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Our paper proves special cases of the following conjecture: for any fixed trre 7 there exists a
natural number f = f(T) +o that every triangle-free graph of chromatic number {iT) contains T
as au induced subgraph. The main ccsult concerns the case when T has radius two.

i. Introduciion

Our paper gives » reexposition and some partial results on the foliowing
conjecture of A. Gydrfés:

There exists an integer-valued function f defined on the finite trees with the
property that every friangle-free graph with chromatic number f(T) contains T as
an induced subgraph.

The crucial point in the conjecture that it concerns induced subtrees—trees as
partial graphs can be found easily in graphs of large chromatic number (cf. Section
2).

The conjecture was posed in [1] for K, -free graphs but it scems to us that the
special case n =3 contains ali the difficulties. We restrict ourselves to triangle-iree
graphs throughout this paper.

Our main result is Theorem 5 which provzs the conjecture for trees of radius
two and replaces the ad hoc proofs known by us for various special trees. The
only other case when we can prove the conjecture occurs if T is a “mop”
(Theorem 4). A “mop” is a path with a star at the end.

Let G=(V,E) and G'=(V’, E') be two grapns. G’ is a partial graph of G if
VeV and E'cE. G'is an induced subgraph of G it V'c V and for x.ye V'
(x, y)€ E' if and only if (x, y)e E. If G is an induced subgraph of G then G'is
d=termined by V'—sometimes we say that G’ is induced by V'. The subgraph of
C induced by X < V(G) is denoted by Gx.
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2. A walk around the conjecture

Partial versus induced subtrees

Tue conjecture becomes true with (f(Ti=| V(D)) if we want T to appear only as
a partial graph instead of induced subgraph. This can be seen from the corollary
of Theorem 1 below, which certainly belongs o the graph theoretic folklore. We
do not know how weli-known is Theorem 1 itself.

Theoviem 1. Let G be a k-chromaiic graph whose uvertices are labeled with
1.2,..., k according to a good k-coloring. If T is a labeled tree on k vertices, then
G contains a partial tree isomorphic to T. (Isomorphy is understood between labeled
graphs.)

Corollary. A k-chromatic graph contains every tree on k vertices as a partial graph.

Proof of Theoren: 1. We use induction on k. The case k=1 is clear. We prove
that the theorem follows from k — 1 to k. Let P be a vertex of T with degree one
and with label (). P is connected with the vertex Q of T which is labeled with
I(Q). Let A be the sct of vertices of G in color-class [(Q) so that every vertex in
A is connected with at least one vertex of color-class I(P). A is not empty
because G is k-chromatic. If we remove from V(G) the vertices of color-class
I(P) and the vertices of color-class [(@Q; which are not in A, we have a
(k —1)-chromatic graph with a good (k — 1)-coloring. The inductive hypothesis
guarantees a partial tree T’ (label-) isomorphic to T~ P. The edge (x. vie E(G)
where x = AN V(T') and y is from color-class {(P), completes T" to a partial tree
(label-) isomorphic to T. [J

Graphs without complete bipartite subgraphs

While trying to prove the conjecture, R3dl and Hajnal got (independently) the
following result:

Theorem. For every tree T and k=1 there exists a g = g(T. k) with the property: if
a graph G contairs no k—k complete bipartite subgraph as a partial graph and
x{G) =g, then G contains T as an induced subgraph.

As for k=2 the complete k-k bipartite graph is the quadrangle, the above
result shows the conjecture to be true if “triangle-frec” i= replaced by
“quadrangle-free”. Combining these two properties, it is easy to prove the
following:

Theorem 2. A k-chromatic graph without tricnyles and rectangles contains every
tree on k vertices as an induced subgraph.
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Remark. It is interesting to compare Theorem 2 with the corollary oi Theorem: 1.

Proof. We prove a stronger statement: if C 1s a triangle- and quadrangle-free
graph and every vertex of GG has degree at least k - 1, then G contains every tree
of k vertices as an induced subgraph. We prove by induction. The case k=2 is
obvious. The inductive step runs as follows.

I G is a graph without trianglcs and rec:angles and d(x)= k for every x ¢ V(G)
and T is a tree on k + 1 vertices then G contains an induced T’ which we get from
T by removing the edge AB and the vertex A where A is of degree 1. The set of
vertices connnected with B in G are divided into two parts.

X, ={x:xe V(T"),(B, x) e E(G)}, Xo={x:x¢ V(T", (B, x)e E(G)}

No vertex of X, is connected to any vertex of X, as G is triangle-frece. No
two verticas of X, are connected to the same vertex of V(T')~ X, —{B} since G is
quadrarngls-free. V(T - X, —{B}|=k—-IX,|- | <| X, because k=1«
[X,|+|X,] = d(B)=k, therefore there exists a ye X, which is not connected to
V(T')-{B}. The subgraph of G induced by V(T')U{y} is isomorphic to 7. [J

Triangle-free graphs of diameter two

It would be very desirable to prove the special case of the conjecture when G
contains n¢ triangles but the addition of any new edges destroys this property. It
is easy to see that these graphs are the iriangle-free graphs of diameter two.
R(k, 3} denotes the classical Ramsey-uumber, i.e. the smallest m for which every
graph of m vertices contains a triangle or its complement contains K. T, , is a
tree where k paths of three vertices start from a common center. (The notation
T, is introduced in Section 3, that is the reason behind the notation.)

Theorem 3. If G is a triangle-free graph of dinmeter two, x(G)= R(k,3)+1 and
Pe V(G), then G contains T, | as an induced subgraph, so that P is the center of
T

Presf. Ve decompose V(G)—{P} into two disjoint sets:
A-={x:xe V(G)-{P}, (x, P) e E(G)},
B={x:xe V(G)-{P}, (x, P)¢ E(G)}.

For every a€ A we define B, ={b:be PR, (a, b)e E(G)}. Let s be the smallest
number for which we have an A’c A, |A'|=s for which [, B, = B~ 5 exists
and s=|A| because J,. B, = B (G has cdiameter two). If A'={a,...,a}, then
the definition of s guarantees by,..., b, where b;e B, and h ¢ B, for 1= j=s.
i# ). The sets B,,B,,..., B, U{P}, A induce empty subgraphs in G which
means s+ 12 x(G)=R(k,3)+1 i.e. s= R(k, 3). The subgraph of G induced by
{b., by, ....h} is triangle-free so it contains k vertices, say by, by, ..., b, which
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induce an empty subgraph of G. The set {I, a,. a,,..., a,, by, by, ..., b} induces
T, in G. O

3. Mops and trees of radius two

Mops

An (m, n)-mop is defined by identifying one extreme veriex of a path of m
vertices with the center of a star of 1+ 1 vertices. The other extreme vertex of the
path is called the top of the mop. We assume m=2, n= 1. A (2, n)-mop is a star
of n+2 vertices and an (m, 1)-mop is a path of m+1 vertices.

Thecrem 4. f(T)s=m+n if T is an (m, n)-mo>.

Preof. We prove a stronger statement: if G is triangle-free, x(G)}=m+n,
Pe V(G), d{ix)=m+n—1 for xe V(G)—{P}, d(P)=1 then G ~ontains an in-
duced (m, n)-mog with its top in P. The proof goes by induciion on m. The case
m =2 is obvious because 4(P)=1. d(Q)=n+1 where Q is a vertex connected
with P.

The inductive step is made from m - 1 to m. X < V(G)—{P} denotes the set of
vertices which are not connected with P. {x,, x,, ..., x,} & X is defined so that x; is
connected with at most m+n -3 vertices of X —{x;, ¢o...., x,}vor I1sist and ¢
is the largest number satisfying this property. B=X- A. x(Gx)=m+n -1 since
any good p-coloring of V(Gy) can be extended to a good (p+ 1)-coloring of
V(5). We can easily define an m +n ~ 1-coloring of V(Gy) so that A is colored
with at most m+n -2 colors. There exists a Qe V(G) for which (P, Q)e E(G)
and Q is connected with some vertex of B, otherwise the (m+n—1)-coloring
defined above can be extended to a good (i + 1t —1)-coloring of G which is
impossible. The graph G’ induced by BU{Q} ia G is triangle-free, x(G')=
mn—1, dixyzm+n—-2 for xe V(G)—{Q} and d(O)=1. The inductive
hypothesis assures an induced (in -~ {, n)-mop T’ with its top in Q. P completes T’
1o an (m, n)-mop T which is an induced subgraph of G end its top is in P. [3

Trees of radius two

A graph is called of radius two if there is a vertex—the center of the
graph—from whici every other vertex can be reached by a path of length at most
tw. (The length of a path is the number of its vertices minus one.) T, is a special
tree of radius two, the center of which is connected with k vertices and all these k
vertices are comanccted with [ additional vertices. T, has kl+k+1 vertices. 1f
k=1, then T, is the k-rary tree with two levels. We write T, instead of T, . The
vertices of distance one and two from the center of a tree of radius two are called
“level-one™ and “ievel-two™ vertices respectively. The level-two vertices form
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“level-two groups'—one level-two group consists of the set of vertices connected
with the same level-one vertex of the tree.

Theorem S. (T) exiss for trees of radius two.

Proof. Step 1. It is enough 1o prove the theorem for T - T, because every trec of
radius two is a partial graph of some T,.

The proof is presented as steps numbered with 1,2,.... 15 for better under-
standing. We give here the very brief outline of the proof. fi(k), f,{k;.. .. denote
funcuons of k.

A Ramsey-type lemma (Lemma 1) allows us to loose the condition that T, is
wanted as an induced subgraph (steps 2 and 3). The heart of the proof is a
decomposition (step 4) of G into disjoint parts A, A,, ..., A, where A, is a large
(f,(k)--f,(k) complete bipartite graph plus vertices which are connected with a
large number (at least f>(k )) of vertices of that bipartite graph. The part X of & which
escapes from the decomposition is fi(k)-chromatic or contains T, (step 5). The
components Ay, ..., A, are f,(k)-chromatic (step 6). Sincz 1 certainly depcnds on
the number of vertices of G, the structu  of the edges between differeat A;"s
must be analyzed. The sct of these edges is deuoted by 4. There are two possible
cases:

Cuse A. € can be colored with red and blu: so that the chromatic number of
the graphs containing red and blue edges respectively is bounded by f.(k) and
folk), (steps 7,9, 10, 11, 12, 13) which impiies a bound for the chromatic numbey
of G (steps 14, 15).

Case B. The structure of € allows us (by repetitive application of Lemima 2 in
Step 8) to find T, in Ui, A,

Step 2. T, is called quasi-inducsd subgraph of a triangle-free graph G if T, is a
partial graph of G and every edge of G which connects level-one and level-tvo
vertices of Ty is an edge of T,. In other words we can say that the only edges in G
which make T, a “non-induced” subgraph, connect level-two vertices of T,.

The following “*Ramsey-type” lemma shows that a quasi-induced T -« ina
triangle-free graph G contains T, which is an induced subgraph of G.

Lemma 1. H, denotes the complete i-partite graph, where every vertex-class con-
tains i vertices. In every two-coloring of the edges of H iy there is either a
triangle in the first color or Hy in the second color.

Prooi. Let us consider a two-coloring of the edges of H= H 5., and suppose
that there is no monochromatic triangle in the first color. We construct sets
Al A, ..., A so that |Al=k for 1=si=<j, A;’s are subsets of different vertex-
classes of H and A,’s are spanning a complete j-partite graph which is mono-
chromatic in the second color. Let j be maximal with respect to the above
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property. If j=k, we have nothing to prove. Let us suppose that j<k. g P
denotes for Pe {J!_, A; the number of veriex-classes in H which contamn at leas:
k vertices connected with P in color one. If g(P)=k, then these vertices span &
menochromatic H, in the second color and the lemma is proved. (H contains n¢
monochromatic triangles in the first color) If g(Pysk -1 for every Pe |J! | A,
then we bave at most jk(k = D=k~ 117k vertex-classes of Hoin which at least b
vertices are connected with some vertex of U A, ocolor one—as H s
{k — 17k + k-partite and j<<k. we can choose a vertex-class (), different from
these classes and different from the vertex-classes containing A,. A, .. .. AL C,
contains at most jktk - 1)<(k ~ 1)’k vertices connected with )., A, in color
one. but C, contains (k — 1)’k + k vertices. therefore we can choose k vertices
from C, which are connected to all vertices of U, A in color two. The k
vertices chosen from (), can be added as A, to A A. ... A, which is a
contradiction. [

Siep 3. In the light of steps 1 and 2 it is enough to prove the following
statement: the chromatic number of G is bounded by a function of k if G is a
triangle-free graph which doces not contain a quasi-induced T,. We assume G to
be such a graph throughout the fullowing steps of the proof.

Step 4. The heait of the proof is a decomposition of V(G):

VIG)=J AUX

- 0

where the sets A, and X is defined as follows. A,=9%. If A, A, ....A are
already defined. we consider two cases, If there is no k™-k" corplete bipartite
subgraph in the graph induced by V(G)-UJ) , A, then =5 and X=
VIGY = A, Gtherwise B, is defined as a vertex-set of a k*-k* complete
bipartite subgraph in the graph induced by V(G- 1! A, in G. C,., denotes the
set of vertices in VIG)~UJ;. A, which arc connected te B,,, with at least k°
edges. A, =B, UC,,,.

The graph induced oy U;., A; in G is denoted by G,. In the following step we
shall prove that x(Gy) is bounded by a function of k. Since V(G)=
VIG1U VI(G)), it remains to show the same for G,. We can assume = | and we
can omit A, which was introduced only to easc the definition of the scts A,

Sten 5. x(Gy) = g(k) for some function of k. The trath of this statement follows
immediately from the result of Rédl and Hajnal mentivned in Section 2 since Gy
contains neither a k"-k® complete bipartite graph as a partial graph nor T=17, as
an induced subgraph. In order to avoid reference tc an unpublished result, we
give a proot of the above statement. i is enough to prove the following
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proposition:
Proposition. Gy contains no T,, as a partial grapn if
a=k* "¢, b=k‘c and c=k"

Proof. If T=T,, is a partial graph of Gy, then we apply Lemma 2. (Lemma 2
appears in Step 8. No other forward-references occur during the proof.) L.emma 2
assures a level-one vertex P, of T which is connected to a,=va/k level-two
groups of T with b, = b/k cdges. We have no T, , as a partial tree of T, so that
ai' level-two vertices of T, , are connected with P,. If we 1terate this argument
with a,,, =va/k, b;., = bk ¢ times in all, we find that a. = 1. b, = ¢ which shows a
¢-¢ complete bipartite subgraph of T--we have a contradiction, since ¢ = k™ and
Gy contains no k®-k*® complete bipartite subgraph. [

Remark. Using the corollary of Theorem 1, we have the bound |V(T,,|=
ab+a+1 for x(Gy). It is a poor bound, we can improve it, but we are not able to
give a polynomial bound. We note that such an improvement would imply a
polynomial bound for x(G).

Step 6. The chromatic number of the graph induced by A, in G is at most 2k"
since the neighborhoods of the vertices of B; define a covering of A; with at most
2k" empty subgraphs. This observation allows us to decompose A, into disjoint
sets A, 1, A5, ..., A, sothat A, induces an empty subgraph of G for I=<j=p,
p,<2k" for 1=<i=rt and for every A,; we can find a P, €A, such that P is
cornected with every vertex of A,

Step 7. Proposition. For every 1<i<iand Pc A,

{/:(P,Q)e E(G} forsome Qe A}<k’.

The preof is based on the following lemma.

Step 8. Lemma 2. n, m are natural numbers and H is a graph with a partial
graph T = T,,: . The subgraph of H induced by T contains either a quasi-induced
T, or a level-one vertex of T which is connected to at least m vertices of at least n
level-two groups of T.

Proof. We denote the level-one vertices of T by xy, x,. ..., x,,2 and the level-two
groups by 5,.5,,.... S, g(x;) denotes the number of level-two groups con-
nected to x, with at least m edges. We have to prove the following: if g(x;)<n for
every 1 <si=<kn’ then T conains T, as a quasi-induced subgraph.

Firsi we define a subsequence {x1} cf {x;} and a subsequence {5} of {S;} with kn
elements as foilcwvs: x4=x,, §4=S,. If «%....,x. and S,....S, are already
defined and r < kn then we define S7., =S, where S, is a ievel-two group which is
connected to every vertex of {x},..., x;} with at most m— 1| edges and i is the
smallest possible index wita this property. We can choose such an §; because
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g(xp), glxs), ..., g(x,)<n and r<kn. x]., is the level-one vertex belonging to
S’.,. The sequences {x}}, {§'} (i=1,2,....kn) have the property that x, is
connected to at most m — | vertices of S if i<},

Now we define a subsequence of {x}} and {S}} both with k elements These are
denoted by {x"} and {S7} (i=1,2,..., k) and they are defined as follows: x| = x},.
St=8,,. If x{, x5, ....x" and 87, S5, ....S) are already defined and r<k, then
S, =8 where S! is a level-two group which s connceted with at most m - |
edges to every clement of {x7, x5, ..., x7} and i is the largest possible index with
this property. We can choose such an S), becaus.: g(x?}), g(x5), ..., g(x7)<n and
r<k. x/, is the level-one vertex belonging to S ,. Thc sequences {x}, {S7}
(i=1,2,..., k) have the property that x7 is connected to at most m — 1 vertices of
Sy if i# ). If we omit from S7 the vertices which arc connected with x7 for i# .
then at least km ~(k — 1)(m = 1)= k vertices remain in them which together with
xi.....x; and the center of T define a quasi-inauced T,. O

Sten 9. Proof of the proposition giver in step 7. We suppose that some P, e A,
is connected with at least k7 different A. We renumber these sets A, with indices
1.2, k7. Now we can define a partial tiee T, ,< in G by taking the centre of
T,', at P;, choosing the level-one vertices Q,, Q,,..., Q. so that Qe A and
choosi1g the level-two group belonging to Q; from the complete bipartite graph
B, for 1 =j<k’. (The definition of A, makes this possible.)

Applving Lemma 2 for T, we have a P,e{Q,. Q,, ....Q,-t which is
connected with at least VE /k= % level-two grouns of T,-,-. (P, is coennected to
at least k*/k =k* vertices of these groups. but we do not use that now.) The
definition of P, allows us to define a partial tree T,.,« of G with centre in P, so
that cverv level-one vertex is in the same B, as its level-two group. Applying
Lemma 2 again, we find P. which is connected to at least k®/k = k7 vertices of
VETTk =k level-two grcups of Ty .~ The definition of P, riakes possible to define
the following partial grapli G of G (we make again a renumbering of the sets A,
in order to have simpler indices): B! and B" form a k7-k” complete bipartite graph
fori=1,2....,k and Py is connected to every vertex of ! ; B,. We construct a
quasi-induced T, in G’ as follows:

R, eB! and S,<Bj] so that |S,J=k We suppose that R,. S.. R..,.
Se o R,. S, are constructed for r>1. We define R,_; and S,_:R,., is a
vertex of B) , which is not connected to |J}_, S, and S,., < B/ . |S, .| = k s0 that
S, .1 is not connected to L., R, The definition of R, ; makes sense since every
vertes, of B; can be connected with less thun k* vertices of B, if i <<j according to
the definition of B, so the number of vertizes in B/, which are connected to

b.. 8 is less than kik —r+ Dk*<|B".|=k . The sam. reasoning shows that the
number of vertices in B/, connected with U\, R, is less than (k-r+ Dk*=<
|IB” |- k=k7—k so S,_,| can be defined sensibly.

The center Py, the level-one vertices R, R, ..., R, and the level-two groups
S5, . ... S, dctermine a quasi-induced T, in G. This is a contradiction. [3
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Step 10. We define m = m{i, j) for every A, (1=<i=<{, 1<j=<p——the definition
of A, is given in step 6) as follows: m is the maximal integer for which there exist
X Xo oo W Xm€ A, DA D, CA,...,D_ <A, sothati<i <iy<i,, |D]|=
D j=---=|D,|=k and x, is connected with every vertex of D, for n=
1,2,....m. 1If no m exists with the required property, we set m{i, j)=0 (for
example m(t, j)=0for j=1,2,...,p).

Preposition. m = m(i, j)<k'’ for every i,j, 1<i=<1, 1 sjsp,

Proof. If m = m(i, j)= k" for some i, j, then
{F’i.’}u{xl’ x25 L] xm}U L'Jl Di,x

induces a subgraph of G which contains T,:s, as @ parial graph. (P, is the vertex
of A, which is connected to every vertex of A,;—cf. step 6.) Lemma 2 gives us &
vertex x, (for some 1=n=m) which is connected to at least k/k =1 vertex of
VkTJk=k different sets A,—we have a contradiction with the proposition of
step 7. O

Step 11. We color the edges of G connecting different A;’s with two cclors. Let
{x, y) be an edge of G so that xe A, ye A, and i'#i. We may assume 1 <'{ and
xe A, for some 1=j=<p. We consider the set {x,, x5,....x,} <A, defined in
step . If m(i, j)=0, then the empty set is chosen.

The edge (x, y) is colored with

red if x¢{x,, x5, ..., %, and y¢£A UAU---UA_,

blue otherwise.

Proposition. (a) [{y:ye A, i<i', (x,y) is red}|<(k— D)k’ for every fixed i and
x€ A,
(b) Hi':xe A, ve A, i<i, (x,y) is blue}| <2k™" for every fixed i.

Proof. (a) Let us suppose that x€ A ;. If (x,y) is red, then 'xeé{xl, Xos e vy Xonha
y¢A UA U --UA, and the choice of m=m{i,j) implies that at most k -1
edges go from x to A,. On the other hand, x is connected with less than k’
different A,’s by the proposition of step 7.

(b) Let x be a vertex of A, ;. If xe A, ~{x,....x,]} then blue cdges from x v
A, for i<i' are possible only if i'e{i;, ..., i,}. This means that the blue edges
from A,; reach les than mk’<k? A.s for i <i'if i, j are fixed. (Propositions in
step 7 and step 10 were used.) Since A, =, A;;, p,=2k" {cf. Step 6) therefore
the blue edges from A, reach less than k7. 2k =2k" A’s for i<<i’ if i is
fixed. O
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Step 12. Proposicion. The graph G, with vertices U, ., A; and with the red edges
{defined in step 11} is at most {(k ~ 1)k’ -chromatic.

Proof. let x;, x,.... be the following ordering of the vertices of G,: first we take
the vertices of A, in any order, then the vertices of A, in any order, ..., finally
the vertices of A, in any order. A, induces an empty subgraph of G, for all
I =<i=1, thercfore part (a) of the proposition in step 11 shows that the “forward
degree™ of the vertices of G, in the ordering given above is less than (k — 1)k’
which implies x(G,)<(k—1)k” easily. (]

Step 13. Propesition. The graph G, with vertices \Ji_; A and with the blue
edges (defined in step 11) is at most 2k**-chromatic.

Froof. We define the graph G4 as follows: V(G4) ={w,, wa, ..., w} and (w, w,)
is an edge of G4 if and only if there is an edge between A, and A, in G;. Part (b)
of the proposition in step 11 shows that the ““forward degree™ of the vertices of
G’ in the ordering wy, wa,...,w, are less than 2k™ so x(G4) =2k which
implies x{(53)=2k" since A, induces an empty subgraph of G,. O

Step 14. Proposition. The graph G, with vertices J, ., A, and with the edges of
G, which are neither blue nor red, is at most 2k*-chromatic.

Proof. G, consists of 1 connected components all of which are at most 2k"-
chromatic (step ¢). [0
Step 15. The proot of Theorem £ is now complete since

x(G) = x(G, UG UG)=x(G)x(Gox(Gy
s(k—1)k7 - 2K 2k =4

therefore the chromatic number of G, is bounded by a polynom of k as claimed
in step 4.
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