

Computational Geometry 10 (1998) 71-76

A Tverberg-type result on multicolored simplices

János Pach 1,2

City College, CUNY and Courant Institute, New York University, New York, USA Communicated by J. Urrutia; submitted 15 March 1996; accepted 21 September 1996

Abstract

Let $P_1, P_2, \ldots, P_{d+1}$ be pairwise disjoint *n*-element point sets in general position in *d*-space. It is shown that there exist a point *O* and suitable subsets $Q_i \subseteq P_i$ $(i = 1, 2, \ldots, d+1)$ such that $|Q_i| \ge c_d |P_i|$, and every *d*-dimensional simplex with exactly one vertex in each Q_i contains *O* in its interior. Here c_d is a positive constant depending only on d. © 1998 Elsevier Science B.V.

1. Introduction

Let $P_1, P_2, \ldots, P_{d+1}$ be pairwise disjoint *n*-element point sets in general position in Euclidean *d*-space \mathbb{R}^d . If two points belong to the same P_i , then we say that they are of the same color. A *d*-dimensional simplex is called *multicolored*, if it has exactly one vertex in each P_i $(i = 1, 2, \ldots, d+1)$. Answering a question of Bárány et al. [2], Vrećica and Živaljević [18], proved the following Tverberg-type result. For every *k*, there exists an integer n(k, d) such that if $n \ge n(k, d)$, then any pairwise disjoint *n*-element point sets $P_1, P_2, \ldots, P_{d+1} \subset \mathbb{R}^d$ in general position induce at least *k* multicolored vertex disjoint simplices with an interior point in common. (For some special cases, see [3,9,17].) This theorem can be used to derive a nontrivial upper bound on the number of different ways one can cut a finite point set into two (roughly) equal halves by a hyperplane.

The aim of this note is to strengthen the above result by showing that there exist "large" subsets of the sets P_i such that *all* multicolored simplices induced by them have an interior point in common.

Theorem. There exists $c_d > 0$ with the property that for any disjoint *n*-element point sets $P_1, P_2, \ldots, P_{d+1} \subset \mathbb{R}^d$ in general position, one can find a point O and suitable subsets $Q_i \subseteq P_i$, $|Q_i| \ge c_d |P_i|$ $(i = 1, 2, \ldots, d+1)$ such that every d-dimensional simplex with exactly one vertex in each Q_i contains O in its interior.

¹ Supported by NSF grant CCR-94-24398, PSC-CUNY Research Award 663472 and OTKA-4269. This paper was written while the author was visiting MSRI Berkeley, as part of the Convex Geometry Program.

² Current address: Mathematical Institute, The Hungarian Academy of Sciences, P.O. Box 127, H-1364 Budapest, Hungary.

^{0925-7721/98/\$19.00 © 1998} Elsevier Science B.V. All rights reserved. *PII* S0925-7721(97)00022-9

The proof is based on the k = d+1 special case of the Vrećica–Živaljević theorem (see Theorem 2.1). It uses three auxiliary results, each of them interesting on its own right. The first is Kalai's fractional Helly theorem [10], which sharpens and generalizes some earlier results of Katchalski and Liu [11] (see Theorem 2.2). The second is a variation of Szemerédi's regularity lemma for hypergraphs [15] (Theorem 2.3), and the third is a corollary of Radon's theorem [14], discovered and applied by Goodman and Pollack [8] (Theorem 2.4).

In the next section, we state the above mentioned results and also include a short proof of Theorem 2.3, because in its present form it cannot be found in the literature. Our argument is an adaptation of the approach of Komlós and Sós [13]. For some similar results, see [5,6,12]. The proof of the theorem is given in Section 3. It shows that the statement is true for a constant $c_d > 0$ whose value is triple-exponentially decreasing in d.

2. Auxiliary results

Theorem 2.1 [18]. Let $A_1, A_2, \ldots, A_{d+1}$ be disjoint 4*d*-element sets in general position in *d*-space. Then one can find d+1 vertex disjoint simplices with a common interior point such that each of them has exactly one vertex in every A_i , $1 \le i \le d+1$.

A family of sets is called *intersecting* if they have an element in common.

Theorem 2.2 [10]. For any $\alpha > 0$, there exists $\beta = \beta(\alpha, d) > 0$ satisfying the following condition. Any family of N convex sets in d-space, which contains at least $\alpha\binom{N}{d+1}$ intersecting (d+1)-tuples, has an intersecting subfamily with at least βN members.

In fact, if N is sufficiently large, then Theorem 2.2 is true for any $\beta < 1 - (1 - \alpha)^{1/(d+1)}$. In particular, it holds for $\beta = \alpha/(d+1)$.

Let \mathcal{H} be a (d + 1)-partite hypergraph whose vertex set is the union of d + 1 pairwise disjoint *n*-element sets, $P_1, P_2, \ldots, P_{d+1}$, and whose edges are (d+1)-tuples containing precisely one element from each P_i . For any subsets $S_i \subseteq P_i$ $(1 \leq i \leq d+1)$, let $e(S_1, \ldots, S_{d+1})$ denote the number of edges of \mathcal{H} induced by $S_1 \cup \cdots \cup S_{d+1}$. In this notation, the total number of edges of \mathcal{H} is equal to $e(P_1, \ldots, P_{d+1})$.

It is not hard to see that for any sets S_i and for any integers $t_i \leq |S_i|$, $1 \leq i \leq d+1$,

$$\frac{e(S_1,\ldots,S_{d+1})}{|S_1|\cdots|S_{d+1}|} = \sum \frac{e(T_1,\ldots,T_{d+1})}{|T_1|\cdots|T_{d+1}|} / \binom{|S_1|}{t_1} \cdots \binom{|S_{d+1}|}{t_{d+1}}, \tag{1}$$

where the sum is taken over all t_i -element subsets $T_i \subseteq S_i$, $1 \leq i \leq d+1$.

Theorem 2.3. Let \mathcal{H} be a (d+1)-partite hypergraph on the vertex set $P_1 \cup \cdots \cup P_{d+1}$, $|P_i| = n$ $(1 \leq i \leq d+1)$, and assume that \mathcal{H} has at least βn^{d+1} edges for some $\beta > 0$. Let $0 < \varepsilon < 1/2$.

Then there exist subsets $S_i \subseteq P_i$ of equal size $|S_i| = s \ge \beta^{1/\epsilon^{2d}} n$ $(1 \le i \le d+1)$ such that (i) $e(S_1, \ldots, S_{d+1}) \ge \beta s^{d+1}$,

(ii) $e(Q_1, \ldots, Q_{d+1}) > 0$ for any $Q_i \subseteq S_i$ with $|Q_i| \ge \varepsilon s$ $(1 \le i \le d+1)$.

Proof. Let $S_i \subseteq P_i$ $(1 \le i \le d+1)$ be sets of equal size such that

$$\frac{e(S_1,\ldots,S_{d+1})}{|S_1|^{d+1-\varepsilon^{2d}}}$$

is maximum, and denote $|S_1| = \cdots = |S_{d+1}|$ by s.

For this choice of S_i , condition (i) in the theorem is obviously satisfied, because

$$\frac{e(S_1,\ldots,S_{d+1})}{|S_1|^{d+1-\varepsilon^{2d}}} \ge \frac{e(P_1,\ldots,P_{d+1})}{n^{d+1-\varepsilon^{2d}}} = \frac{\beta}{n^{-\varepsilon^{2d}}} \ge \frac{\beta}{s^{-\varepsilon^{2d}}}.$$

Taking into account the trivial relation

$$\frac{e(S_1,\ldots,S_{d+1})}{|S_1|^{d+1-\varepsilon^{2d}}} \leqslant s^{\varepsilon^{2d}},$$

the above inequalities also yield that $s \ge \beta^{1/\varepsilon^{2d}} n$.

It remains to verify (ii). To simplify the notation, assume that εs is an integer, and let Q_i be any εs -element subset of S_i $(1 \le i \le d+1)$. Then

$$e(Q_1, \dots, Q_{d+1}) = e(S_1, \dots, S_{d+1})$$

- $e(S_1 - Q_1, S_2, S_3, \dots, S_{d+1})$
- $e(Q_1, S_2 - Q_2, S_3, \dots, S_{d+1})$
- $e(Q_1, Q_2, S_3 - Q_3, \dots, S_{d+1})$
- \dots
- $e(Q_1, Q_2, Q_3, \dots, S_{d+1} - Q_{d+1}).$

In view of (1), it follows from the maximal choice of S_i that

$$e(S_{1} - Q_{1}, S_{2}, \dots, S_{d+1}) = (1 - \varepsilon)s^{d+1} \frac{e(S_{1} - Q_{1}, S_{2}, \dots, S_{d+1})}{|S_{1} - Q_{1}||S_{2}| \cdots |S_{d+1}|}$$

$$= (1 - \varepsilon)s^{d+1} \sum_{\substack{T_{i} \subseteq S_{i}, |T_{i}| = (1 - \varepsilon)s \\ 2 \le i \le d+1}} \frac{e(S_{1} - Q_{1}, T_{2}, \dots, T_{d+1})}{[(1 - \varepsilon)s]^{d+1}} \Big/ {\binom{s}{\varepsilon s}}^{d}$$

$$\leq (1 - \varepsilon)s^{d+1} \frac{e(S_{1}, S_{2}, \dots, S_{d+1})}{s^{d+1 - \varepsilon^{2d}}} [(1 - \varepsilon)s]^{-\varepsilon^{2d}}$$

$$= e(S_{1}, \dots, S_{d+1})(1 - \varepsilon)^{1 - \varepsilon^{2d}}.$$

Similarly, for any $i, 2 \leq i \leq d+1$, we have

$$e(Q_1, \ldots, Q_{i-1}, S_i - Q_i, S_{i+1}, \ldots, S_{d+1}) \leq e(S_1, \ldots, S_{d+1})\varepsilon^{i-1-\varepsilon^{2d}}(1-\varepsilon).$$

Summing up these inequalities, we obtain

$$e(Q_1,\ldots,Q_{d+1}) \ge e(S_1,\ldots,S_{d+1}) \left(1 - (1-\varepsilon)^{1-\varepsilon^{2d}} - \sum_{i=2}^{d+1} \varepsilon^{i-1-\varepsilon^{2d}} (1-\varepsilon) \right)$$
$$\ge e(S_1,\ldots,S_{d+1}) \left(1 - (1-\varepsilon)^{1-\varepsilon^{2d}} - \varepsilon^{1-\varepsilon^{2d}} + \varepsilon^{d+1-\varepsilon^{2d}} \right) > 0,$$

as required. \Box

A (d + 1)-tuple of convex sets in d-space is called *separated* if any j of them can be strictly separated from the remaining d + 1 - j by a hyperplane, $1 \le j \le d$. An arbitrary family of at least d + 1 convex sets in d-space is *separated* if every (d + 1)-tuple of it is separated.

Theorem 2.4 [8]. A family of convex sets in d-space is separated if and only if no d+1 of its members can be intersected by a hyperplane.

Let $n \ge d + 1$. Two sequences of points in *d*-space, (p_1, \ldots, p_n) and (q_1, \ldots, q_n) , are said to have the same order type if for any integers $1 \le i_1 < \cdots < i_{d+1} \le n$, the simplices $p_{i_1} \ldots p_{i_{d+1}}$ and $q_{i_1} \ldots q_{i_{d+1}}$ have the same orientation [7]. It readily follows from the last result that if C_1, \ldots, C_n form a separated family of convex sets, then the order type of (p_1, \ldots, p_n) will be the same for every choice of elements $p_i \in C_i$, $1 \le i \le n$.

3. Proof of Theorem

Let P_1, \ldots, P_{d+1} be pairwise disjoint *n*-element point sets in general position in *d*-space. If a simplex has precisely one vertex in each P_i , we call it *multicolored*. The number of multicolored simplices is $N = n^{d+1}$.

By Theorem 2.1, any collection of 4*d*-element subsets $A_i \subseteq P_i$, $1 \le i \le d+1$, induce d+1 vertex disjoint multicolored simplices with a common interior point. Thus, the total number of intersecting (d+1)-tuples of multicolored simplices is at least

$$\frac{\binom{n}{4d}^{d+1}}{\binom{n-d-1}{3d-1}^{d+1}} > \frac{1}{(5d)^{d^2}} \binom{N}{d+1}.$$

Hence, we can apply Theorem 2.2 with $\alpha = 1/(5d)^{d^2}$. We obtain that there is a point O contained in the interior of at least

$$\beta N = \beta \left(1/(5d)^{d^2}, d \right) n^{d+1}$$

multicolored simplices.

Let \mathcal{H} denote the (d + 1)-partite hypergraph on the vertex set $P_1 \cup \cdots \cup P_{d+1}$, whose edge set consists of all multicolored (d + 1)-tuples that induce a simplex containing O in its interior.

Set $\varepsilon = 1/2^{d2^d}$, and apply Theorem 2.3 to the hypergraph \mathcal{H} to find $S_i \subseteq P_i$, $1 \leq i \leq d+1$, meeting the requirements. By throwing out some points from each S_i , but retaining a positive proportion of them, we can achieve that the convex hulls of the sets S_i are separated. Indeed, assume, e.g., that there is no hyperplane strictly separating $S_1 \cup \cdots \cup S_j$ from $S_{j+1} \cup \cdots \cup S_{d+1}$. By the ham-sandwich theorem [4], one can find a hyperplane h which simultaneously bisects S_1, \ldots, S_d into as equal parts as possible. Assume without loss of generality that at least half of the elements of S_{d+1} are "above" h. Then throw away all elements of $S_1 \cup \cdots \cup S_j$ that are above h and all elements of $S_{j+1} \cup \cdots \cup S_{d+1}$ that are below h. We can repeat this procedure as long as we find a non-separated (d+1)-tuple. In each step, we reduce the size of every set by a factor of at most 2.

Notice that in the same manner we can also achieve that, e.g., the (d+1)-tuple $\{\{O\}, \operatorname{conv}(S_1), \ldots, \operatorname{conv}(S_d)\}$ becomes separated. In this case, h will always pass through the point O, therefore O will never be deleted.

After at most $(d+2)2^d$ steps we end up with $Q_i \subseteq S_i$, $|Q_i| > \varepsilon s$ $(1 \le i \le d+1)$ such that $\{\{O\}, \operatorname{conv}(S_1), \ldots, \operatorname{conv}(S_{d+1})\}$ is a separated family. It follows from the remark after Theorem 2.4 that there are only two possibilities: either every multicolored simplex induced by $Q_1 \cup \cdots \cup Q_{d+1}$ contains O in its interior, or none of them does. However, this latter option is ruled out by part (ii) of Theorem 2.3. This completes proof. \Box

Instead of applying Theorem 2.2, we could have started the proof by referring to the following result of Alon et al. [1], which is also based on Theorem 2.1. For any $\beta > 0$ there is a $\beta'_d > 0$ such that any family of βn^{d+1} simplices induced by n points in d-space has at least $\beta'_d n^{d+1}$ members with non-empty intersection.

Our proof easily yields the following.

Theorem 3.1. For any $\beta > 0$ there is a $\beta_d'' > 0$ with the property that given any family of βn^{d+1} simplices induced by an *n*-element set $P \subset \mathbb{R}^d$, one can find a point O and pairwise disjoint subsets $Q_i \subseteq P$ (i = 1, 2, ..., d+1) such that at least $\beta_d'' n$ members of the family have exactly one vertex in every Q_i , and each of them contains O.

Acknowledgements

I am grateful to Imre Bárány, Géza Tóth and Pavel Valtr for their valuable suggestions.

References

- [1] N. Alon, I. Bárány, Z. Füredi, D. Kleitman, Point selections and weak ε -nets for convex hulls, Combin. Probab. Comput. 1 (1992) 189–200.
- [2] I. Bárány, Z. Füredi, L. Lovász, On the number of halving planes, Combinatorica 10 (1990) 175-183.
- [3] I. Bárány, D. Larman, A colored version of Tverberg's theorem, J. London Math. Soc. (2) 45 (1992) 314–320.
- [4] K. Borsuk, Drei Sätze über die n-dimensionale euklidische sphäre, Fundamenta Math. 20 (1933) 177-190.
- [5] F.R.K. Chung, Regularity lemmas for hypergraphs and quasi-randomness, Random Structures Algorithms 2 (1991) 241–252.
- [6] P. Frankl, V. Rödl, The uniformity lemma for hypergraphs, Graphs Combin. 8 (1992) 309–312.
- [7] J.E. Goodman, R. Pollack, R. Wenger, Geometric transversal theory, in: J. Pach (Ed.), New Trends in Discrete and Computational Geometry, Springer, Berlin, 1993, pp. 163-198.
- [8] J.E. Goodman, R. Pollack, R. Wenger, Bounding the number of geometric permutations induced by k-transversals, J. Combin. Theory Ser. A 75 (1996) 187–197.
- [9] J. Jaromczyk, G. Światek, The optimal constant for the colored version of Tverberg's theorem, manuscript.

- [10] G. Kalai, Intersection patterns of convex sets, Israel J. Math. 48 (1984) 161-174.
- [11] M. Katchalski, A. Liu, A problem of geometry in \mathbb{R}^d , Proc. Amer. Math. Soc. 75 (1979) 284–288.
- [12] J. Komlós, M. Simonovits, Szemerédi's regularity lemma and its applications, in: Combinatorics, Paul Erdős is Eighty, Volume 2, Bolyai Society Math. Studies 2, Budapest, Hungary, 1996, pp. 295–352.
- [13] J. Komlós, V.T. Sós, Regular subgraphs of graphs, manuscript.
- [14] J. Radon, Mengen konvexer Körper, die einen gemeinsamen Punkt enthalten, Math. Ann. 83 (1921) 113-115.
- [15] E. Szemerédi, Regular partitions of graphs, in: Problèmes Combinatoires et Théorie des Graphes, Colloq. Internat. CNRS 260, CNRS, Paris, 1978, pp. 399-401.
- [16] H. Tverberg, A generalization of Radon's theorem, J. London Math. Soc. 41 (1966) 123-128.
- [17] S.T. Vrećica, R.T. Živaljević, New cases of the colored Tverberg theorem, in: Proc. Jerusalem Combinatorics '93, Contemporary Mathematics 178, Amer. Math. Soc., Providence, RI, 1994, pp. 325–334.
- [18] R.T. Živaljević, S.T. Vrećica, The colored Tverberg's problem and complexes of injective functions, J. Combin. Theory Ser. A 61 (1992) 309-318.