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Abstract 

We consider extremal properties of Markov chains. Rootzen (1988) gives conditions for 
stationary, regenerative sequences so that the normalized process of level exceedances con- 
verges in distribution to a compound Poisson process. He also provides expressions for the 
extremal index and the compounding probabilities; in general it is not easy to evaluate these. 

We show how in a number of instances Markov chains can be coupled with two random 
walks which, in terms of extremal behaviour, bound the chain from above and below. Using 
a limiting argument it is shown that the lower bound converges to the upper one, yielding the 
extremal index and the compounding probabilities of the Markov chain. An FFT algorithm by 
Griibel (1991) for the stationary distribution of a G/G/l queue is adapted for the extremal 
index; it yields approximate, but very accurate results. Compounding probabilities are cal- 
culated explicitly in a similar fashion. 

The technique is applied to the G/G/l queue, G/M/c queues and ARCH processes, whose 
extremal behaviour de Haan et al. (1989) characterized using simulation. 

Keywords: Extremal index; Clustering of extreme values; Harris chains 

1. Introduction 

Let (X,} be a stationary process with state space Y s [w (the real numbers) and 
stationary (marginal) distribution function F. It is well-known (cf. Leadbetter, 1983; 
Leadbetter et al., 1983; O’Brien, 1987) that for a broad class of stationary sequences 
a number 0i E [0, l] exists such that the maximum M, = maxi < k < n Xk satisfies . . 

[P(A4, < u,) - PO’(u,)] + 0 

for sequences u, = u,(z) with n(1 - F(u,)) -+ z > 0, as n + CD. The parameter o1 is 
called the extremal index of (X,}. 

For stationary, regenerative sequences satisfying some additional requirements, 
Rootzen (1988) shows that the normalized process of level exceedances converges in 
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distribution to a compound Poisson process on KY+, and he provides expressions for 
the extremal index fll and the compounding probabilities. 

We will consider Harris recurrent Markov chains which are asymptotically homo- 
geneous, that is, they satisfy the additional property that the conditional increment 
X k+l - Xk, given Xk = x, converges in distribution to a random variable { with 
Et < 0, as x + co. Perhaps the first one to note that the extremal properties for this 
class of Markov chains can be described in terms of level exceedances of the random 
walk Sk = l1 + ... + & was Aldous (1989) in his book on clumping heuristics. This 
feature was noticed by Rootzen for the G/G/l queue (cf. Rootzen, 1988, Section 6), by 
de Haan et al. (1989) for ARCH processes, and in a more general context by Smith 
(1992) and Perfekt (1994). 

In this article we present an algorithm, based on Griibel’s (1991) algorithm for the 
stationary waiting time of stable G/G/l queues. Apparently, this queueing result was 
already known to Ackroyd (1980) though Griibel, unaware of this, provided a firm 
theoretical basis. There is some connection with a paper by Woodroofe (1979), who 
derived an integral formula for the Laplace transform of the ladder height distribution 
of random walks; he used the transform to calculate probabilities and expectations by 
(sometimes double) numerical integration. Woodroofe and Griibel’s paper have in 
common that they use the Spitzer-Baxter identities. 

The algorithm allows one to compute the extremal index for a class of positive 
recurrent Harris chains where the marginal distribution F belongs to the domain of 
attraction of the Gumbel distribution, with some additional requirements on the tail 
of the distribution of the conditional increment Xk+ I - Xk, given Xk = x, as x -+ co. 
The compounding probabilities of the Poisson process of level exceedances can be 
computed as well. Numerical results are very accurate when the tails of the distribu- 
tion of the limiting step size 5 are sufficiently flat. The algorithm is given in Section 3. 

In order to determine whether for specific Harris recurrent chains this algorithm 
can be applied, we provide sufficient conditions that are easy to verify, in terms of the 
increment of the chain (Section 2, Theorem 1). These conditions imply the often used 
condition 

lim lim sup P 
( 

max Xk > &Ix0 > u, = 0 
p-‘m n+m P<k<P. > 

(for suitable sequences u,, and pn, see Perfekt (1994) and Smith (1992)). 
Finally, in Section 4, we apply the method to the following cases: (i) G/G/l queues, 

(ii) G/M/c queues, and (iii) ARCH processes. 

2. Theory 

Let {Xk} be a stationary Markov chain with state space Y c Iw and stationary 
distribution F. We consider the case where the right endpoint of F is + co. The chain 
can be represented recursively by 

Xk+l = Xk + dxk, yk+l) 
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for some Bore1 measurable function g and an i.i.d. sequence {Y,}, with Yk + 1 indepen- 
dent of Xk. For a E Y define the random walk {SE} by S;t = 0, Sf: = 5; + ... + ri, for 
k > 1, where (57) are independent and distributed as g(a, Y 1). 

Suppose there exists a sequence (a,} in Y with a, -+ co, such that 

5”- d, i” as m ---t cc and El < 0 (2) 

and 

for all m and x E Y with x > a,: < &, g(x, Y) 6,, <“-. (3) 

A simpler condition, sufficient for the sequel, is: 5” is stochastically non-increasing in u, 
i.e. P(t” > x) is non-increasing in u for every x, and the distributional limit 5 of this 
sequence, which perforce exists - perhaps defective with mass at - co-, has expecta- 
tion Et < 0. The stated conditions (2) and (3) are slightly weaker: g(x, Y) <St <“- for 
x > a, implies that lam is stochastically non-increasing and has a (possibly defective) 
limit <; the left-hand inequality in (3) then implies t” d, 5 as u + co. 

Let {S,} denote the random walk with step t and S,, = 0. 

Remark. A process structure as described here is often found in queueing theory. For 
instance, let Xk be the waiting time of the kth customer in a G/G/l queue; then we 
have 

g(x,Y)=max(-x,Y), x&O, 

where Y = B - A, the difference between a service time B and an interarrival time A. 
It is easily seen that conditions (2) and (3) are satisfied, and 5 = Y. Other queueing 
applications are given in Section 3. 

An entirely different example is the autoregressive conditional heteroscedastic 
(ARCH) process (see Engle, 1982), used by economists to model financial data. It is 
defined by 

Zkcl = Uk+l(j + 1z,2)“2. (4) 

where U ,, U2, . , are i.i.d. standard normal random variables, fl > 0 and 0 < 3, < 1. 
The transformation Xk = log(Zz) simplifies the analysis (cf. de Haan et al., 1989) and 
yields the recursion 

which is of the type described, with g(x, Y) = Y + log(1 + (j/i)e-“), and Y = 
log E”U2. 

Below we prove an easy variant of Corollary 4.2 of Rootzen (1988). In his corollary, 
Rootzen shows for regenerative processes satisfying some additional requirements on 
the mean cycle lengths, that the extremal index can be calculated as the limit of the 
conditional probability that the process does not exceed level u, during the first 
delayed regeneration cycle, given that the process starts above level u,. We show that 
in the present case it suffices to consider the process until it hits the regeneration set 
(- co,a]nY for the first time. 
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A set R c 9’ is called a regeneration set if R is recurrent (for all x E Y we have that 
Px(zR < co) = 1, where rR is the hitting time of R), and if there exists a number 
p E (0, 11, a positive integer r and a probability measure p with the property that 

for all measurable subsets A of Y. 
It is well-known that if {X,} has a regeneration set then one can construct a renewal 

process T1, T2, . . . which makes (X,} regenerative if r = 1 and l-dependent regen- 
erative if r > 1. We will denote the cycle lengths of this renewal process by C,,, C1, . . . , 
where Co denotes the length of the first regeneration cycle and Ck = Tk+l - Tk, 
k 2 1, are the i.i.d. times between subsequent regenerations (see Asmussen, 1987, 
Section VI.3 for background on regenerative processes). 
Let 

N,rinf{k>O:Xk<a}. (5) 

Note that for Lemma 1 not all of assumption (3) is needed; it is sufficient that above 
a certain level the Markov chain is dominated by a random walk with negative drift. 

Lemma 1. Suppose ( - 00, a] c-9 is regenerative for {X,}, with aperiodic cycle length, 
and suppose that for all x E 9’ with x > a, 

g(x, Y) <St g(4 Y) d= 5”, 

where El” < 0. If the stationary distribution F satisfies EXJ = sco, ,,(l - F(x)) 
dx < co, and the chain satisfies 

sup ECx + g(x, VI’ < 00, (6) XE(_ m,a]n.Y 

then {X,} has extremal index ~9~ E [0, l] if and only if 

/31 = lim P sup Xk<a,IXO>u” , 
“-rCC 1 $kQN. > 

for some sequence u, = u,(z) with n(1 - F(u,)) -+ z, for some z > 0. 

Proof. We first show that EN, < co and EC0 < co. This follows from Gut (1988, 
Theorem 8.1), since for k < N, the Markov chain is dominated by the random walk 
X,, + Si, which has negative drift and so 

EN, < cE(X, - a)+ < co, 

where the constant c > 0 depends only on the value of a and the distribution of 5”. Let 
z1 = N,, and define 

zl+l=inf{k>z,+r:X,da}, 1=1,2,... 

Since the Markov chain {Xk} is dominated by a random walk with negative drift, it 
follows from (6) that TV, z3, . . . are well defined and have finite expectation. In fact, 
Ezl d lc’, for some constant c’. Because ( - co, a] nY is regenerative, each visit to this 
set leads to a regeneration r time units later with probability p. Now let N be the 
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number of the first visit that leads to regeneration. Then C0 < rN+l, 
P(iV=i)=p(l-p)‘-‘,i=1,2,... andEC,<c’E(N+l)<co. 

By Corollary 4.2 of Rootzen (1988) it is therefore sufficient to prove that 

lim P sup Xk>UlXO>rJ =o. 
> 

(8) u-m N.Gk$Co 

For i = 1,2, . . . define the blocks Bi = (k: ri < k < Zi+l}y and let Fi = 
{sup,,,,Xk > U}. Then 

P SUP 
N.<kGCo 

=P N>no, 
( 

i~~F,(X,>u)+P(N~n,,i~~FilX,>u) 

dP(N>n,,)+ f P(F<)Xo>u). 
i=l 

Now observe that by the strong Markov property for each i 2 1, 

(9) 

P(Fi I X0 > U) Q sup P supXk>u(X,,=x , 
XE(_ m,a]nY ( kc? ) 

wherez=inf{k>r:X,~a}.Defineui=a+i(u-a)/(r+2),i=0,1,...,r+2,and 

c(i= SUPP SUP Xk >UlXi=X 
XGU, ( 

) (10) 
i<kCr > 

Pi = ,Syt, P(Xi+ 1 > %+ 1 I xi = x). (11) 
. I 

By intersecting with the event {Xi+ 1 > Ui + 1 } and its complement, it is easy to show 
that ai < Cli+r + pi, for i = O,l, . . . ,r - 1. For x < u, we have, as X,+, < a implies 
that r = r + 1: 

P sup xk>U(x,=x sup xk>U,xr+l>U,+l,x~=x 
*<k<r 

<b,+p sup Xk>U,~~X,+,du,+,,X,=x 
r<k<r > 

epr+p sup x,+1 + s;-,-, > u(a 
r<k<r 

sups;:>u--u,,, . 
k>O 
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The second to last step follows from (3) because, by coupling of the steps of the 
Markov chain and the random walk, one can construct for arbitrary X,, 1 > a, for 
r+ldkQz, 

X, d X*+1 + SE_,_ r, as. (12) 

The existence of a probability space supporting such a construction follows from 
Propositions 1 and 2 in a paper by Kamae et al. (1977). 
So we have 

cd0 < po + ... + pr + p typo SE > (u - a)l(r + 2) . (. 1 (13) 

Further, 

/?i < max 
i 

sup P(X1 > Ui+1 IX0 = x),PlY > (U -a)/@ + 2)) 
1 xt(-c0,aln.Y 

(14) 

and so pi -+ 0 as u -+ co, by the Markov inequality, which combined with the negative 
drift of SE implies CI~ + 0. 

Hence, for u sufficiently large, P(Fi 1 X0 > u) < E, and 

P sup X,>UlX,>U <P(N>no)+&n(J=(l-&+“O+&no. 
N. < k ,c Co > 

This expression can be made arbitrarily small, since p does not depend on u. 0 

Remark. In the original corollary, Rootzen assumes that EC:+6 < co for some 
positive 6, to conclude that EC;+’ < cc. As pointed out by Perfekt (1994), EC: < CO, 
or equivalently, EC0 < co is sufficient. 

We are ready to formulate our main theorem. 

Theorem 1. Suppose {xk> satisfies condition (2) and the sandwich (3), and for each m the 
set (- co,a,]nY is a regeneration set with aperiodic cycle length. Suppose that for 
some m. condition (6) with a = am0 is fulfilled. Suppose further that for u + CO, 

v,(x, co) = (1 - F(x + U))/(l - F(u)) 5 v(x, co), (15) 

for some non-degenerate measure v on IF! ‘; then the extremal index g1 of {Xk) is equal to 

el= co 

s ( 

P SUP Sk < - X v(dx). (16) 
0 k>l > 

Moreover, the compounding probabilities q, 13 1, of the limiting Poisson process of 
exceedances of level u,(z), are given by rtl = (0, - gl+J/gl with 

g,= ic 
s 

P(card{k > 1: Sk > - xl = 1 - l)v(dx), Ia 2. (17) 
0 

Proof. Condition (15) implies that F lies in the domain of attraction of the Gumbel 
distribution and v(x, cc) = e-‘* for some positive rx; it also implies EX: < co. As in 
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the lemma, the domination of {X } k in ( a,, co) by a random walk with negative drift 
implies that EC,, < co, for any m 2 mo. 

The method of proof is that we establish, for each u, and for IZ + 00, 

supxo+s~du,~xo>u, 
kZ1 

x0 + Sk d u, 1 x0 > u, + o(l). 

It then follows (with v, = v,J that 

lim sup P 
n-o) “p xk~“.~xO>..)~li~~~p~~P(:~~Sk~ -+(dx) 

1 <k<Co 

sup Sk d - X v(dx), 
kZ1 ) 

(19) 

where the equality follows from the weak convergence of v, to the absolute continuous 
probability measure v. Similarly, we have 

lim inf P sup Xk<%lXO>%, v(dx). (20) n+m 1 <k$C,, 

Borovkov (1976, Section 21) proves that supk 2 o Sp % sup, z o Sk, when 5”” % r and 
E[(“-]+ + Et+, as m -+ 00. Clearly, both conditions hold: the first by hypothesis and 
the second condition by monotone convergence. From this one easily obtains 

sup sp,- it 5”- + sup s;l,- 4 5 + sup Sk L sup Sk. 
k>l k20 k>O k$l 

(21) 

so 
al 

lim s ( p m+m o ,“sTS% -x)v(dx)=I;P(:;qS,< -x)v(dx). 

Hence, (16) follows when we prove that for each a, and for n -+ co the sandwich (18) 
holds. 

For brevity, replace a,,, by a. It follows from (3) and results by Kamae et al. (1977) 
that a coupling of the Markov chain and the random walks exists such that for X0 > a 
and k < N,, 

X0 + Sk 6 Xk < X0 + sf, as. (22) 

Further, we have T, = inf{ k: X0 + Sk 6 a) < N, < R, = inf{k: X0 + S: d a}, and 
N, d Co. From these inequalities, for arbitrary n, 

P sup Xk d u, ( X0 > u, 
1 <kiCo ) 

2P sup xk d t‘,jxO > u, sup xk>&,(x(,>td, 
1 <k<NN. N. $ k c ‘2, ) 
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>p sup xo+s;<u,(xo>u, sup Xk > U” 1 x0 > cl” 
ISkGN. N. c k < Co 

Since condition (6) is fulfilled for some amo, we have for urn0 < x < a, because of (3): 
ECx + g(x, Y)l’ < E[x - anlo + urn0 + tam,]+ < am - am0 + E[a,, + g(amo, Y)]+ < 
co, so (6) is fulfilled for each a, > umo. Hence, from the proof of Lemma 1 follows that 

for all but a finite number of u’s. 

lim P sup &>td,lx~>u, =o. 
> 

(24) n-m Iv. < k < CO 

This establishes the left-hand side of (18). Now use the left-hand side of (22) to 
conclude 

P sup &<u,,IxO>td, sup x,+&<tt,Ix,>u, (25) 
1 <k$Co l$kGT. 

Because T, is the hitting time of the set ( - co,a] by the random walk {Sk}, which has 
negative drift, we have for n + co, 

P sup x,+&<u,Ix~>u, x0 + Sk 6 u, 1 x,, > u, + o(l). 
l<k$T. 

The sandwich (18) is now immediate from (23)-(26). This finishes the proof of (16). The 
proof of (17) follows the same lines and is therefore omitted. 0 

Remark. Note that without the convergence torn % r one would still obtain bounds 
on O1 (if it exists): 

co s ( p Sup %- d - x v(dx) < e1 < v(dx). (27) 
0 k21 

3. Computation 

Suppose that for a stationary Markov chain {Xk} the conditional increment 
Xk+ 1 - xk, given Xk = x, converges in distribution to a random variable 5, and that 
the distribution of X0, given X0 > x, converges to an exponential distribution with 
parameter a, as x + co. This one has, under suitable conditions (cf. Perfekt, 1994; 
Smith, 1992; or Theorem 1 of Section 2) that 

(28) 
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and 

e,= O3 s P(card{k 2 1: Sk < x} = 1 - l)aeP”dx, I B 2, 
0 

(29) 

where Sb = - Sk, k B 0, and Sk is the random walk with stepsize & We prefer to work 
with the random walk S;, which has positive drift, to facilitate the use of Griibel’s 
algorithm. Denote by G the distribution function of -r; G(t) = P(< > - t), t E R. 
Define TI = St,, the Ith smallest of S;, S;, . . . and Pi(x) = P(Tl Q x), all for 1 B 1. (To 
use P(TI < x) instead would seem more natural, but PI is convenient, and without 
consequence as it is integrated with respect to an exponential density). 

Using the Wiener-Hopf factorization algorithm by Griibel (1991), a discrete 
approximation to the distribution of A4 = inf{S;: k 2 0} can be obtained. For inde- 
pendent M, 5, and E % exp(a) one obtains T1 & M - tf and so 13~ = P(M - 5 z E). 
Thus, e1 is easy to compute. 

Below we shall derive a recursive scheme to compute the &, 1 >, 2, building on this 
result. We have for 12 2, 

8, = s g, (Pi_ 1(x) - Pl(x))ae-” dx 
0 

(30) 

and 

Pi(X) = WI d x, r < - x) + P(Tl < x, 5 >, - x) 

= s Pdx - y)dW + 
f 

&1(x - y)Wy). (31) 
(x7 a) (- m,xl 

The second term on the right-hand side can be obtained from recursion, the first 
requires PI(z) for z < 0. 

Let V be the point of first entry of the random walk {Sk} into (- co,z]; formally 
z = inf{k: S; < z}, V = S:, and V = co if {k: Sk < z} is empty. Let L be the (defective) 
distribution of the negative ladder heights and mL = C, p o L”* the renewal function of 
the corresponding (defective) renewal process on ( - co, 01. Then 

F,(u) = P(V < u) = I L(u - x)dm(x), 
(z.01 

for u < z, and so for z < 0, by conditioning on V, 

P,(z) = P(Tl < z, v < z) 

= s f PI_ 1(z - u)dL(u - x)dm,(x) 
(z,Ol (-m.zl 

= ((PC 1 * L)- *Q)(z), (32) 
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where for any (defective) distribution function H, H+ and H- are defined by 

H+(x) = H(x)l,.o 

and 

H-(x) = H(x)l,<,. 

Combined with (31), which reads in this notation: 

Pl=P;*G+P,:,*G, 

this yields the recursion. 

(33) 

The actual calculation scheme is as follows. As in Griibel’s algorithm, it is based on 
Fourier transforms (FT) of discrete approximations to relevant distributions. 
Griibel’s algorithm yields the FTs of M, L and mL. The product of the FTs of M and 
-5 yields the FT of P,. The + and - operators are easily implemented, so by 

applying (32) we get P; from P,, and then P2 from (33). P3 is derived from P2 in the 
same manner. Thus, recursively, one obtains the FTs of the Pl. Formula (30) is 
evaluated easily: by convolution with the exponential distribution. All this has been 
implemented in Matlab; the code is available from the authors. Matters related to the 
accuracy of results obtained this way are discussed in the next section. 

4. Applications 

4.1. Validation of the algorithm and the G/G/l queue 

Rootzen (1988) showed that for waiting times in the G/G/l queue the general 
expressions for Qi, 02, , . . simplify to those as in Theorem 1; it is straightforward to 
show that the conditions of this theorem are satisfied. For this case the parameter 
LX > 0 in Theorem 1 is the unique positive solution to 

E exp(cr(B - A)) = 1. (34) 

where B and A denote a service time and an interarrival time, respectively (cf. Iglehart, 
1972). 

The reason for mentioning the G/G/l queue here is that some exact results are 
available which can be used to validate the numerical procedure. For the M/G/l 
queue extremal index d1 can be expressed in terms of familiar quantities: the Poisson 
arrival rate R, the traffic intensity p = AEB, and a > 0 which is the unique positive 
solution of 

Eexp(aB) = 1 + T 

(cf. Cohen, 1969, 111.7). 

(35) 

A straightforward, but lengthy, calculation then shows that 

(36) 
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so if (35) can be solved, the extremal index is known. For exponential, uniform, 
Erlang-k and deterministic service times, among others, this can be done either 
explicitly or through a simple iteration procedure. For these distributions and for two 
values of p (0.5 and 0.9) we shall below compare exact values for the extremal index 8, 
to the values obtained with the numerical procedure. 

Some error considerations are in order, however, as several factors affect the 
accuracy of the numerical procedure. In order to use the fast Fourier transform, 
probability distributions have to be replaced by discretized, truncation versions on 
grid points kh, k =-m, -m + 1, . . . ,m - 1. The values of the discretization para- 
meters m and h are of considerable influence on the accuracy of the results. 

Here, as in the case described by Griibel (1991), the discretization error is almost 
eliminated by applying Richardson extrapolation. (Here this means: because the error 
in e(h) is ch + o(h), the error in the extrapolated value OR = 2BCh’ - I!#‘~) is o(h), in 
practice O(h2).) Our experience indicates that the effect of the truncation is best 
assessed through the amount of neglected probability mass, i.e., the total mass outside 
the interval that supports the discrete approximations (both for 4 and the exponential 
distribution with parameter N). If 6 is the maximum of these missing masses, for given 
m and h, then the following rule of thumb holds: 

the error in the value of the extremal index e1 extrapolated from the cases (m, h) and 
(m/2,2h) is smaller than max(lOb, h’). 

There are few hard results on these issues, fewer of practical use; see Embrechts et al. 
(1993) for a more elaborate discussion, and Griibel and Pitts (1992) for some related 
theoretical material. Table 1 lists true values for el, computed using (35) and (36) and 
the errors in the numerical approximation, based on m = 213. 

For the M/M/l queue more analytical results can be obtained: each f$, I 2 1, can be 
expressed in the traffic intensity p. The limiting random walk has a step distribution 
with two exponential tails, and this allows the explicit solution of Pr, P2, . . . from the 
recursive scheme in Section 3, and evaluation of el, t12, . . . through formula (28) and 
(30). These are exact formulas for f3-e5: 

e1 = (1 - 42, 

e 
2 

= 2P(l - P)” 
l+p ’ 

Table 1 

p =os p = 0.9 

mh = 20 mh = 100 

01 Error 6 0, Error 6 

Uniform 0.320999 - 5 10-e 2 1o-9 0.014614 - 4 10-e 4 lo-” 
Erlang-3 0.313499 - 5 1o-6 2 1o-9 0.014502 - 4 10-G 4 lomR 
Deterministic 0.351666 - 3 10-C 2 1o-9 0.018710 - 4 10-e lo-lo 
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e 5 = $1+--;2 {5p3 + 27p* + 54~ + 421. 

In Table 2 exact values are compared against the numerical answers, again with 
m = 2i3. The rule of thumb stated above seems very reliable for 13~, and it is based on 
evidence from a different array of cases: it seems inadvisable, however, to extend this 
rule to the other thetas, without more evidence or a theoretical footing for this error 
estimate. 

4.2. The G/MJc queue 

Consider a c-server queue with (general) renewal arrivals, and exponential service 
times, where each server has rate p. The extremal quantities 01, &, . . . of the waiting 
time process depend only on the interarrival distribution and on p = ycp. In other 
words, the extremal behaviour of a G/M(p)/c queue is the same as that of 
a G/M(cp)/l queue with identical interarrival distribution. 

This can be seen as follows. Let Xi and Xl be the waiting time of the kth arriving 
customer, in the c-server and single server queue, respectively. Assume that the 
processes {Xf} and {Xi> are stationary. It is well-known (see, e.g. Wolff, 1989, Ch. 8) 
that, conditional upon the waiting times being non-zero, XC, and XA have the same 
distribution, and under this condition, the distributions of the number of customers in 
the queue are identical as well. This implies that, given that the zeroth customer has to 
wait, the two systems can be probabilistically coupled. This can also be done for 
subsequent transitions, as long as all the servers in the c-server queue are busy, as 
follows. That arrivals can be coupled is trivial. Service completions can be coupled 
because (as long as all servers are busy) time between subsequent service completions 
form an i.i.d. exponential(cp) sequence that can be coupled to the service times in the 
single-server queue. 

Table 2 

1 

p =os 

8, 
Error when mh = 16 
(6 = 2 10-y 

p = 0.9 

Qr 
Error when mh = 160 
(6 = 2 10-y 

1 0.250000 - 1 x 10-b 0.01OOOOO - 7 x 10-C 
2 0.166667 4 x 10-h 0.0094737 10-S 
3 0.120370 - 4 x 10-e 0.0090932 10-7 
4 0.090535 -2x10-5 0.0087853 10-7 
5 0.069845 -4x1o-5 0.0085228 10-7 
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As an example (with a heavy tail), consider the Pareto distribution 

0 

3 

G(x) = 1 - 5 , x > 1. 

For this case, Eq. (34) becomes 

(37) 

4(a) + a/cp - 1 = 0, (38) 

where 4(t) = 11” eecy dG(y), the Laplace transform of G. To obtain the two values of 
p (0.5 and 0.9) we took cp = 1 and I = 4, Y = 3, respectively. A simple Newton- 
Raphson iteration gives: a = 0.735257 (p = 0.5) and a = 0.742667 (p = 0.9). In 
Table 3 we compare the extremal index ol, obtained with the algorithm (m = 213, 
mh = 40, yielding 6 = 4 x lo-’ in both cases), with the exact value. This exact value 
follows from Cohen (1969, 111.7, Theorem 7.5) and reads for cp = 1: 

81 = a(1 + @(a)). (39) 

Note that the results obtained with the algorithm are very satisfactory, considering 
the heavy tail of the Pareto distribution. 

4.3. ARCH-processes 

As described in Section 2, the ARCH process satisfies the recursion 

-%+ 1 = Xk + SW/c, y/c+ IL 

with 

Y, = log(llU& 

g&Y)= Y +log 1 +!e-I 
( > /? ’ 

where lJ1, U2, . . . are i.i.d. standard normal. fi > 0 and 0 < A < 1. 
In this example, we can take < = Y. By Jensen’s inequality the random walk (5,) 

has a negative drift 

Et = EY = Elog(W:) < log(lEU:) = log A < 0. 

Table 3 

1 

p =0.5 

6 Exact value 

p = 0.9 

0, Exact value 

1 0.403948 0.403938 0.413874 0.413894 
2 0.213546 _ 0.215324 _ 
3 0.127611 _ 0.126922 _ 
4 0.080895 _ 0.079447 _ 

5 0.053158 0.051583 
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Table 4 

0.88556 0.89136 0.09181 0.01382 0.00243 0.00046 
0.3 4.17990 

0.887 0.892 0.094 0.011 0.003 0.003 

0.43308 0.50458 0.20993 0.10950 0.06309 0.03852 
0.95 1.07211 

0.438 0.524 0.184 0.118 0.063 0.037 

It is immediate that 5” = g(a, Y) % 5 and that (3) is satisfied. Condition (6) follows 
since 

x + log 1 + feex = log(e” + y) 
( ) 2 2 

where y = p/A is bounded on ( - ~a]. 
In order to show that ( - co, a] is a regeneration set we put r = 1,6(x) = log(e” + y) 

and b = sup, $ a [6(x)1. With m(A) the Lebesgue measure of a set A, p equal to the law 
of Y = log(/zU:), M an arbitrary positive number and 

p = min ,X,<M+h$(x)‘O. 

we have for an arbitrary Bore1 set B, and arbitrary x < a, 

P(X, + 1 EBIX,=x)=p(B-d(X)) 

2 p(B - G(x)n[-M - b,M + b]) 

> pm(B - d(x)n[ -M - b,M + b]) 

2 pm(Bn[ - M - b + S(x), M + b + 6(x)]) 

3 pm@nC-NW). 

Finally, it is well-known from the literature (cf. Kesten, 1973) that (15) holds with 
v(x, co) = exp( -LXX), where CI is the unique solution of E([U:)’ = 1; in particular, this 
implies that F has a finite first moment. 

In Table 4, for each 1 value, the top rows list the values of o1 and rcl = (0, - &+ r)/e,, 
1 = 1, . . ,5 computed with the algorithm. Our rule of thumb gives that the error in e1 
is smaller than h2 < 3.10m5. The bottom rows show the values of B1 and rcl, 
1 = 1, . . . ,5 taken from de Haan et al. (1989), and based on 1000 simulations each of 
length 100. 
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