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Abstract

Let P, P, ..., Py be pairwise disjoint n-element point sets in general position in d-space. It is shown that
there exist a point O and suitable subsets ; C P, (¢ = 1,2,...,d + 1) such that |Q;| > c4|P;|, and every
d-dimensional simplex with exactly one vertex in each @); contains O in its interior. Here ¢ is a positive constant
depending only on d. © 1998 Elsevier Science B.V.

1. Introduction

Let P, P, ..., Py be pairwise disjoint n-element point sets in general position in Euclidean
d-space R%. If two points belong to the same P;, then we say that they are of the same color.
A d-dimensional simplex is called multicolored, if it has exactly one vertex in each P; (i = 1,2,...,
d + 1). Answering a question of Bardny et al. [2], Vrecica and Zivaljevié [18], proved the following
Tverberg-type result. For every k, there exists an integer n(k, d) such that if n > n(k,d), then any
pairwise disjoint n-element point sets Py, Ps,..., Py, C R in general position induce at least k
multicolored vertex disjoint simplices with an interior point in common. (For some special cases, see
[3,9,17].) This theorem can be used to derive a nontrivial upper bound on the number of different
ways one can cut a finite point set into two (roughly) equal halves by a hyperplane.

The aim of this note is to strengthen the above result by showing that there exist “large” subsets of
the sets P; such that all multicolored simplices induced by them have an interior point in common.

Theorem. There exists cq > O with the property that for any disjoint n-element point sets
Py, P, ....,Py.; C R? in general position, one can find a point O and suitable subsets Q; C P,
|Qil = calBi| (i = 1,2,...,d+ 1) such that every d-dimensional simplex with exactly one vertex in
each QQ; contains O in its interior.

" Supported by NSF grant CCR-94-24398, PSC-CUNY Research Award 663472 and OTKA-4269. This paper was written
while the author was visiting MSRI Berkeley, as part of the Convex Geometry Program.
? Current address: Mathematical Institute, The Hungarian Academy of Sciences, P.O. Box 127, H-1364 Budapest, Hungary.

0925-7721/98/$19.00 © 1998 Elsevier Science B.V. All rights reserved.
PI1S0925-7721(97)00022-9



72 J. Pach / Computational Geometry 10 (1998) 71-76

The proof is based on the k = d+1 special case of the Vreéica—Zivaljevi¢ theorem (see Theorem 2.1).
It uses three auxiliary results, each of them interesting on its own right. The first is Kalai’s fractional
Helly theorem [10], which sharpens and generalizes some earlier results of Katchalski and Liu [11]
(see Theorem 2.2). The second is a variation of Szemerédi’s regularity lemma for hypergraphs [15]
(Theorem 2.3), and the third is a corollary of Radon’s theorem [14], discovered and applied by
Goodman and Pollack [8] (Theorem 2.4).

In the next section, we state the above mentioned results and also include a short proof of Theorem
2.3, because in its present form it cannot be found in the literature. Our argument is an adaptation
of the approach of Komlds and Sés [13]. For some similar results, see [5,6,12]. The proof of the
theorem is given in Section 3. It shows that the statement is true for a constant ¢y > 0 whose value
is triple-exponentially decreasing in d.

2. Auxiliary results

Theorem 2.1 [18]. Let Ay, Az, ..., Aqy be disjoint 4d-element sets in general position in d-space.
Then one can find d + 1 vertex disjoint simplices with a common interior point such that each of them
has exactly one vertex in every A;, 1 <1< d+ 1.

A family of sets is called intersecting if they have an element in common.

Theorem 2.2 [10]. For any o > 0, there exists 3 = (3(a,d) > O satisfying the following condition.
Any family of N convex sets in d-space, which contains at least a( N ) intersecting (d + 1)-tuples,

d+1
has an intersecting subfamily with at least BN members.

In fact, if N is sufficiently large, then Theorem 2.2 is true for any 3 < 1 — (1 — @)/t In
particular, it holds for 5 = a/(d + 1).

Let H be a (d + 1)-partite hypergraph whose vertex set is the union of d + 1 pairwise disjoint
n-element sets, Py, P», ..., Py.1, and whose edges are (d+ 1)-tuples containing precisely one element
from each P;. For any subsets S; C P; (1 < ¢ < d+ 1), let e(S},...,S4;1) denote the number of
edges of H induced by S} U---U Sy.. In this notation, the total number of edges of H is equal to

e(Pr, ..., Pir).

It is not hard to see that for any sets S; and for any integers ¢; < |S;|, 1 < i< d+ 1,

<
e(S1,-..,Sav1) :Z e(Ty,..., Td+1)/(\51> ' <15d+1> "
1S1] -+ |Sat| VATRERRVITNY t tasi

<

d+ 1.

where the sum is taken over all {;-element subsets 7; C S;, 1 < ¢

Theorem 2.3. Let H be a (d + 1)-partite hypergraph on the vertex set Py U ---U Pyyy, |P;| = n

(1 <i < d+ 1), and assume that H has at least Bn®*! edges for some 3> 0. Let 0 < ¢ < 1/2.
Then there exist subsets S; C P; of equal size |S;| = s > ﬁl/EZdn (1 <1< d+ 1) such that

() e(Si,...,Sap1) = BstH,

(i) e(Q1,...,Qq+1) >0 forany Q; T S; with |Q;| 2 es (1 <i<d+1).
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Proof. Let S; C P, (1 <i < d+1) be sets of equal size such that

e(Slv s 7Sd+l)
1S ‘d+l~534

is maximum, and denote |S;| = --- = |Sy44] by s.
For this choice of S;, condition (i) in the theorem is obviously satisfied, because

6(513-~-w5’d+l)>e(Plv"-an+l)_ /6 > 5
|S1|d+l—62d = ndt1—e o T et

Taking into account the trivial relation

e(Sla°" 7Sd+1) <
S, |d+1-e =

62d

the above inequalities also yield that s > 3!/ <.
It remains to verify (ii). To simplify the notation, assume that s is an integer, and let (J; be any
es-element subset of S; (1 <7< d+ 1). Then

e(Qr,....Qaqr1)=e(S1,...,5q+1)
—e(S) —Q1,52,53,....5441)
~e(Q1,8 — @2,53,...,8441)
—e(Q1,Q2,5 — @3,...,Sqz1)

- G(Q]7Q2’Q3a e 7Sd+l - Qd+1)‘

In view of (1), it follows from the maximal choice of S; that

a1 €51 — Q1,52 Sqq1)
IS1 — Q1]]S2] - |Sati]

_ (1 — &)t e(S1 — QT ... . Tunr) /{s\"
= (1 —¢)s**! > (1 —)s)ar! - /<€S)

TCS:, |Til=(1—¢)s

e(S] _Q17527"‘7Sd+1>:(1 _E)S

2<i<d+]
d16(S1,52, ..., Sa41) —ed
< (1 —¢g)s?t i [(1—¢)s] "

2d

26(817"'55d+1)(1 _6)1—6‘_ .

Similarly, for any 7, 2 < i < d+ 1, we have

2d

e(Qry. .., Qim1, 8 — Qi, Sicty- - Sar1) < e(S1, -, Sarr)e 7T (1 —¢).

Summing up these inequalities, we obtain
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d+1
e(Q1,...,Qar1) = e(Sh,. .., Su1) (1 L L P O e)>
=2

2d

26(51""’5114‘1)(1_(1—E>1_5 *51_62d+6d+1‘€2d) >O,

as required. O

A (d + 1)-tuple of convex sets in d-space is called separated if any j of them can be strictly
separated from the remaining d + 1 — j by a hyperplane, 1 < j < d. An arbitrary family of at least
d + 1 convex sets in d-space is separated if every (d + 1)-tuple of it is separated.

Theorem 2.4 [8]. A family of convex sets in d-space is separated if and only if no d+1 of its members
can be intersected by a hyperplane.

Let n > d + 1. Two sequences of points in d-space, (py,...,p,) and (qi,...,¢qn), are said to have
the same order type if for any integers 1 < i; < --- < igy; < n, the simplices p;, ...p;,,, and
¢, - - - 9i,,, have the same orientation [7]. It readily follows from the last result that if C',...,C,
form a separated family of convex sets, then the order type of (p,...,p,) will be the same for every
choice of elements p; € C;, 1 < i< n.

3. Proof of Theorem

Let Py,...,Piy; be pairwise disjoint n-element point sets in general position in d-space. If a
simplex has precisely one vertex in each F;, we call it multicolored. The number of multicolored
simplices is N = n+!,

By Theorem 2.1, any collection of 4d-element subsets A; C P;, 1 <7 < d+ 1, induce d+ 1 vertex
disjoint multicolored simplices with a common interior point. Thus, the total number of intersecting
(d + 1)-tuples of multicolored simplices is at least

@™ 1 (Y

(7 5 \d+ 1

Hence, we can apply Theorem 2.2 with v = 1/ (Sd)dz. We obtain that there is a point O contained in
the interior of at least

BN = B(1/(5)% , d)nt+!

multicolored simplices.

Let ‘H denote the (d + 1)-partite hypergraph on the vertex set P, U --- U Py, whose edge set
consists of all multicolored (d + 1)-tuples that induce a simplex containing O in its interior.

Sete =1 /Zdzd, and apply Theorem 2.3 to the hypergraph H to find S; C P;, 1 < ¢ < d+1, meeting
the requirements. By throwing out some points from each .5;, but retaining a positive proportion of
them, we can achieve that the convex hulls of the sets .S; are separated. Indeed, assume, e.g., that
there is no hyperplane strictly separating S; U ---US; from S; 1 U--- US4y 1. By the ham-sandwich
theorem [4], one can find a hyperplane h which simultaneously bisects Sy, ..., S, into as equal parts
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as possible. Assume without loss of generality that at least half of the elements of 5S4, are “above” h.
Then throw away all elements of S; U---U S; that are above h and all elements of S; U --- US4
that are below h. We can repeat this procedure as long as we find a non-separated (d + 1)-tuple. In
each step, we reduce the size of every set by a factor of at most 2.

Notice that in the same manner we can also achieve that, e.g., the (d+1)-tuple {{O}, conv(S)), ...,
conv(Sy)} becomes separated. In this case, h will always pass through the point O, therefore O will
never be deleted.

After at most (d + 2)2d steps we end up with Q; C S;, |Qi] > es (1 < i < d+ 1) such that
{{O}, conv(S)),...,conv(Sg4;)} is a separated family. It follows from the remark after Theorem 2.4
that there are only two possibilities: either every multicolored simplex induced by Q; U --- U Q441
contains O in its interior, or none of them does. However, this latter option is ruled out by part (ii) of
Theorem 2.3. This completes proof. O

Instead of applying Theorem 2.2, we could have started the proof by referring to the following
result of Alon et al. [1], which is also based on Theorem 2.1. For any 3 > O there is a 5{1 > 0 such
that any family of Bn?*+! simplices induced by n points in d-space has at least ﬁ(’ind“ members with
non-empty intersection.

Our proof easily yields the following.

Theorem 3.1. For any 3 > O there is a 3, > O with the property that given any family of Bnd+!
simplices induced by an n-element set P C R, one can find a point O and pairwise disjoint subsets
Qi C P (:=1,2,...,d+ 1) such that at least 3]jn members of the family have exactly one vertex in
every (};, and each of them contains O.
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