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Our paper proves special eases of the following conjecture: for any fined tr~,e "J~ there exists a 
natural number f = fiT) ~o that every triangle-free graph of chromatic number ] T) contains T 
as au induced subgraph. The main ;csult concerns the case when T has radius two. 

I. introduction 

Our paper gives ~ reexposition and some partial results on the following 

conjecture of A. Gyfirffis: 
There exists an integer-valued function f defined on the finite trees with the 

property that eve.ry triangle-free graph with chromatic number f(T) contains T as 
an induced subgraph. 

The crucial point in the conjecture that it concerns induced subtrees--trees as 
partial graphs can be found easily in graphs of large chromatic number (cf. Section 

2). 
The conjecture was posed in [1] for /(,,-free graphs but it seem~ to us that the 

special case n = 3 contains 011 the difficulties. We restrict ourselves to triangle-free 

graphs throughout fl~is paper. 
Our main result is Theorem 5 which proves the conjecture for trees of radius 

two and replaces the ad hoc proofs known by us for various special trees. The 
only other case when we can prove the conjecture occurs if T is a " 'mop" 
CFheorem 4). A " m o p "  is a path with a star at the end. 

LO G=(V, E) and G'=(V', E') be two graphs. G '  is a partial graph of G if 
V'c_ V and E'c_E. G' is an induced subgraph of G if V'~_ V and for x, y e  V' 
(x, y) ~ E '  if and only if (x, y) ~ E. If G '  is an induced subgraph of G then G'  is 
determined by V' - -somet imes  we say that G '  is induced by W. The subgraph of 
C induced by X~_ V(G) is denoted by Gx. 
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2. A walk around the cenjecture 

Partial versus induced subtrees 

T . c  conjecture becomes true with (f(T) = [ V(T) t) if we want T to appear  only as 
a partial graph instead of induced subgraph, This can be seen from the corollary 

of Theorem I below, which certainly belongs to, the graph theoret ic  |olklorc.  We 
do not know how wel~.-known is q h e o r c m  1 it:;elf. 

"Ilxeoi, em 1. Let G be a k-chromatic graph whose vertices are labeled with 

l, 2 . . . . .  k according to a good k-coloring, l.f T is a labeled tree on k vertices, then 
G contains a partial tree isomorphic to T. (lsomorphy is understood between labeled 
graphs.) 

Corollary. A k-chromatic graph contains every tree on k vertices as a partial graph. 

Proof ot T h e o r e ~  1. We use induction on k. The case k = 1 is clear. We prove 
that the theorem follows from k - 1 to k. Let P be a vertex of T with degree one 
and with label i(P). P is connected wi~.h the vertex O of T which is labeled with 
l(Q). Let A be the set of vertices of G in color-class l (O) so that  every vertex in 
A is connected with at least one vertex of color-class l(P). A is not empty 
because G is k-chromatic.  If we remove from V(G)  thc vertices of color-class 
l(P) and the vertices of color-class l(Q) which are not in A, we have a 
( k -  1)-chromatic graph with a good ( k -  1)-coloring. The inductive hypothesis 
guarantees a partial tree T' (label-) isomorphic to T - P .  The edge (x, y)~ EIG)  

where x = A 71V(T')  and y is from color-class l(P), completes 7" to a partial tree 
(label-) isomorphic to 7. [ ]  

Graphs without complete bipartite subgraphs 

While trying to prove the conjecture,  R6dl and Hajnal  got ( independently)  the 
following result: 

Theorem.  For every tree T and k ~ 1 there exists a g = g(T, k) with the property: if 
a graph G contair~ no k -  k complete bipartite subgraph as a partial graph and 
~((G) ~ g, then G contains T as an induced subgraph. 

As for k = 2 the complete k - k  biparti te graph is the quadrangle,  the above 
result shows the conjecture to be true if "tr iangle-free '"  i~ replaced by 

"quadrangle-i ' ree".  Combining lhese two properties,  it is easy to prove the 
following: 

"lheorem 2~ A k-chromatic graph without tri~:ngles ~nd rectangles contains every 
tree on k vertices as an induced subgraph. 
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Remark .  It is interesting to compare  Theorem 2 with the corollary oi Theorem t. 

Proof.  We prove a stronger s ta tement :  if C ~s a triangle- and quadra,~gle-4ree 
graph and every vertex of G has degree at least k - 1, then G contains every tree 
of k vertices as an induced subgraph.  We prove by induction. The case k = 2 is 
obvious. The inductive step runs as follows. 

If G is a graph without  triangles and reczangles and d(x)>~ k for every x E V(G) 
and 7 is a tree on k + 1 vertices then G contains an induced T' which we get frorn 
T by removing the edge A B  and the vertex A where A is of degree 1. The set of 
vertices connnected  with B in G are divided into two parts. 

X I = { x : x ~ V ( T ' ) , ( B , x ) ~ E ( G ) } ,  X: -={x:x f~V(T ' ) , (B ,x)~:E(G)}  

No vertex of X2 is connected to any ,Jertex of X~ as G is triangle-freee. No 
two vertices of X2 are connected to the same vertex of V ( T ' ) - X ~  -{B} since G is 
quadrangle-free.  ] V ( T ' ) - X I - { B } I  = k - IXxl-  1 <[X=j because k - 1 < 
Ix, l+ Ix~i = d(B)>1 k, therefore  there exists a y • X2 which is not connected to 
V ( T ' ) - { B } .  The subgraph of G induced by V(T ' )U{y}  is isomorphic to T, E] 

Triangle-free graphs of diameter two 

It would be very desirable to prove the special case of the conjecture when G 
contains nc triangles but the addition of any new edges destroys this property, it 
is easy to :~ee that these graphs are the triangle-free graphs of diameter  two. 
R(!~, 3) denotes  the classical Ramsey-number ,  i.e. the smallest m for which every 

graph of m vertices contains a triangle or its complement  contains Kk. T~.~ is a 
tree where tc paths of three vertices start from a common center. (The notation 
Tk.~ is introduced in Section 3, that  is the reason behind the notation.) 

Theorem 3. If  G is a triangle-free graph of diameter two, x(G)>~R(k, 3)+  1 and 
P e  V(G), then G contains Tk,~ as an induced subgraph, so that P is the center qf 

Pre~f.  X)ge decompose V(G) - {P}  into two disjoint sets: 

A = {x:x  ~ V (G) - {P} ,  (x, P ) e  E(G)}, 

B = t'x : x ~ V(G) - {P}, (x, P) ¢ E(G)}. 

For every a ~ A  we define B , , = { b : b e P , ( a , b ) c E ( G ) } .  Let s be the ~mallest 
number  for which we have an A'~_A,  Im'l=s for which Uo~A' t3,, = B - s  exists 
and s--<-tA] because I,.Jo~a Bo = B (G has diameter  two). If i V =  {al . . . . .  a, }, then 
the definition of s guarantees  bl . . . . .  b, where b~ e B,,, and h,¢ B,, for 1 "~ i, j ~ s, 
i:pj. The sets 13,,,13, . . . . . .  B,  U{P}, A induce empty subgraphs in G which 
means s + 1 >i )((G) I> R(k, 3) + 1 i.e. s ~ R(k, 3). The subgraph of G induced by 
{b~, b2 . . . . .  b~} is triangle-free so it contains k vertices, say b~, b2 . . . . .  bk which 
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induce an empty  sabgraph  of G. The  set  {F, a l ,  a2 . . . . .  a~, b~, b~ . . . . .  bk} induces  

T<l in G. [] 

3. Mops and trees of radius two 

Mops 

An (m, n) -mop is def ined by ident i fying one  ~xtrern¢ ver tex of  a pa th  of m 
vert ices with the cen te r  of  a :oar of n + 1 vert ;ces.  The  o the r  e x t r e m e  vertex of  the 

path is called the top  oI the  mop.  We  assume m I>2, n >I 1. A (2, n ) - m o p  is a star 

of n + 2  vert ices and an (m, l ) - m o p  is a pa th  of m +  1 vertices.  

T h e ~ r e m  4. f ( T ) ~ m + n  if T is an (m, n).-mo 2. 

Prot~L We prove a s t ronger  s t a t ement :  if G is t r iangle-f ree ,  x (G)>~m+n,  
P ~  V(G) ,  d ( x ) ~  m + n -  1 for x ~ V ( G ) - { P } ,  d(P) >>- 1 then  G conta ins  an in- 
duced  (m, n)-molc with its top  in P. The  p roof  goes  by induct ion on  m. The  case 

m = 2 is obvious  t~ecause d ( P ) ~  1. dtQ)>~ n +1 where  O is a ver tex  connec t ed  
witl~ P. 

T a r  inductive s tep  is mr, de f rom m - I to m. X c  V ( G ) - { P }  d e n o t e s  the  set of 

vertices which are not  connec t ed  with P. {x~, x2 . . . . .  x,}c_ X is def ined  so that  x~ is 

connec ted  with at most  m + n - 3 vert ices of  X -  {x~, .c 2 . . . . .  x , } /o r  1 ~< i ~--" and t 
is the largest num ber  satisfying this p roper ty .  B = X -  A .  X ( G x ) ~  > m + n -- l since 

anT~ good p-color ing  of V ( G x )  can be e x t e n d e d  to a good  ( p +  1)-coloring of 

V(G) .  We can easily define an m + n - l - co lo r ing  of V ( G x )  so that  A is co lored  

wittl at most  m + n - 2  colors.  The re  exists a O e  V(G)  for which (P, O ) c  E ( G )  
and O is connec ted  with some  vertex of B, other, : , ise the ( re+n-1) -co lor ing  
defined above  can be e x t e n d e d  to a good  ( m + n - 1 ) - c o l m i n g  of  G which is 
impossible.  The  graph G '  induced  by B U { O }  ia G is t r iangle- f ree ,  x ( G ' ) ~  > 

m t - n - l ,  d ( x ) l > m + n - 2  for x ~ V ( G ' ) - { O }  and d ( O ) > - l .  The  induct ive 

hypothesis  assures an induced  ~m -- ~, n ) - m o p  T '  with its top  in O. P comple t e s  "/" 

*o an (m, n t - m o p  T which is an induced subgraph  of  G and its top  is in P. [ ]  

Tr,es of radius '.wo 

~, graph is called of radius two if there  is a v e r t e x - - t h e  cen te r  of  the  

g r a p h - - f r o m  which every o the r  verlex can he reached  by a path  of length at most  
two. (The length of a path is the number  of its vert ices minus  one.)  'I),.~ is a special 

tree of radius two, the cen te r  of which is connec t ed  with k vert ices and all these k 

vertices are connec ted  with I addi t ional  vertices° Tk.t has  kl+k + 1 vertices,  If 
k = I, then Tk.k is *he k-nary  t ree with two levels. We wri te  Tk ins tead  of  Tk.k. The  

vertices of dis tance one  and two f rom the cen te r  of a t ree of  radius  two a te  called 

" level-one '"  and " ievel- two'"  vert ices respect ively.  T~-.e leve l - two vert ices fo rm 
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~'level-two groups" - -one  level-two group consisted; of the set of vertices connectec~ 
with the same level-one vertex of the tree. 

Theorem 5. J(T) exis,~ for trees of radius two. 

Proof, Step I. It is enough to prove the theorem for T : T~.: because every tre~: of 
radius two is a partial graph of some 7k- 

The proof is presenl:ed as steps numbered with l, 2 . . . . .  15 for better undler- 
standing. We give here the very brief outline of the proof. ]"~(k), f2(k'~ . . . .  denote 
funcuons of k. 

A Ramsey-type lemma (Lemma 1) allows us to loose the condition that 'I\ is 
wanted as an induced subgraph (steps 2 and 3). The heart of the proof is a 
decom~osition (step 4) of G i~to disjoint parts A~, A ,  . . . . .  A, where A~ is a large 
(Jj(kl- . f~tk)t  complete bipartite graph plus vertices which are connected with a 
large number (at least fz~k)) of vertices of that bipartite graph~ The part X of G which 
escapes from the deco~lposition is f3(k)-chromatic or contains Tk (step 5). TIzo 
components A~ . . . . .  A, are f4(k)-chromatic (step 6). Since t certainly d e p ~ d s  on 
the number of vertices of G, the structur~ of the edges betweer~ different A / s  
mu~t be analyzed. The set of these edges is cle~,oted by Y. There are two possible 

cases: 
Case A. ~ can be colored with red and blu: so that ,*he chromatic number of 

the graphs containing red and blue edges respectively is bounded b) ~,~(k) and 
J~(kL (steps 7, 9, 10, 1 1, 12. 131 which implies a bound for the chromatic numb~ 
of G (steps 14, 15t. 

Case B. The structure of Y allows us (by repetitive application of Lemma 2 i~ 

Step 8) to find 7~ in {j'~: ~ A,. 

Step 2. Tk is called quasi-induced subgraph of a triangle-free graph G if T is a 
partial graph of G and every edge of G which connects level-one and level-two 
vertices of Tk is an edge of Tk. In other words we can say that the only edges in G 
which make Tk a "n0n-induced" subgraph, connect level-two vertices of Tk. 

The following "Ramsey- type"  lemma shows that a quasi-induced T~k. ~:~,. k in a 
triangle-free graph G contains Tk which is an induced subgraph of G. 

Lemma 1. 14, denotes the complete i-partite graph, where every vertex-class con- 
tains i vertices. In every two-coloring of the edges of H~ ~"k*k there is either a 
triangle in the first color or Ilk in the second color. 

ProoL Let us consider a two-coloring of the edges o f / 4  = H~k ~'~+~ and suppose 
that there is no monochromatic triangle in the first color. We constr~'ct sets 
A~, A2 . . . . .  Ai so that IA~[ = k for 1 <~i~j, A~'s are subsets of different vertex-. 

classes of H and A~'s are spanning a complete ]-1'3artite graph which is mo~o- 
chromatic in the second color. Let j be maximal with respect to the above 
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property, if j > k ,  we have nothing to prove. Let us suppose that  i ,<k. g P 
denotes  for P~  ( J i )  A~ the number  of vertex-classes in H which contain at leas, 
k vertices connected with P in color one. If g(P)~>k, then these vertices span a 
monochromat ic  Hk in the second color and the lemma is proved. (H  contains n(~ 
monochromat ic  triangles in the fir.,a co lor )  If g ( P ) ~ k  - I for every P 6  I.J I ~ A, 
then we have at most j k ( k -  I) ' ,~(k-- I)~k vertcx-class~.s (,f H i), which at least /, 

vertices are connected with s,.nne vertex of [.Jl j A, ,n coh)r onto---as ! t  b. 
( k - 1 ) : k + k - p a r t i t e  a:ld j < k .  we can clloose a vertex-class (~  d;fferent from 
the:~c classes and different !'rom the vertex-classes containing A~. A2 . . . . .  Aj. (,~ 
contains at most [ k l k - l l < z ( k - l I = k  vertices connected with O I . ) A ,  in color 
one. but C,, contains ( k -  t)Zk + k vertices, therefore  we can choose k vertices 
from C,, which are connected to all vertices of ~ ,  , A, in color two. The k 
vertices chosen from (;, can be added as A, , i  to A I . A :  . . . . .  A, which is a 
contradiction. Fj 

Seep 3. In the light of steps 1 and 2 it is enough to prove the following 
statement:  the chrnmatic  number  of G is bounded  by a function of k if G is a 
triangle-free graph which does not contain a quasi- induced T~. We assume G to 
be such a graph throughout  the K:llowing steps of the proof. 

Step 4. The heart  of the proof is a decomposit ion of V(G):  

V~G)= 0 A, U X  

where the sets A, and X is defined as follows. Ao=9). If A(,.A~ . . . . .  ,a are 
a!ready defined, we consider two case,. If there is no k~-k ~ co..,,plete biparti te 
sub graph in the graph induced by V(G)-[..J? (,A,. then .F=s and X =  
V ( C - ) - ~ I  >A,. Otherwise /3,.~ is defined as a vertex-set of a k~-k ~ complete 
bipartite sul)graph in the graph induced by V ( G ) -  {..J~ ~, A, in G. ( ' , .  ~ dehotes  the 
set of vertices in V ( G ) - U I  ,, A, which are connected t~, B,. i with at least k ~ 
edges. A, ,=B,+IUC,+ ). 

The graph induced ,~y ~', ,, A~ in G is denoted  by G~. In the following step we 
shall prove that XtGx) is bounded  by a function of k. Since V ( G ) =  
V~Gx)LO V(G~). it remains to shov, the same for G). We can assume t >  I and we 
can omil A(, which was introduced only to ease the definition of the sets A,. 

Ste;> 5. x ( G × ) ~  g(k) for some function of k. The t ra th  of this s ta tement  fo~)ov, s 
imlnediately from the result c.f R6dl and Hajnal  ment ioned in Section 2 since G× 
contains neither a kS-k s complete biparti te graph as a partial graph nor  T =  7k as 
an induced subgraph. In oMer  to avoid reference to an unpubl ished result, we 
give a proof of the above statement.  It is enough to prove the following 
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propos i t ion :  

P ropos i t ion .  G x conlains no To.b as a partial graph if  

a---k 2 . . . .  Ic2', b = k " c  and  c = k  ~. 

Proof .  If T =  7~,.~, is a partial  ~;raph of  Gx,  then  we apply l . emma 2. (!_emma 2 

appears  in S tep  8. No o t h e r  f o rwa rd - r e f e r ences  occur  during the proof.)  ~.~emma 2 

assures  a leve l -one  ver tex Pz of T which is connec ted  to a~ = ,./a/i¢ level- two 
groups  of T with b~ = b/k edges .  W e  have no To,a,, as a partial  t ree of Ta.~, so that  

ai' level - lwo vert ices of  T.,.b, are c o n n e c t e d  with Pj.  If we ~terate this argunrent  

with a,~ ~ = x /~k ,  bi~ l = b/k c t imes in all, we find that  a~ = 1. h,. = e which shows a 
e-~ c om ple t e  bipart i te  subgraph  of T - - w e  have a contradic t ion,  since c =  k ~ and 
Gx conta ins  no  kS-k  ~ comple te  bipar t i te  subgraph.  [3 

R e m a r k .  Using the  corol lary of  T h e o r e m  1. we have the bound ]V(T,,,~,,I= 

ab + a + t for X(Gx) .  It is a poor  bound ,  we can improve  it, but we arc not  able to 
give a polynomial  bound .  We no te  that  such ~n improvemen t  woctld impl], a 

polynomial  bound  for X(G) .  

Step 6. The  chromat ic  number  of  the graph induced by A~ in (3 is a~ most  2k :' 

s ince the n e i g h b o r h o o d s  of the vert ices of B, define a covering of A~ with at mo~;t 

2k ~ empty  subgraphs .  This observa t ion  allows us to d e c o m p o s e  A~ into disjoini 
sets A,.~, A,  2 . . . . .  A,.p, so that  A, 4 induces  an empty  subgraph of (3 for l ~ j ~ p , ,  
p , ~ 2 k  ~ for l ~ i ~ t  and for every  Ai4 we can find a P, q6A~ such that  P,q is 

cor~r, ec led  with every vertex of  A,.i. 

S~ep 7. Propos i t ion .  For every 1 ~ i ~ t and  P ~  A,  

[{.;:(P, Q ! ~ E ( G )  for some O ~ A j } ] < k  7. 

The proof  is based on the fol lowing lemma.  

Step ,q. L e m m a  2. n, m are natural  numbers  and  H is a graph with a partial 

graph T = Tk,,~.k,,, The  subgraph o f  H induced by T contains either a qva;J- in th tced 
Tk or a level-one vertex o f  T which is connected to at least m ~.~ertices o f  at lea:.t n 

leve l - two groups o f  T. 

Proof .  We  deno te  the level -one  vert ices of  T by x ,  x2 . . . . .  x~,,~ and the level- two 
groups  by S~, $2 . . . . .  Sk,,~. g(x~) deno t e s  the numbe~' of level- two groups  con-  

nec ted  to x, with at least m edges.  We  have to prove  the following: if g(x~)'-~ n for 
every  1 ~ i ~ kn  2 then  T cvn,a ins  Tk as a quasi-induce¢J subgraph.  

First. we def ine a subsequenee  {x~} c;  {x~} and a subsequence  {S',} of {S~} with kn 

e l em en t s  as fo i l cvs :  x~ = x~, S~ = S~. If x', . . . . .  x'. and S~ . . . . .  S', are already 

def ined and r < k n  then  we def ine S',+~ = S~, where  S, is a level- two group which is 

connec t ed  to every  ver tex of {x~ . . . . .  x~} with at most  m - 1 edges  and i is the 
smal les t  poss ib le  index wi ta  this proper ty .  W e  can choose  such an S, because  
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g(xt) ,  g(x=) . . . . .  g ( x~ )<n  and r < k n .  x'~+, is the leve l -one  ver tex be long ing  to 

S ' ~ .  The  sequences  {a',}, {S'.} ( i =  1 ,2  . . . . .  kn) have the p roper ty  that  x', is 

connec t ed  to at most  m -  1 vert ices of S I if i < j .  
Now we define a subsequence  of {x'~} and {S'~} bo th  with k e l emen t s  l h e s e  are  

d e n o t e d  by {x'[} and {S'[} (i = 1,2 . . . . .  k) and they  are  def ined as fol lows:  x7 = x'~,,, 
S'(= S~,,,. If x'~, x" . . . . .  x'~ and S'{, S~ . . . . .  S" are a l ready dcf ined and r < k, then  

S,7+~ = S'~ where  SI is a level- two group  which ;s c o n n t c t c d  with at lllOSt ~1! " 1 
edges  to every ,element of {x'[, x~ . . . . .  x'~} and i is the largest possible  index with 

this proper ty .  We can choose  such an SI, beeaus.:  g(x';), g(x~) . . . . .  g (x '~ )<n  and 
r<  k. xT',, is the level -one  vertex be longing  to S",~. The  s equences  {x'[}, {S'[} 

i = 1 , 2  . . . . .  k) have the p roper ty  ~hat x'[ is c o n n e c t e d  to at most  m - 1 vert ices of  

S 7 if i,~j. If we omit  from S'[ the vert ices which are connec ted  with x" for i ~ / ,  
then at least k m - ( k  - l ) ( m -  1 )~  > k vert ices remain  in them which toge the r  with 

x'; . . . . .  x~ and the cen te r  of  T define a quas i - inouced  T~. [ ]  

Swo O. Proof of r'~e proposition given in step 7. W e  suppose  that  s o m e  P~ ~ A, 

is connec ted  with at least k 7 different  A r V/e r e n u m b e r  these  sets AI with indices 

l, 2 . . . . .  k 7. Now x~e can def ine a partial  t~ee T~ .~, in G by taking the  cen t re  of 

T~,~, at P~, choos ing  the leve l -one  vert ices Oz, Q2 . . . . .  O~, so that  O~ ~ A~ and 
choosi lg the level-tv, o group  be longing  to Q~ from the comple t e  bipar t i te  graph 
Be for l ~ j < ~  k 7. (The definit ion of A~ makes  this poss ib le0  

Applying L e m m a  2 for Tk~.k', we have a P 2 e { Q ) l .  O 2  . . . . .  Q / ~  which is 
connec ted  with at least ~/T~/k = k 3 level- two groups  of Tk'.j,. ( ~  is c e n n e c t e d  to 

at least kS/k = k ~ vert ices of these groaps ,  but we do not use that  now.t  The 
delinit ion of ~ allows us to def ine a partial  t ree Tk,.k~ of G with cen t re  in P2 so 
that every level-one ver tex is in the same Bj as its level- two group.  Apply ing  
Lemma 2 again, we find P,  which is c o n n e c t e d  to at least k~/k = k 7 vert ices e,f 

x ' k ' / k=  k level- two groups  of Ta,.~,. The  defini t ion of p~ h a k e s  possible  to define 
the following partial g~aph G '  of G (we make  again a r e n u m b e r i n g  of the  sets A, 

in order  to have s impler  indicesl:  B~ and B'[ form a kT-kTcomplete bipart i te  graph 

for i = 1, 2 . . . . .  k and p ,  is connec ted  to every ver tex of U f  ~ B',. We const ruct  a 
quas i - induced 7~ m G'  as follows: 

R~cB~. and S k c B ~  so ttmt I & l = k .  We suppose  that  Rk, Sk, Rk ~, 
& ~ . . . . .  R ,  & are con:~tructed for r > l .  We  define R~ ~ and & , : R ,  i is a 

vertex of B', , which is not  connec ted  to [...J) , & and & - i  c B"  ~, IS,_ ,1 = k so that  

S" ~ is not  connec ted  to [..J~=~ R,. The definit ion of R, ~ makes  sense  since every 
vertm; ot 1:~ i can be connec ted  with less than k s vert ices of B, if i < j  according  to 
the definition of B, so the n u m b e r  of verti.:es in B;! ,  which are c o n n e c t e d  to 

[..JJ,'::, S~ is less than k t k - r  + l ) k S <  IBm' tl = k .  The  sau~4 reasoning  shows that  the 
numbe r  of vertices in B~'~ connec ted  with I..J~_~R, is less than  ( k - r + l ) k S ~  < 

IB.;' i ! --k = k V - k  so S" l can be defir~ed sensibly.  

The  ccnter  P~, the level -one  vert ices Rt ,  R2 . . . . .  R~ and the level - two groups  
S, ,  S= . . . . .  & de t e rmine  a quas i - induced  T~ in G. This is a cont radic t ion .  [ ]  
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Step I O. W e  deft n e m  = rr (i, j)  for  every  A~.j ( ! ~< i ~< t, 1 ~< j ~< p~-- the  def ini t ion 
of A,q is given in s tep  6) as follows: m is the  maximal  in teger  for  which the re  exist 
xl,  x2 . . . . .  x~ E /~i.~ D, c A,  . Oi2c A,  . . . . . .  Di ~- A,~ so t h a t i < i l < i 2 < i , , I D , , [  := 
ID,21 . . . . .  [D~.. l=k and  x~ is c o n n e c t e d  with every  ver tex of /9/. for  n := 
1 ,2  . . . . .  m, If no  m exists wi th  the  r equ i red  p roper ty ,  we set m(i, j l = O  (for 
examp l e  m( t . j )  =0  for  j = l, 2 . . . . .  P0. 

P ropos i t i on .  m = m(i, j ) < k  ~s ]'or every i, j, l ~i<<-t, l ~ j<~p~. 

Pro~~f .  I f  m : m(i , j )>~k  ~5 for  some  i,j, then  

rn '  

~e, ,}U{x, ,x~ . . . . .  x.,}u U O~° 
n - I  

induces  a s u b g r a p h  ef  G which  con ta ins  Tk,,k as a part ial  graph.  (P,,~ is the ver tex 
of A, which  is c o n n e c t e d  to every  ver tex  of A~,j--cf. s~ep 6.) L e m m a  2 gives us a 
ver tex  x,, (for some  1 ~< n <~ m) wh£ch is c o n n e c t e d  to at  least  k/k = 1 ver tex of 
x/kls/f¢ = k s different  sets  A , - - w e  have  a con t rad ic t ion  with the  p ropos i t ion  of 
s tep  7. [ ]  

Step I 1. We color  the  edges  of G connec t ing  different  A~'s with two colors. Let  
(x. y) be  an  edge  of G so tha t  x ~- A~, y ~ A~, and  i' ~: i. W e  may assume t <: i' and 
x e A,.i for  some  1 ~ j  ~</7,. W e  cons ider  the  set {x~, x2 . . . . .  x , , } c  A~.~ defined in 
s tep  10. If rn( i , j )=O,  t hen  the  e m p t y  set  is chosen .  

Th e  edge (x, y) is co lo red  with 

red i f x f~{x l ,  x2 . . . . .  x,,} and  y~Ai ,  U A ~ U . . . U A ~ . . , ,  

blue otherwise .  

P ropos i t i on .  (a) I{Y : Y ~ a , , ,  i < i', (x, y) is red}l < (k - l )k  7 for every fixed i and 

x E A i ,  
(b) [{i ':x~-Ai,  y ~ A r ,  i < i ' ,  (x, y) is blue}]<2k TM for every fixed i. 

Proof .  (a) Let  us suppose  that  x ~ A i d .  If (x, y) is red, then  x~{x~,  x2 . . . . .  x,,}, 
y ~ A , , U A ~ U . . . U A ~ , ~  and  the  choice  of m = m ( i , j )  implies tha t  at most  k -  1 
edges  go f rom x to Au. O n  the  o t h e r  hand ,  x is connec t ed  with less than  k ~ 
di f ferent  A,,'s by the  p ropos i t ion  of s tep 7. 

(b) Let  x be a ver tex  of Aid. If x ~ A i . i - - { x  I . . . . .  x,,,} then  blue edges  f rom x ~ 
Au for i < i '  are possible  only  if i 'cIi~ . . . . .  i,,}. This  means  that  the  blue edges  
f rom A,. i r each  ley than  n l k V ~ k  22 Ai?s for i < i '  if i, j a re  fixed. (Propos i t ions  in 

s tep  7 and  s tep 10 were  used.)  Since A~ = [_J~"_~ A~. i, p, ~ 2 k  ~ (cf. S~ep 6) therefore  
the  blue edges  f rom A~ reach  less than  ](22. 2k~= 2k ~ A / s  for i < i '  if i is 

fixed. [ ]  
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Step 12. Proposi.~:ion. The graph G2 with vertices U', = ~ A, and wi~h the red edges 
{defined i~1 step 11) is at most ( k -  l)k~-chromatic. 

Proof. Let x,, x2 . . . .  be the following ordering of the vertices of G2: first we take 
the vertices of At in any order, then the vertices of A2 in any order . . . .  , finally 
!he vertices of A, in any order. A, induces an empty subgraph of G 2 for all 
l ~:  i ~ t, therefore part (a) of the proposition in s'~ep I 1 shows thai the "forward 
degree" of the vertices of G2 in the ordering given above is less than ( k -  l)k 7 
which implies x ( G 2 ) ~ ( k - 1 ) k  7 easily. [] 

Step 13. Propesilion. The graph G3 with vertices I._Ji_,.4 and with the blue 
edges (defis~ed in step 11) is at most 2k3°-chromatic. 

Proo[. We define the graph G.~ as follows: V(Gq)={wl ,  w2 . . . . .  w,} and (w, w.,) 
is an edge of G~ if and only if there is an edge between A, and A ,  in G3. Part (b) 
of the proposition in step 11 shows that the "'forward degree" of the vertices of 
G~ in the orderivg Wl, W,._ . . . . .  w, are less than 2k ~" so x(G~)-<..2k 3° which 
implies x(G3)<~2k ~° since A, induces an empty subgraph of G> []  

Step 14. Proposition. The graph G 4 with vertices U', ~ A, and with the edges o] 
Ci~ which are neither blue nor red, is at most 2kS-chromatic. 

Proof. G4 consists of t connected components all of which are at most 2k ~- 
chromatic (step 6). IS] 

Step 15. The proot of Theorem 5 is now complete since 

X(Gl )  = x(G2 U G 3 U G 4) ~ x(G2)x(G3)x(G,a) 

-<-(k - l ) k :  " 2k ~'" 2 k S ~ 4 k  4~ 

therefore the chromahc number of G~ is bounded by a polynom of k as claimed 
in step 4. 
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