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Abstract 

Let Pl, P2,.. •, Pa+l be pairwise disjoint n-element point sets in general position in d-space. It is shown that 
there exist a point O and suitable subsets Q~ c_ Pi (i = 1,2 . . . .  , d +  1) such that IQil >>- ca[Pi], and every 
d-dimensional simplex with exactly one vertex in each Qi contains O in its interior. Here ca is a positive constant 
depending only on d. © 1998 Elsevier Science B.V. 

1. Introduction 

Let P I , P 2 , . . .  , P  d+l be pairwise disjoint n-element point sets in general position in Euclidean 
d-space ~d. If  two points belong to the same Pi, then we say that they are of the same color. 
A d-dimensional simplex is called multicolored, if it has exactly one vertex in each Pi (i = 1 , 2 , . . . ,  
d + 1). Answering a question of  B~ir~iny et al. [2], Vre6ica and Zivaljevi6 [18], proved the following 
Tverberg-type result. For every k, there exists an integer n(k,  d) such that if n ~> n(k,  d), then any 
pairwise disjoint n-element point sets P1, P2; . . . ,  Pa+1 c •d in general position induce at least k 
multicolored vertex disjoint simplices with an interior point in common. (For some special cases, see 
[3,9,17].) This theorem can be used to derive a nontrivial upper bound on the number of  different 
ways one can cut a finite point set into two (roughly) equal halves by a hyperplane. 

The aim of  this note is to strengthen the above result by showing that there exist "large" subsets of 
the sets Pi such that all multicolored simplices induced by them have an interior point in common. 

Theorem. There exists ca > 0 with the property that for  any disjoint n-element point sets 
P i , P 2 , . . .  , P  d+l C ~d in general position, one can find a point 0 and suitable subsets Qi c_ Pi, 
IQil >/edIPil (i = 1; 2 , . . . ,  d ÷ 1) such that every d-dimensional simplex with exactly one vertex in 
each Qi contains 0 in its interior. 
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The proof is based on the k = d +  1 special case of  the Vredica-Zivaljevid theorem (see Theorem 2.1 ). 
It uses three auxiliary results, each of  them interesting on its own right. The first is Kalai's fractional 
Helly theorem [10], which sharpens and generalizes some earlier results of  Katchalski and Liu [1 1] 
(see Theorem 2.2). The second is a variation of  Szemer6di's regularity lemma for hypergraphs [15] 
(Theorem 2.3), and the third is a corollary of  Radon's  theorem [14], discovered and applied by 
Goodman and Pollack [8] (Theorem 2.4). 

In the next section, we state the above mentioned results and also include a short proof of  Theorem 
2.3, because in its present form it cannot be found in the literature. Our argument is an adaptation 
of  the approach of  Koml6s and S6s [13]. For some similar results, see [5,6,12]. The proof of  the 
theorem is given in Section 3. It shows that the statement is true for a constant Cd > 0 whose value 
is triple-exponentially decreasing in d. 

2. Auxiliary results 

T h e o r e m  2.1 [18]. Let A l ,  A 2 , . . . ,  Ad+l be disjoint 4d-element sets in general position in d-space. 
Then one can f ind d + 1 vertex disjoint simplices with a common interior point  such that each o f  them 
has exactly one vertex in every Ai, 1 <. i <<. d + 1. 

A family of  sets is called intersecting if they have an element in common. 

T h e o r e m  2.2 [10]. For an), c~ > O, there exists/3 = /3(a, d) > 0 satisfying the fol lowing condition. 

Any family  o f  N convex sets in d-space, which contains at least ~ (dNl) intersecting (d + 1)-tuples, 
has an intersecting subfamily with at l eas t /3N  members. 

In fact, if N is sufficiently large, then Theorem 2.2 is true for any ,3 < 1 - (1 - cQ l/(~t+l). In 
particular, it holds for /3 = a / ( d  + 1). 

Let 7-t be a (d + l)-partite hypergraph whose vertex set is the union of  d + 1 pairwise disjoint 
n-element sets, P1, P2, • • •, Pd+l, and whose edges are (d + 1)-tuples containing precisely one element 
from each Pi. For any subsets S~ c_ Pi (1 ~< i ~< d +  1), let C(SI,... ,Sd+l) denote the number of  
edges of  7-i induced by 5;1 U . . .  U S'd+l. In this notation, the total number of  edges of  7-i is equal to 
e ( P i , . . . ,  Pd+l) .  

It is not hard to see that for any sets S~: and for any integers ti ~< ISi I, 1 ~< i <~ d + 1, 

IS ,  I . . . I s d + , l  = , , , t ,  " / 

where the sum is taken over all t i-element subsets Ti C_ Si, 1 <<. i <~ d + 1. 

T h e o r e m  2.3. Let ~ be a (d + 1)-partite hypergraph on the vertex set Pl U . . -  U Pd+r, IPil = r~ 
(1 ~< i ~< d + 1), and assume that 7-[ has at least /3n d+ l edges fo r  some/3  > O. Let 0 < c < 1/2. 

Then there exist subsets Si C_ Pi o f  equal size ISil = s ~>/31/e2dn (1 ~< i ~< d + 1) such that 
(i) e (S l , . . . ,  Sd+l) /> /3s d+l, 

(ii) e ( Q l , . . .  ,Qd+l)  > O for  any Qi c Si with IQil >~ es (1 ~< i ~< d +  1). 
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Proofi Let ,_,ci C_ Pi (1 ~< i ~< d + 1) be sets of  equal size such that 

~(S l , . . . ,  Sd+,) 
IS11 d÷'-~=~ 

is maximum, and denote IS~l . . . . .  ISd÷,I  by s. 
For this choice of  S,i, condition (i) in the theorem is obviously satisfied, because 

e(S~,...,Sd+,) ~ ( P , , . . . , ~ t + , )  
Is, I d+'-~-~ ~ ,d-,_~2~ 

Taking into account the trivial relation 

e(S, , . . . ,  Sd+,) S E2d ' 

IS, t d+l-~-~ 

3 2 
, rg-g  2d ,~-G 2d 

the above inequalities also yield that s ~ ~l/~-dn. 
It remains to verify (ii). To simplify the notation, assume that ss  is an integer, and let Qi be any 

ss-element  subset of  Si (1 ~< i ~< d + 1). Then 

~(01 , . . . ,  Qd+l) = ~ (S l , . . . ,  S~t+l) 

- -  e ( S l  - -  Ol,SZ, S3,...,Sd+l) 

- ~ ( 0 1 ,  S2 - 0 2 ,  S 3 , . . . ,  S~+ l )  

- ~(Q1, Q=, S3 - Q 3 , . . . ,  S~l+l ) 

- e ( Q 1 , Q 2 , Q 3 , . . . , S g + j  - Qd+l). 

In view of (1), it follows from the maximal choice of  Si that 

e(Sj - O , ,S~ ,  Sd+,)  = (1 -- ~)s d+Je(sJ -- O , , S 2 , . . . , ~ + l )  
- " '  

2~i~d+ I 

~< (1 - c ) . #  +' e(S,; S%..., Sd+,) ~-~ 

= ~ ( S j , . . . ,  S a + , ) ( l  - c) ~-~-~. 

Similarly, for any i, 2 ~< i ~< d + 1, we have 

e(O~, . . . ,  Q~-~, Si - O ,  S~+r, . . . ,  &~.l) ~ ~ ( S , , . . . ,  Sd+l)c i J-~-~(l -- c). 

Summing up these inequalities, we obtain 
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d+ 1 ) 
e ( Q l , . . . ,  Qd+l)/> e ( S l , . . . ,  Sd+l) 1 --  (1 --  C) 1-e2d --  Z ei--l--e2d(l -- e) 

i=2 

e ( S l , . . . , S d + l ) ( 1  --  (1 -- C) 1-e2d --  ~ l -e2d ÷ c  d + l - e 2 d )  > 0,  

as required. [] 

A (d + 1)-tuple of convex sets in d-space is called separated if any j of them can be strictly 
separated from the remaining d + 1 - j by a hyperplane, 1 ~< j ~< d. An arbitrary family of at least 
d ÷ 1 convex sets in d-space is separated if every (d + 1)-tuple of it is separated. 

Theorem 2.4 [8]. A family o f  convex sets in d-space is separated if  and only if  no d+  1 o f  its members 
can be intersected by a hyperplane. 

Let n ~> d + 1. Two sequences of points in d-space, (Pl,... , P n )  and ( q l , . . . ,  q~), are said to have 
the same order type if for any integers 1 ~< il < ".. < i d + l  ~ n ,  the simplices Pi l . .  "Pid+l and 
qi~ • • • qid+~ have the same orientation [7]. It readily follows from the last result that if C l , . . . ,  Cn 
form a separated family of convex sets, then the order type of (Pl,--. ,Pn) will be the same for every 
choice of elements p~ E Ci, 1 <~ i <. n. 

3. Proof  of  Theorem 

Let P1 , . . .  ,Pd+l be pairwise disjoint n-element point sets in general position in d-space. If a 
simplex has precisely one vertex in each Pi, we call it multicolored. The number of multicolored 
simplices is N = n a+l . 

By Theorem 2.1, any collection of 4d-element subsets Ai c_ Pi, 1 ~< i ~< d + 1, induce d + 1 vertex 
disjoint multicolored simplices with a common interior point. Thus, the total number of intersecting 
(d ÷ 1)-tuples of multicolored simplices is at least 

q q,)d+l d+ 1 

Hence, we can apply Theorem 2.2 with a = 1/(5d) d2. We obtain that there is a point O contained in 
the interior of at least 

f i N  = 13(1/(5d)d2,d)n d+' 

multicolored simplices. 
Let 7-/ denote the (d + 1)-partite hypergraph on the vertex set Pl U -. .  U Pd+l, whose edge set 

consists of all multicolored (d ÷ 1)-tuples that induce a simplex containing O in its interior. 

Set ¢ = 1/2 d2d , and apply Theorem 2.3 to the hypergraph 7-/to find Si C_ Pi, 1 ~< i ~< d +  l, meeting 
the requirements. By throwing out some points from each Si, but retaining a positive proportion of 
them, we can achieve that the convex hulls of the sets Si are separated. Indeed, assume, e.g., that 
there is no hyperplane strictly separating S1 U. -. U Sj  from Sj+l U. • • U Sd+l. By the ham-sandwich 
theorem [4], one can find a hyperplane h which simultaneously bisects S l , . .  •, Sd into as equal parts 
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as possible. Assume without loss of generality that at least half of the elements of 5td+ l are "above" h. 
Then throw away all elements of $1 U. -. U Sj that are above h and all elements of Sj+I U . . .  U S(t+j 
that are below h. We can repeat this procedure as long as we find a non-separated (d ÷ 1)-tuple. In 
each step, we reduce the size of every set by a factor of at most 2. 

Notice that in the same manner we can also achieve that, e.g., the ( d+  1)-tuple {{O}, c o n v ( S l ) , . . . ,  
conv(Sd)} becomes separated. In this case, h will always pass through the point O, therefore O will 
never be deleted. 

After at most (d + 2)2 a steps we end up with Qi c_ Si, IQ~I > Es (1 ~< i ~< d + 1) such that 
{{O}, conv(S~) , . . .  ,conv(Sa+l)} is a separated family. It follows from the remark after Theorem 2.4 
that there are only two possibilities: either every multicolored simplex induced by Q1 U . . .  U Qd+l 
contains O in its interior, or none of them does. However, this latter option is ruled out by part (ii) of 
Theorem 2.3. This completes proof. [] 

Instead of applying Theorem 2.2, we could have started the proof by referring to the following 
result of Alon et al. [1], which is also based on Theorem 2.1. For any/3 > 0 there is a/3~ > 0 such 
that any family of /3n d+! simplices induced by n points in d-space has at least/31 nd+! members with d 
non-empty intersection. 

Our proof easily yields the following. 

Theorem 3.1. For any /3 > 0 there is a /3" d > 0 with the property that given any family of/3 nd+l 
simplices induced by an n-element set P C ~d, one can find a point 0 and pairwise disjoint subsets 
Qi c P (i -- 1 , 2 , . . . ,  d ÷ 1) such that at least/3~n members of  the family have exactly one vertex in 
every Qi, and each of  them contains O. 
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