approximate string matching with suffix
automata, Algorithmica 10, 353�364.

[Wa75] Wagner, R. A. (1975), On the complexity of the extended string-to-string correc-
tion problem, in ``ACM Symp. Theory of Computing,'' pp. 218�223.

[WF74] Wagner, R. A., and Fischer, M. J. (1974), The string-to-string correction problem,
J. Assoc. Comput. Mach. 21, 168�173.

[WM92] Wu, S., and Manber, U. (1992), Fast text searching allowing errors, Comm.
Assoc. Comput. Mach. 35, 83�91.

147APPROXIMATE STRING MATCHING WITH SWAPS

	1. INTRODUCTION
	FIG. 1

	2. PRELIMINARIES
	FIG. 2

	3. THE EXTENDED EDIT DISTANCE PROBLEM
	FIG. 3
	FIG. 4
	FIG. 5
	FIG. 6
	FIG. 7
	FIG. 8

	4. THE EXTENDED k-DIFFERENCES PROBLEM
	FIG. 9

	5. CONCLUSION
	APPENDIX: PROOFS OF LEMMAS
	ACKNOWLEDGMENT
	REFERENCES

