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Mouse
methylated regions (TDMRs) were identified and localized in the mouse genome
using second generation virtual RLGS (vRLGS). Sequenom MassARRAY quantitative methylation analysis was
used to confirm and determine the fine structure of tissue specific differences in DNAmethylation. TDMRs have
a broad distribution of locations to intragenic and intergenic regions including both CpG islands, and non-CpG
islands regions. Somewhat surprising, there is a strong bias for TDMR location in non-promoter intragenic
regions. Although some TDMRs are within or close to repeat sequences, overall they are less frequently
associatedwith repetitive elements than expected from a randomdistribution. Many TDMRs aremethylated at
early developmental stages, but unmethylated later, suggesting active or passive demethylation, or expansions
of populations of cells with unmethylated TDMRs. This is notable during postnatal testis differentiationwhere
many testis specific TDMRs become progressively “demethylated”. These results suggest that methylation
changes during development are dynamic, involve demethylation and methylation, and may occur at late
stages of embryonic development or even postnatally.

Published by Elsevier Inc.
Introduction
The concept of differentially methylated regions in themammalian
genome has changed markedly in recent years. CpG islands were
previously thought to be almost entirely unmethylated except within
imprinted regions and on the inactive X chromosome [1]. Early studies
[2,3] using Restriction Landmark Genomic Scanning (RLGS) analysis of
DNA from different tissues identified tissue specific differentially
methylated regions (TDMR). However, the sequence and location of
TDMRs in the genome were largely unknown. The advent of the
mouse and human genome project and virtual RLGS [4–6] has made it
possible to more rapidly identify the DNA sequence of RLGS fragments
and the locations of TDMRs [7–10]. Comparison of TDMRs in human
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and mouse has established that the DNA sequence of many TDMR
regions are conserved and that the methylation profile in mouse and
human is conserved as well [9,11,12].

TDMRs have also been identified using DNA methylation array
methods. Studies using antibody to 5-methyl cytosine to capture
methylatedDNA found strong CpG islandpromoters (high CpGdensity)
were mostly unmethylated, weak CpG island promoters (low CpG
density) were preferential targets for de novo methylation, and
promoters ofmost germline-specific genesweremethylated in somatic
tissues [13,14]. Issa and colleagues, using methylated CpG island
amplification in combination with microarrays, found that among
more than 5000 autosomal genes with dense CpG island promoters,
approximately 4% were methylated in normal peripheral blood [15].
Schilling and Rehli performed global methylation analysis of human
testis, brain, and monocytes and found a significant association
between tissue specific promoter methylation and gene expression
[16]. Tissue specific CpG islandmethylation at developmental gene loci
were identified using a CpG island array [17]. In addition, high
throughput bisulfite DNA sequencing of regions of human chromo-
somes 6, 20, and 22 found that 17% of 873 analyzed genes are
differentially methylated in the 5′ promoter region and that in about
one-third, methylation is inversely correlated with transcription [11].

Thus, the recent analysis of genome-wide methylation patterns, by
a variety ofmethods, indicate that there aremore extensive differences
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in DNA methylation between differentiated tissues than previously
thought. For the most part, the CpG density and fine structure of
TDMRs have not beenwell defined nor is it clear how these differences
are established during development. We previously identified and
confirmed a number of TDMRs thatwere identified byRLGS and virtual
RLGS technology [5,8,12]. In this study, we have identified and
confirmed additional TDMRs using second generation virtual RLGS
software (vRLGS; [6] along with Sequenom MassARRAY quantitative
methylation analysis [18]. We also present initial studies that
characterize the fine structure of some of the TDMRs as well as tissue
and developmental stage specific methylation differences in TDMRs.

Results

Identification of TDMRs using second generation virtual RLGS (vRLGS)

In addition to DNA from adult male C57BL6/J mouse tissues
analyzed previously (liver, brain, kidney, muscle, colon, and testis),
DNA from C57BL6/J ES cells (Stewart Bruce 4, passage 13 and 17) were
analyzed by RLGS using both the NotI–PstI–PvuII and NotI–PvuII–PstI
enzyme combinations and vRLGS (see Supplementary Fig. 1 and [6,8].
Fig. 1 shows a NotI–PstI–PvuII RLGS profile of ES cells indicating that
several Pvu-TDMR loci were methylated in ES cells that were
Fig. 1. RLGS analysis of testis and ES cell DNA. A full RLGS profile of ES cell DNA and
portions of RLGS profiles (NotI–PstI–PvuII) are shown. Arrows indicate position of Pvu
43, 2, 6, 74, and 75 (see Table 2). Testis DNAs are from two different mice (C57BL/6J) and
ES1 and ES2 correspond to C57BL/6J Stewart Bruce 4 ES cells, passage 13 and 17
respectively.
unmethylated in testis. ES cells from two different passages (13 and
17) and testis DNA from two different mice were analyzed as shown.
The absence of RLGS spots indicates methylation since if the NotI site
is methylated it will not be digested with NotI or end-labeled. Second
generation virtual RLGS was able to identify the genomic location of
68 of the 150 TDMRs [8]. Tissue specific methylationwas confirmed at
34 loci, mostly using SequenomMassARRAY quantitative methylation
analysis [18] (4 were confirmed by other methods; See Fig. 2 and
Supplementary Figs. 2 and 3). As shown in Table 1, the TDMR locations
are distributed throughout the genome. Among the confirmed TDMRs,
32% are in CpG islands and 12% are in promoter regions. A very high
proportion (68%) of the confirmed TDMRs were located in non-
promoter intragenic regions, which is significantly higher than
expected from a random distribution (pb0.00005; see legend for
Supplementary Table 1). Array based methylation analysis as well as
bisulfite sequencing methods generally exclude repetitive regions. As
shown here, 21% of the confirmed TDMRs (NotI site) are within
repetitive sequences, mostly LTRs. Table 2 lists the confirmed TDMRs,
the RLGS based tissue methylation profile, the UCSC genomic position
(RLGS fragment), CpG island location, their genomic position relative
to the nearest gene, nearby gene, gene function, and human homology
(500 bp region centered on mouse NotI site). A complete listing of 68
TDMRs identified by vRLGS is provided in the Supplementary Table 1.
Analysis of gene ontology indicates that developmentally related
genes are significantly over-represented using the list of Virtual RLGS
TDMR loci or the confirmed list of TDMR loci (pb0.05). Zinc binding
proteins, including Zinc Finger proteins are also over-represented
(pb0.01).

Confirmation of TDMR methylation using Sequenom MassARRAY
quantitative methylation analysis

The TDMR methylation status in different tissues was initially
inferred from RLGS analysis. A diploid spot intensity indicating the
NotI site was unmethylated was given a value of 2, and the complete
absence of the spot, indicating complete methylation, a value of 0.
Partially methylated spots would have a value between 0 and 2 (see
Table 2 and Supplementary Table 1). Sequenom MassARRAY quanti-
tative methylation analysis [18] was performed to confirm RLGS
analysis and to provide some information on the CpG density and
extent of the differentially methylated region. Thirty-four out of 68
loci were confirmed (Table 2, Supplementary Table 1), 30 by
Sequenom MassARRAY quantitative methylation analysis and 4 by
other methods (MSP or regular bisulfite sequencing). The Sequenom
MassARRAY methylation pattern was not consistent with the RLGS
analysis for 4 loci suggesting the vRLGS identification was incorrect.
Technical problems prevented the confirmation of the remaining loci,
primarily due to the very high CpG density. Several examples of
Sequenom MassARRAY quantitative methylation analysis of con-
firmed loci are presented in Fig. 2. Consistent with RLGS, the
Sequenom MassARRAY quantitative methylation analysis indicated
Pst6 and Pst4 are completely methylated in all tissues except testis.
Pst4 is within a 5′ CpG island promoter region for Spesp1 (Sperm
equatorial segment protein 1) that is expressed at high levels in testis
[19] (http://symatlas.gnf.org/SymAtlas/). Pst6 is located in a 3′ exon
CpG island for Hspa1l (Heat shock 70KDa protein 1-like) that is
expressed virtually exclusively in testis (http://symatlas.gnf.org/
SymAtlas/) even though the promoter region is not differentially
methylated (see Fig. 3). Pvu6, located in an intergenic region, is
unmethylated in testis and partially unmethylated in muscle, but
completely methylated in the other tissues. Pvu35 is located in an
intron of Casz1 (Castor homolog 1, a zinc finger gene). RLGS analysis
indicated Pvu35methylation inmost tissues but partial methylation in
kidney (Table 2). Partial methylation is consistent with heterogeneity
of methylation within a cell type or heterogeneity of cell types within
a tissue and methylation differences between different cell types.
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Fig. 2. TDMRs confirmed by SequenomMassARRAYmethylation analysis. The figure shows the analysis of two sets ofmouse tissue samples includingmuscle (M), brain (B), kidney (K),
liver (L), colon (C) and testis (T). The colored circles indicate the degree of methylation with yellow representing 0% methylation and blue representing 100%. The position of the
Restriction Landmark NotI site is indicated. The four TDMRs (Pst4, Pst6, Pvu6, Pvu35) shown are located at 5′ promoter, 3′ exon, intergenic and intron, respectively.
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Table 1

Number Percent (%) Confirmed

Loci Loci (%)

RLGS loci surveyed 3200 ND ND ND
Tissue specific loci 150 ND ND ND
Virtual RLGS identification 68 100 34 100
CpG island 31 46 11 32
5′ promoter 19 28 4 12
CpG island and 5′ promoter 14 21 3 9
Non promoter intragenic 37 54 23 68
3′ exon 12 18 8 24
Other exon 8 12 6 18
Intron 17 25 9 26

Intergenic 12 18 7 21
Repeat associated TDMRs 18 26 7 21
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Additional RLGS and Sequenom MassARRAY data are presented for
Pvu74 and Pvu75, RLGS loci that are partially unmethylated in a
number of tissues but almost completely methylated in ES cells
(Supplementary Figs. 2 and 3). Somewhat surprisingly, based on RLGS
analysis, we found that 58% of the TDMR loci that are unmethylated in
one or more adult tissues are methylated in ES cells (see Table 2).

TDMRs associated with repetitive sequences

Methylation analysis using microarrays necessarily excludes
repetitive sequences so it is not possible to directly obtain information
Table 2
Confirmed TDMRs

Loci RLGS (0=Methylated; 2=Unmethylated) Genomic position

ES L K B C M T
(UCSC mm9, July, 2007)

Pst2 0 0 0 0 0 0 2 chr13:23,870,412–23,870,679
Pst3 1 0 0 0 0 0 2 chr13:113,442,268–113,442,637
Pst4 0 0 0 0 0 0 2 chr9:62,130,029–62,130,377
Pst5 0 0 0 0 0 0 2 chr2:166,334,892–166,335,070
Pst6 0 0 0 0 0 0 2 chr17:35,114,326–35,114,476
Pst7 0 0 0 0 0 0 1 chr13:47,740,395–47,740,624
Pst8 0 0 0 0 0 0 1 chr2:86,339,069–86,339,456
Pst10 1 0 0 0 0 0 2 chr17:23,745,919–23,746,668
Pst21 1 2 0.2 0 0 0 0 chr19:6,506,916–6,507,202
Pst32 1 0 0.5 0 0 0 2 chr12:72,418,916–72,419,073
Pst33 0 0 0.5 0 0 0 2 chr7:53,047,584–53,048,525
Pst44 0 0.1 2 0 0 1 2 chr2:72,650,905–72,651,173
Pst46 0 0 2 0 0 2 2 chr17:19,068,300–19,068,483
Pst61 2 0 2 2 21 2 2 chr6:88,143,544–88,143,892
Pvu1 0 0 0 0 0 0 1 chrX:82,550,596–82,550,800
Pvu2 0 0 0 0 0 0 2 chr11:115,330,714–115,330,950
Pvu4 0.5 0 0 0 0 0 1 chr7:13,556,457–13,556,671
Pvu5 1.5 0 0 0 0 0 1.5 chr6:48,570,188–48,570,357
Pvu6 0 0 0 0 0 0 1.5 chr2:166,335,063–166,335,276
Pvu7 0 0.2 0 0.1 0 0 2 chr12:112,266,963–112,267,177
Pvu8 1.5 0 0 0 0 0 2 chr17:23,746,661–23,746,884
Pvu12 1.5 0 0 0 0 0 2 chr10:80,740,143–80,740,491
Pvu16 0 0 0 0 0 0 2 chr1:167,973,707–167,974,203
Pvu23 0 0 0 0 0 0 1 chr14:115,954,195–115,954,552
Pvu24 2 0 0 0 0 0 2 chr8:111,318,491–111,318,829
Pvu35 0 0 2 0 0.1 0 0 chr4:148,294,717–148,294,921
Pvu42 2 0 0.1 0.1 1 0 2 chr8:124,860,388–124,860,558
Pvu53 0 1 1 0 0 0 2 chr15:82,413,163–82,413,352
Pvu57 1 2 0 2 0 0 2 chr14:120,788,365–120,788,475
Pvu66 1.5 0.1 2 ND 2 1 2 chr11:43,589,525–43,589,684
Pvu74 0 1 1 0.5 1 1 1 chr2:165,006,494–165,006,766
Pvu75 0 1 1 0.2 0.5 1 2 chr1:156,572,334–156,572,941
Pvu79 0 2 2 2 0.5 2 0.1 chr17:48,673,331–48,673,623
Pvu80 1.5 0.5 0.5 1 0.1 0.5 2 chr17:47,809,157–47,809,384

The table provides the loci; the RLGS spot intensity in ES cells, liver, kidney, brain, colon, mu
methylation at the NotI site of the TDMR; UCSC genomic position; location relative to CpG
relative to TDMR NotI site; Gene symbol; gene function; and human homology using a 500 b
CpG island. Pst10 and Pvu8 identified the same NotI site.

a N, no; Y, yes.
b F, full length homology; P, partial length homology; CpGi, human region containing Cp
concerning the differential methylation of these sequences. Due to
sequence divergence within repetitive sequences and/or the presence
of a portion of unique sequence within the RLGS fragment, it is
possible to resolve many repetitive sequences that contain a NotI site
using RLGS and to obtain information on differential methylation.
Among the 34 confirmed TDMRs (Table 2), 7 contain methylated NotI
sites within repetitive elements, six corresponding to LTR repetitive
elements, and one corresponding to a (CCG)n simple repeat (Pvu24).
All of these sequences are unmethylated in testis, but Pvu53 is
partially unmethylated in colon, liver, and kidney as well (see Table 2
and Supplementary Fig. 4). These results indicate that some TDMRs
are within repetitive sequences although at a significantly lower than
expected frequency based on a Monte Carlo simulation (simulated
mean=16; z-score=−2.9; pb0.0001). Excluding the TDMRs that are
within repetitive sequences, the average observed distance from the
NotI site of the TDMR to a repeat sequence is 380 bp. This is not
significantly different than the predicted value of 381 bp based on a
random distribution of NotI sites (z-score: 1.18; p=0.120). Taken
together, our data indicate that some TDMRs do occur within
repetitive elements, but at much lower frequency than expected by
a random distribution.

TDMR methylation fine structure

In order to understand the functional relevance of TDMRs, it is
essential that the methylation fine structure be determined. Both Pst3
CpGia Gene context Gene ID Gene function Human orthologb

N Intergenic None
Y 5′ promoter Ddx4 Enzyme F, CpGi
Y 5′ promoter Spesp1 Sperm membrane protein F, CpGi
N Intergenic None
Y 3′ exon Hspa1l Adaptor/Regulator F
N Intergenic F
N Intergenic None
Y 3′ exon Zscan10 Transcription factor P, CpG
N Intron Nrxn2 Receptor F
Y 3′ exon Dact1 Adaptor/Regulator F
N Exon Lmtk3 Kinase F, CpGi
N Intron AK019889 Unknown F
N Intron Vmn2r99 Receptor None
Y 5′ promoter Gata2 Transcription factor F, CpGi
N Intergenic None
N Exon Slc16a5 Channel/Transporter F
Y 3′ exon Zfp324 Transcription factor F, CpGi
N 3′ exon Zfp775 Transcription factor F, CpGi
N Intergenic P
N Intergenic P
Y 3′ exon Zscan10 Transcription factor F, CpGi
N Intron Tjp3 Adaptor/Regulator P
N Intergenic P
N Intron Gpc5 Membrane protein None
N Exon Zfhx3 Transcription factor F
N Intron Casz1 Adaptor/Regulator P
Y 3′ exon Zfpm1 Adaptor/Regulator P, CpGi
N Intron U58494 Unknown None
N Exon Mbnl2 Adaptor/Regulator F, CpGi
Y 3′ exon Adra1b Receptor F, CpGi
N Exon Cdh22 Adaptor/Regulator F, CpGi
N 5′ promoter Cacna1e Channel/Transporter P, CpGi
N Intron Unc5cl Adaptor/Regulator F
Y Exon Usp49 Protease F, CpGi

scle, and testis (2=diploid, 1=haploid, 0=absent), which is an indication of the relative
island; location relative to nearby gene; location and type of nearest repeat sequence
p mouse sequence centered on the NotI site, and whether human sequence is within a

G islands.



Fig. 3.Methylation fine structure associated with the Pst6 TDMR. The location of Pst6 TDMR within Hspa1l and a homologous regionwithin the Hspa1a gene are indicated in mouse
July, 2007 UCSC assembly. The GC percent, positions of CpG islands and repeat sequences are also shown. The lower panel indicates the percentage of methylation in adult testis (T),
liver (L) and ES cells. Other somatic tissues (muscle, brain, kidney, and colon) were essentially identical to liver (see Fig. 2). The length (bp) and number of CpGs in each region
analyzed by Sequenom MassARRAY methylation analysis are also shown.
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and Pst4 are located within CpG island promoter regions for genes
(Ddx4 and Spesp1, respectively) that are highly expressed in testis
(http://symatlas.gnf.org/SymAtlas/). The region of the Pst3 TDMR that
is unmethylated in testis is confined to the 5′ promoter CpG island
and the 5′ flanking region of Ddx4 (Supplementary Fig. 5; see also
[8]). The downstream regions (intron and 3′ exon) are similarly
methylated in all tissues including testis. The promoter regions of
several genes upstream or downstream from Ddx4 that show high,
but not exclusive testis expression are not differentially methylated
(Supplementary Fig. 6). In contrast to Pst3, the Pst4 TDMR region that
is unmethylated in testis includes the 5′ promoter CpG island of
Spesp1 and the 3′ exon more than 8 kb downstream (Supplementary
Fig. 7). Analysis of 2 intron regions, located approximately midway
between exon 1 and 2, and 2 CpG rich regions about 2–3 kb bp
upstream of the Spesp1 promoter were largely methylated in all
tissues including testis (data not shown). The Pst6 TDMR is also
within a gene that is almost exclusively expressed in testis, Hspa1l.
The differentially methylated region is restricted to one of two small
CpG islands in the 3′ exon, extending somewhat 5′ in the exon (Fig. 3).
These results indicate that the intragenic locations of the TDMRs may
vary considerably, from the entire exonic and CpG island promoter
region (Pst4), to a relatively small 5′ promoter CpG island region
(Pst3), or 3′ region only (Pst6).

Several regions close to the Pst6 TDMR were analyzed for
methylation using Sequenom MassARRAY quantitative methylation
analysis. The average CpG methylation for each region is shown in Fig.
3. Data is shown for testis, ES cells, and liver, which is representative of
somatic tissue (similar results were obtained for muscle, brain, kidney,
and colon; data not shown; see Fig. 2). Although Hspa1l is expressed
exclusively in testis, the promoter CpG island region is completely
unmethylated in somatic and ES cells as well as testis tissues. Thus, in
contrast to the testis specific expression of Ddx4 (Pst3) and Spesp1
(Pst4), promoter methylation status does not appear to be associated
with the testis specific gene expression of Hspa1l and repression in
somatic tissue. The testis specific gene, Hspa1l is homologous to the
adjacentHspa1a gene that is transcribed in the opposite direction. The
region of Hspa1a that is homologous to the Pst6 TDMR is also
differentially methylated, even though Hspa1a is not expressed to any
appreciable extent in testis (http://symatlas.gnf.org/SymAtlas/).

Changes in TDMR methylation during development

As noted previously, we were somewhat surprised that RLGS
indicated almost 60% of the TDMRsweremethylated in ES cells, which
suggests that these TDMRs become demethylated during differentia-
tion to adult tissues. To investigate this further, we isolated DNA from
10d embryo (head or body), 15d embryo, and neonatal tissues (brain,
liver, kidney, intestine, and testis), and performed Methylation
Specific PCR (MSP) to determine TDMRmethylation status at different
developmental stages (Fig. 4). Pst3 and Pvu8, which are unmethylated
in adult testis, are largely methylated in 15d embryo, including testis,
but are partially unmethylated in neonatal testis. Pst21, which is
unmethylated in adult liver, is fully methylated in 15d embryo
including liver, and is partially unmethylated in neonatal liver.
Pst46, which is unmethylated in adult kidney, muscle, and testis, is
partially unmethylated in a number of embryonic tissues but appears
to be mostly methylated in E15 and neonatal kidney and testis. These
results suggest that some TDMRs may become demethylated during
development. Somewhat surprisingly, some TDMRs are still largely
methylated in neonatal tissues, suggesting that demethylation may
occur late in development. However, we cannot exclude the possibility
that the methylation differences reflect expansion of specific cell
populations during development.

In mice, gametogenesis in testis is initiated shortly after birth, with
the first wave occurring in a synchronous fashion [20,21]. Testis
consists of sertoli cells and gonocytes at birth. Meiotic prophase

http://symatlas.gnf.org/SymAtlas/
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Fig. 4.MSP analysis of methylation status of TDMRs during development. MSP primers that would amplify methylated (M) or Unmethylated (U) genomic regions that contain, or were
close to, the TDMR NotI restriction landmark site were designed by using METHPRIMER (http://www.urogene.org/methprimer/). DNAs from BAC clones (bacterial artificial
chromosome) containing the TDMR regionwere used as a positive control for the U primers (not shown). Sss1methylase-treated DNAwas used as a positive control for theM primers
(not shown). Results from 2 independently derived DNA samples from 12 wk liver and testis are shown.

Fig. 5. Demethylation of repeat and unique sequences during postnatal testis
development. The Bar graph shows a summary of the methylation status obtained
from Sequenom MassARRAY methylation analysis of testis samples at different stages
of development from new born (NB), 10 day old (10d), 20 day old (20d), and adult mice
(12 wk) at each locus. The regions analyzed are the following: Pvu1, 7 CpGs (400 bp);
Pst2, 13 CpGs (225 bp); Pst5, 19 CpGs (425 bp); Pvu4, 43 CpGs (700 bp); Pvu8, 25 CpGs
(500 bp); Pst3, 59 CpGs (525 bp); Pst6, 26 CpGs (350 bp); Pst4, 16 CpGs (250 bp). The
y-axis shows the percent of methylation obtained as an average level of methylation of
the CpG dinucleotides for each locus for two independent determinations. The x-axis
shows loci of interest (loci associated with either repeat or unique sequences). The
error bars indicate standard deviation of the mean. It is to be noted that for the NB
samples Pvu4 and Pvu8 loci there are no error bars as these were derived from only
one set of samples.
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begins around day 9 and meiosis is almost complete by day 20. By day
20, the gonocytes have differentiated into secondary spermatocytes
and spermatids. Since a number of TDMRs that were unmethylated in
adult testis showed almost complete or partial methylation in
neonatal testis, we examined methylation of a number of TDMRs in
neonatal, 10d, 20d, and adult testis using Sequenom MassARRAY
quantitative methylation analysis. We examined TDMRs that are
methylated in most somatic tissues but are unmethylated in adult
testis (Fig. 5). These included TDMRs that are located within repeat
sequences (Pst2, Pvu1) close to a repeat sequence (Pst5) and a number
of unique sequence TDMRs (Pst3, Pst4, Pst6, Pvu4 and Pvu8). All of
these TDMRs had a similar pattern of progression, from almost fully
methylated in neonatal testis to almost completely unmethylated in
adult testis. This suggests a common mechanism for demethylation
during testis development of TDMRs associated with repeats and
those associated with unique sequences. In contrast Pvu80, which is
partially methylated in most somatic tissues, was unmethylated at all
stages of testis development (Table 2, Supplementary Fig. 8).

Analysis of somatic tissue (Supplementary Fig. 8) indicated that
Pvu80 is relatively unmethylated at early developmental stages with
a progressive increase in methylation at later developmental stages.
This suggests that considerable Pvu80 methylation in somatic
tissues occurs at later developmental stages, even postnatally.
Alternatively, the increased methylation may be the consequence
of the expansion of specific cell populations during the later stages
of development.

Tissue and developmental stage specific differences in methylation

Pvu8 and Pst10 both identify a TDMR (NotI site) within the 3′
exon of Zfp206, a C2H2 type Zinc Finger protein involved in
transcriptional regulation (Fig. 6). In adult tissues the region
downstream (Pvu8) and upstream (Pst10) from the NotI site is
unmethylated in testis, partially unmethylated in brain and methy-
lated in other tissues (muscle, kidney, liver, and colon; see Fig. 6 and
data not shown). Sequenom MassARRAY quantitative methylation
analysis of the TDMR, the promoter, and exon 2 regions indicates
there are tissue and developmental stage specific differences in
methylation in these regions. The promoter region is unmethylated
in ES cells, partially methylated in e15 brain and testis, and
completely methylated in adult brain and testis. Exon 2 is mostly
unmethylated in ES cells and adult testis, but almost completely
methylated in E15 brain and testis, and adult brain. In contrast, the
TDMR region is mostly unmethylated only in testis. These results
suggest that there are dynamic changes in methylation status in
these regions during development.
Discussion

Identification, confirmation, and locations of TDMRs

RLGS was previously used to identify 150 tissue specific differen-
tially methylated regions (TDMRs) in the mouse genome [8]. Based on
this observation and the number of NotI sites in the genome, we
previously projected that 5% or more of the CpG islands are TDMRs.
Due to the limited number of tissues examined in these earlier studies,
we indicated that this is likely to be an underestimate. Recent analysis
of CpG island methylation using an improved set of CpG island clones
found that 6–8% of the CpG islands were methylated in the tissues
examined [17]. This value is also likely to be an underestimate of the
total number of CpG islands methylated in the genome due to
limitations in the number of tissues surveyed and heterogeneity of cell
types within a tissue.

http://www.urogene.org/methprimer/


Fig. 6. Tissue and developmental stage specific differences in methylation. (A) A diagram of 10.1 kb Zfp206 zinc finger gene region is shown. The positions of exons (black bars), the
NotI restriction landmark site, and the transcription start site (arrow) are indicated. The locations of a CpG island and the regions analyzed by Sequenom massARRAY methylation
analysis (promoter, exon2, two TDMRs [Pst 10 and Pvu 8]) are indicated by black bars under the gene diagram. The size of the regions (bp) and number of CpG analyzed for
methylation by SequenommassARRAYare also shown. (B) The bar graph indicates the percent of methylation in ES cells, 15 day embryo and adult tissues in the indicated regions. The
methylation values were calculated as the mean of two independent determinations. The error bars indicate the standard deviation of the mean.
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Second generation vRLGS [6] was used to determine the DNA
sequences and locations of 68 TDMRs in the mouse genome, of which,
tissue specific methylation was confirmed for 34 loci using primarily
Sequenom MassARRAY quantitative methylation analysis. In spite of
the strong bias of RLGS toward CpG island genomic regions, TDMRs
were found to be distributed throughout the genome including CpG
islands, promoter regions, exons, introns, and intergenic regions
(Table 1). Somewhat surprisingly, we found a significantly higher
fraction of TDMRs in non-promoter intragenic regions than expected
from a random distribution (pb0.00001; see Supplementary Table 1).
Analysis of tissue specific methylation using a CpG island array also
foundmethylated CpG islands located disproportionately remote from
TSS of the associated gene [17]. Some TDMRs were found to be within
repetitive sequences, mostly LTRs. Nevertheless, our data indicates
that they aremuch less frequently associated with repetitive elements
than expected from a random distribution. A recent report, however,
indicates that a combination of repeat structure, DNA sequence and
unusual predicted DNA structure can be correlated with CpG island
methylation [22]. Most TDMRs examined in this study (28/34) have
homology to the corresponding region in the human genome (Table
2). Gene ontology analysis of nearby genes indicates a higher than
expected frequency of developmentally associated genes and those
that encode Zn binding proteins. This is consistent with a recent report
that genes associatedwith tissue specific CpG islandmethylationwere
developmental gene loci [17]. In addition, our results indicate dynamic
changes in methylation at these loci during development.

TDMRs and gene regulation

Methylation of CpG island promoter regions is associated with
gene silencing [23,24] whereas methylation of insulator regions may
be associated with up regulation of gene expression [25,26]. Our
studies identified 4 TDMRs associated with gene promoter regions
(Table 2), and in each, methylation is inversely associated with gene
expression ([8], Supplementary Figs. 3 and 7). In addition, many genes
known as cancer testis antigens that are highly expressed in testis
have CpG island promoter regions that are unmethylated in testis but
are methylated in somatic tissues that do not express them [27].
However, examination of the fine structure of DNA methylation of
three TDMRs associated with genes that have exclusive or high level
expression in the testis indicates that each has a somewhat different
methylation distribution relative to the associated gene. Pst3 and Pst4
are located in CpG island promoter regions for Ddx4 and Spesp1
respectively (Supplementary Figs. 5 and 7). Somatic methylation of
Ddx4 appears to be restricted to the CpG island promoter region.
Promoter regions of other genes with high testis expression upstream
and downstream from Ddx4 are not differentially methylated
(Supplementary Fig. 6). In contrast, somatic methylation of Spesp1
includes the promoter CpG island region and the 3′ exon, approxi-
mately 8 kb downstream of the 5′ promoter CpG island. However, the
intron region is not differentially methylated. Thus, for TDMRs located
in the promoter regions of testis specific genes, there is a strong
inverse correlation between methylation and gene expression but the
methylated regions may be different. Pst6 is within one of two weak
CpG islands located in the 3′ exon of Hspa1l, a gene exclusively
expressed in testis (Fig. 3; http://symatlas.gnf.org/SymAtlas/). A
homologous gene, Hspa1a (∼80% homology), is located just upstream
but transcribed in the opposite direction. The CpG rich promoter of
Hspa1l and the proximal portion of the CpG island associated with
the Hspa1a gene are not differentially methylated. However, the
region of Hspa1a CpG island that has homology to region of Pst6, is
differentially methylated even though Hspa1a is not expressed in the
testis. Interestingly, these regions contain apparent binding sites for
GCNF (germ cell nuclear factor, http://genome.ucsc.edu/), an orphan

http://symatlas.gnf.org/SymAtlas/
http://genome.ucsc.edu/
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receptor that is present in germ cells and has been reported to directly
interact with Dnmt 3a and 3b [28], as well as to recruit binding of
MBD2 and MBD3 to the Oct4 promoter [29]. However, it is unclear
whether and how GCNF and the Pst6 TDMR relate to the testis tissue
specific expression of Hspa1l. These results suggest that the property
that confers differential methylation may be related to primary DNA
sequence and may be conserved, but that additional factor(s) may be
required to impart testis specific gene expression of Hspa1l.

Other TDMRs located within or near gene promoter regions (Pst61,
Pvu74 and Pvu75) are unmethylated in most somatic tissues as well as
testis, but methylated in a single tissue (of those tested). Pst61 is
located in an alternative promoter region for Gata2, is methylated in
liver, and has very low expression in liver [8]. Pvu74 appears to be in
an alternative promoter region of Cadherin 22 (Cdh22), is methylated
in ES cells, and expressed at low levels in ES cells (Supplementary Fig.
2). Pvu75 is located in the promoter region of Cacna1e, a voltage
sensitive calcium channel protein, is methylated in ES cells, and is
expressed at low level in ES cells (Supplementary Fig. 3). Thus for
these TDMRs, promoter methylation is associated with low gene
expression. However, the TDMRs are unmethylated in some tissues
that also have low gene expression. Thus, it is not clear whether
methylation of these TDMRs has a primary role in gene regulation. It
should also be emphasized that tissues are composed of multiple cell
types and that RLGS and Sequenom MassARRAY methylation analysis
present an average methylation for all cell types. High expression of a
gene expressed in cell type that makes up a small fraction of the total
tissue would obscure any association between methylation and gene
expression. These issues can only be resolved by using purified cell
populations.

TDMR locations and methylation fine structure

The locations of TDMRs appear to vary considerably. For example,
for the testis specific TDMRs, the differentially methylated region for
Pst3 is confined to the CpG island promoter region, Pst4 includes the
CpG island promoter region as well as the 3′ exon, and Pst6 is confined
to a region close to one of two weak 3′ exon CpG islands. The CpG
islands associated with the Rhox gene cluster of 12 related homeobox
genes on the X chromosome are differentially methylated in a stage
and lineage specific manner indicating long range gene silencing for
an entire cluster of genes [30]. In colon cancer, coordinate epigenetic
silencing may occur across an entire chromosome band [31]. In this
study, we have not observedmethylation that extends through several
genes.

“Demethylation” during gameotogenesis in testis

Our results indicate that several TDMRs that are unmethylated in
adult testis are almost completelymethylated in neonatal testis. These
include TDMRs associated with or very close to repeat sequences
(Pvu1, Pst2 and Pst5), and those associated with unique sequences in
gene promoter regions (Pst3 and Pst4) and in 3′ exons (Pvu4, Pvu8 and
Pst6). At birth, testis consists primarily of undifferentiated gonocytes
and somatic sertoli cells. The first cycle of gametogenesis occurs
synchronously with differentiation to undifferentiated type A sper-
matogonia around day 6 and initiation of the first meiotic prophase
around day 9. The major cell types at day 11 are leptotene and
zygotene spermatocytes that reach late pachytene by day 18 [21]. Our
results indicate that the TDMRs are almost completely methylated at
birth in the testis, partially demethylated at day 10 around the start of
meiosis, and almost completely demethylated by the end of meiosis at
day 20. A recent study, using purified spermatogenic cells, found both
de novo methylation and demethylation in spermatogonia and
spermatocytes in early meioic prophase that was largely completed
by end of pachytene spermatocyte [32]. Their results indicated that
the methylated regions were all associated with unique sequences
whereas the unmethylated regions were all associated with LTR
repeats. Our results indicate a similar timing of demethylation, but
that demethylation occurs in TDMRs associated with both unique
sequences and those associated with LTR repeats. The similarity in
kinetics of demethylation of unique sequence and repeat TDMRs
suggests a common mechanism (Fig. 5).

Changes in TDMR methylation during development

One of the surprising findings of this study, is that many of the
TDMRs are methylated at early developmental stages but are
unmethylated in adult tissues suggesting active or passive demethyla-
tion during development. Almost 60% of the TDMRs are methylated in
ES cells (Table 2), which are derived from the embryo inner cell mass
at the blastocyst stage, after the period of demethylation following
fertilization, but before the period of de novo methylation that occurs
at or after gastrulation and implantation. Other investigators also
found differences in methylation status between ES cells and
differentiated cells using RLGS [33]. More recent genome-wide studies
also concluded that promoter DNA methylation contributes to ES cell
gene regulation [34,35]. However, since ES cells are grown in tissue
culture, it is not clear whether they are completely “normal”,
especially with respect to DNA methylation.

MSP analysis of several TDMRs at different embryonic develop-
mental stages also indicates that they are methylated at early
developmental stages (E10 and E15) and are still partially methylated
in neonatal mice (Fig. 4), suggesting that demethylation occurs
relatively late in development. Sequenom MassARRAY quantitative
methylation analysis of testis specific TDMRs (Fig. 5) indicates that
they are almost fully methylated at birth and that demethylation
occurs postnatally during the first synchronous wave of germinal
differentiation. Sequenom MassARRAY quantitative methylation ana-
lysis of Pst10/Pvu8 TDMR indicates more methylation in E15 brain and
testis than in the adult tissues (Fig. 6). These results indicate that there
is a progressive demethylation of some TDMRs during later stages of
development or that there is a proliferation of cells that are
unmethylated at these sites. Currently, we cannot distinguish these
possibilities. In contrast, methylation at the Pvu80 TDMR indicates
that substantial methylation may occur after birth in some tissues.

A very recent report provides additional information and resources
regarding genome-wide tissue specific DNA methylation analysis.
Methylation profiles of DNA (mPod) for human tissue specific
differentially methylated regions utilizes MeDIP (Methylated DNA
Immunoprecipitation) to analyze genome-wide methylation of 16
different human tissues, including sperm [36]. The results of this study
[36] indicate that tissue specific DNA methylation, including CpG
islands, is relatively common and is consistent with our current and
previous studies [8]. Also consistent with out results, many TDMRs
(27%) were found to be testis specific. The human studies [36] revealed
a small but significant negative correlation between promoter
methylation and gene expression across a range of CpG densities.
Interestingly, a small but significant positive correlation between gene
body methylation and gene expression was found although the basis
for this is currently unclear. Unmethylated regions, had a clear
association with active chromatin signatures, but methylated promo-
ters did not have clear associations with repressive histone modifica-
tions [36]. The data can be accessed through the Ensembl genome
browser [36].

In another recent report, DNA methylation maps of mouse
pluripotent and differentiated cells were generated using representa-
tional bisulphate sequencing and single-molecule based sequencing
[37]. These studies [37] indicate that DNAmethylation patterns can be
correlated with histone methylation patterns and along with the
results presented here indicate dynamic changes in DNA methylation
during development that may involve both methylation and
demethylation. In addition, there are many changes in methylation
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that occur relatively late in development. Additional studies will be
necessary to determine the mechanisms involved in these processes
and how changes in cell populations relate to changes in tissue specific
DNA methylation.

Materials and methods

Growth of ES cells

ES cells were grown by the Roswell Park Gene Targeting and
Transgenic Core Resource under standard conditions [38] on irradiated
embryonicfibroblasts as a feeder layer. ES cellmediumcontainedDMEM
and 10% fetal calf serum. Cultureswere incubated at 37 °C in humidified
air with 5% CO2. ES cells were then cultured on gelatin (0.2%) for 2 days
with LIF (1 U/ml) in the absence of feeder cells before being collected.
Contamination of feeder cells was estimated to be no more than 5%.

Collection of tissues, DNA and RNA preparations

Tissues from adult and 15d embryo were collected according to an
IACUC approved protocol. Embryonic tissues were collected using a
dissecting microscope (Leica MZ-125). Tissues and cells were
immediately snap-frozen in liquid nitrogen and stored at −80 °C
until use. The DNA for RLGS was isolated from tissues of 12-week-old
C57BL/6J male mice, 15 day embryos and ES cells by using the
protocols described [39–41]. DNA for Sequenom methylation analysis
was prepared according to Qiagen protocol. TRIzol was used to extract
RNA from the same samples [42]. The RNA was quantified by a
spectrophotometer and aliquots were checked for integrity by
electrophoresis in denaturing agarose gels [43].

RLGS and vRLGS

RLGS was performed according to published protocols [5,8,39–41]
using the enzyme combinations NotI–PstI–PvuII and NotI–PvuII–PstI.
Two independently derived RLGS profiles were analyzed for each
tissue. For these studies we used the vRLGS software developed by
Smiraglia and co-workers [6]. In short, we aligned the actual
autoradiograms of both the enzyme combinations with the vRLGS
profiles and identified the spots that matched up very closely between
the vRLGS and the real ones (Supplemental Fig. 1).

MSP

MSP was performed as described using bisulfite-treated DNAs [44].
The methylated and unmethylated primers were designed by using
METHPRIMER[45]. Theprimerswere chosen to include theNotI landmark
within the amplification product and also as many CpG dinucleotides in
the product as possible. The melting temperatures of the primer pairs
were constrained to be between 50 °C and 60 °C. The MSP primers were
synthesized by Integrated DNA Technologies (Coralville, IA). The PCR
reactions were carried out for 40 cycles and analyzed on a 2% of agarose
gel. The sequences of the primers used are available upon request.

Sequenom massARRAY quantitative methylation analysis

Sequenom MassARRAY quantitative methylation analysis [18]was
performed using the MassARRAY Compact System (www.sequenom.
com). This system utilizes mass spectrometry (MS) for the detection
and quantitative analysis of DNA methylation using Homogeneous
MassCLEAVE (hMC) base-specific cleavage and matrix-assisted laser
desorption/ionization time-of-flight (MALDI-TOF) MS [18]. DNA (1 μg)
was converted with sodium bisulfite using the EZ DNAmethylation kit
(Zymo Research, Orange, California) according to the manufacturer's
instructions. The primers were designed using METHPRIMER [45].
Each reverse primer has a T7-promotor tag for in vitro transcription
(5′- cagtaatacgactcactatagggagaaggct-3′) and the forward primer is
tagged with a 10mer to balance TM (5′aggaagagag-3′). The primer
pairs were designed to span the restriction landmark or closely
adjacent region or CG rich region as indicated. Amplification of 1 μl
bisulfite-treated DNA (∼20 ng/ml) was performed using HotStar Taq
Polymerase (Qiagen) in a 5 μl reaction volume using PCR primers at a
200 nM final concentration. PCR amplification was performed with
the following parameters: 94 °C for 15 min hot start, followed by
denaturing at 94 °C for 20 s, annealing at 56 °C for 30 s, extension at
72 °C for 1 min for 45 cycles, and final incubation at 72 °C for 3 min.
After Shrimp Alkaline Phosphatase treatment, 2 μl of the PCR products
were used as a template for in vitro transcription and RNase A
Cleavage for the T-reverse reaction as per manufacturer's instructions
(Sequenom hMC). The samples were desalted and spotted on a 384-
pad SpectroCHIP (Sequenom) using a MassARRAY nanodispenser
(Samsung), followed by spectral acquisition on a MassARRAYAnalyzer
Compact MALDI-TOF MS (Sequenom). The resultant methylation calls
were performed by the EpiTyper software v1.0 (Sequenom) to
generate quantitative results for each CpG site or an aggregate of
multiple CpG sites. A minimum of two independently derived tissue
DNAs were analyzed. The averagemethylationwas calculated as mean
value of the CpGs methylation value and expressed as percent
methylation. The non-applicable reading and its corresponding site
were eliminated in calculation. The sequences of the primers used are
available upon request.

Quantitative, real time RT-PCR

The iScript cDNA kit from Bio-Rad was used to make cDNAs
according to the manufacturer's protocol. One microliter of each tissue
cDNA was used per quantitative PCR. PCR primers were designed to
bridge the exon–intron boundaries within the gene of interest to
exclude possible contamination by genomic DNA (except for Hspa1l).
The SYBR Green primers were designed by the web program (http://
sourceforge.net/) and purchased from Integrated DNA Technologies. A
test RT-PCR was performed to check for a single PCR product before
running the quantitative PCRs. The quantitative PCRs were run on the
Bio-Rad MyiQ Cycler for SYBR Green according to the manufacturer's
recommendations for each probe. The appropriate master mixes were
used for each application. The resulting PCR cycle time (Ct) values were
collected by using the software provided for the iCycler, and the data
were then analyzed in Microsoft EXCEL to determine ΔCt (test Ct
−GAPDH Ct). The reverse transcription reactions were performed in
triplicatewith tissue RNA from three separate animals unless otherwise
noted. PCR products were analyzed by agarose gel electrophoresis after
40 cycles for correct product size.Melt curves and standard curveswere
performed for SYBRGreen reactions. The sequences of the primers used
are available upon request.

Computational data analysis

The association of TMDRs with repetitive elements and annotated
genes in the mouse genome was determined using in-house PERL
scripts with manual validation based on the related genome
annotation data available from the UCSC genome website at http://
genome.ucsc.edu. The sequence similarity to human genome was
calculated based on the 500 bpmouse genome sequences flanking the
NotI sites (i.e.: 250 bp on each side) of TDMRs. The function
classification and statistical over-representation of gene function
categories represented by TDMR associated genes were analyzed
through a combinatory use of the DAVID [46] (Dennis et al., 2003) and
GOstat [47] programs. To examine statistical significance of the
distribution of TDMR in association with repetitive elements, we
performed Monte Carlo Simulation using a set of 8565 vRLGS mouse
genomic fragments [6] computationally generated using enzyme
combinations identical to those used in the experimental RLGS, i.e.:

http://www.sequenom.com
http://www.sequenom.com
http://sourceforge.net/
http://sourceforge.net/
http://genome.ucsc.edu
http://genome.ucsc.edu
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NotI plus PstI or PvuII for the 1st digestion and PvuII or PstI for 2nd
digestion. Only the fragments predicted to be resolved by RLGS are
used. For vRLGS fragments, we identified the NotI site position and
their association with repetitive elements by assigning a value of zero
for being located within a repetitive element or a positive number to
represent the distance to the closest repetitive elements.1000 random
samplings of 34 NotI loci from these 8565 sites were performed. From
these permutations, means values representing the number of NotI
loci located within and the distance to repetitive elements are
obtained and were used to calculate the Z-score and the p value for
assessing the statistical significance of the observed association of
TDMRs with repetitive elements. A similar analysis was performed to
evaluate the distribution of TDMRs in relation to gene context.
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