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ABSTRACT

This study examined relationships between greenness exposure and free-living physical activity
behavior of children in smart growth and conventionally designed communities. Normalized Difference
Vegetation Index (NDVI) was used to quantify children’s (n=208) greenness exposure at 30-s epoch
accelerometer and GPS data points. A generalized linear mixed model with a kernel density smoothing
term for addressing spatial autocorrelation was fit to analyze residential neighborhood activity data.
Excluding activity at home and during school-hours, an epoch-level analysis found momentary
greenness exposure was positively associated with the likelihood of contemporaneous moderate-to-
vigorous physical activity (MVPA). This association was stronger for smart growth residents who
experienced a 39% increase in odds of MVPA for a 10th to 90th percentile increase in exposure to
greenness (OR=1.39, 95% CI 1.36-1.44). An individual-level analysis found children who experienced
> 20 min of daily exposure to greener spaces ( > 90th percentile) engaged in nearly 5 times the daily
rate of MVPA of children with nearly zero daily exposure to greener spaces (95% CI 3.09-7.20).

© 2011 Elsevier Ltd. Open access under CC BY-NC-ND license

1. Introduction

The prevalence and amount of physical activity among adults
and children in the United States and Europe is disturbingly low
compared to levels recommended for maintaining good health
(US Department of Health and Human Services, 1999; Martinez-
Gonzalez et al, 2001; Macera et al, 2003; Caballero, 2007;
Troiano et al.,, 2008). This deficiency is particularly serious for
children because activity behavior and associated health effects
that are formed early in life are likely to continue into adulthood
(Freedman et al.,, 2005; Kjonniksen et al., 2008). Physical inactiv-
ity is linked to increased morbidity and premature mortality as it
contributes to numerous chronic conditions including obesity,
diabetes, hypertension, cardiovascular disease, certain cancers,
depression, and osteoporosis (US Department of Health and
Human Services, 2002).

Underlying causes for the lack of physical activity may include
changes in urban structure and the built environment that reduce
opportunities for physical activity (Brownson et al., 2005). Evi-
dence points to a relationship between community design, active
living, and health (Saelens et al., 2003; McCormack et al., 2004;
Frank et al., 2005; Sallis et al., 2009). Design features that may

* Corresponding author.
E-mail address: ealmanza@berkeley.edu (E. Almanza).

1353-8292 © 2011 Elsevier Ltd. Open access under CC BY NC-ND license
doi:10.1016/j.healthplace.2011.09.003

shape activity behavior and health outcomes include land use
mixture (Frank et al., 2006; Rodriguez et al., 2006; Troped et al.,
2010), traffic density and safety (Foster et al., 2009; Jerrett et al.,
2010), and access to green spaces and recreational resources
(Sallis et al.,, 2000; Humpel et al., 2002; Davison and Lawson,
2006; Norman et al., 2006; Kaczynski and Henderson, 2007; Tilt
et al., 2007; Witten et al., 2008; Dunton et al., 2009; Jones et al.,
2009; Coombes et al., 2010; Quigg et al., 2010; Wolch et al., 2010).

One particular community design in the United States known
as ‘smart growth’, has been hypothesized to promote active living.
Smart growth is a set of principles for guiding development of
healthy, vibrant communities characterized by a sense of place.
Principles include mixed land use (e.g. residential, commercial,
school), diverse housing and transportation options, connected,
walkable streets, areas for social interaction (parks, community
centers) and compact building design (Song, 2005; EPA, 2011;
Smart Growth Online, 2011). In a recent review, Durand et al.
(2011) found several smart growth design principles associated
with physical activity.

Greenness is an aspect of community design related to several
smart growth principles (walkability, mixed land use, sense of
place). In the broadest sense, greenness describes level of vegeta-
tion, ranging from sparsely-landscaped streets to tree-lined walk-
ways to playfields and forested parks. Possible mechanisms by
which greenness may promote activity include programmed
sports and informal play that occur in open green spaces.
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Shade and esthetics provided by tree-lined sidewalks may
encourage walking and outdoor activities. Greenbelts provide
connectivity for active transport or leisure walks. In a review
conducted by Kaczynski and Henderson (2007), proximity to
parks and trails was associated with increased activity. Wheeler
et al. (2010) found that boys’ activity levels in green areas were
of higher intensity. Although evidence was mixed, Lachowycz
and Jones (2011) reported 33 of 50 systematically reviewed
studies demonstrated some evidence linking physical activity to
residential green space accessibility. Links to other health out-
comes such as weight status have also been drawn (Lee and
Maheswaran, 2011). Children’s neighborhood vegetation level, as
measured by the Normalized Difference Vegetation Index (NDVI),
has been found to be inversely associated with risk of overweight
(Liu et al., 2007; Bell et al., 2008). In a longitudinal study
conducted by Wolch et al. (2010), children were followed for
8 years and results indicated more park space within neighbor-
hoods was associated with lower attained Body Mass Index (kg/m?)
at age 18.

As greenness contributes to multiple community design
features, one could reasonably expect a synergistic relationship
between greenness and other design features (e.g., recreation,
shade, neighborhood attractiveness). For example, a tree-lined
sidewalk may be more conducive to active transport than an
unsheltered one. A basketball court near a grassy area with
scattered shrubs and trees may be more inviting for a meeting
of friends, which may lead to a spontaneous game of hide-and-
seek or other unstructured play. On a larger scale, comprehensive
community planning, such as smart growth, that integrates
greenness with other design features may have greater social
and health benefits. For example, an accessible green space with
trails is more likely to encourage activity than one separated from
homes by major roads. Research suggests well-connected com-
munities with more useful green areas may be of greater value in
promoting active living (Saelens et al., 2003; Giles-Corti et al.,
2005; Rodriguez et al., 2005; Berrigan et al., 2010).

Despite the growing body of research supporting links
between community design and built environment features and
physical activity, the evidence base is mixed, and also limited
because most studies have been based on self-report data
(McCormack et al., 2004; Hillsdon et al., 2006; Ferreira et al.,
2007; Maas et al., 2008; Coombes et al., 2010; Lachowycz and
Jones, 2011). Self-report data limits inferences drawn about
activity associations because perceptions about behavior and
environmental context are susceptible to recall bias and
misclassification error.

To address this limitation, in an ongoing study that takes place
in the United States near Chino, California, called ‘Healthy PLACES’
(Promoting Livable Active Community EnvironmentS), portable
global positioning system (GPS) and accelerometer units were
used simultaneously to study the connection between commu-
nity design features and physical activity behavior of families
living either in a smart growth community or nearby conven-
tional community. The continuous logging of time-location
by GPS and physical activity by accelerometers provides an
opportunity to objectively measure activity within environmental
context, and may allow one to draw stronger links between
behavioral patterns and contemporaneous exposure to spatial
attributes such as greenness (Saelens et al., 2003; Rodriguez et al.,
2005; Duncan et al, 2009; Jones et al, 2009; Maddison
and Mhurchu, 2009; Cooper et al., 2010; Quigg et al., 2010;
Troped et al., 2010; Wheeler et al., 2010). This study analyzed
children’s neighborhood activity data from Healthy PLACES to
examine the association between greenness exposure and physi-
cal activity behavior, and whether this relationship was modified
by community design. Two hypotheses were tested:

(1) momentary (30-s epoch) greenness exposure was associated
with the level of physical activity performed by children in that
location; and (2) this association was stronger for smart growth
residents.

2. Methods
2.1. Study design and participants

Healthy PLACES is a quasi-experimental intervention study
examining multi-contextual, cross-sectional, and longitudinal
effects of residing in a smart growth community on the preven-
tion of obesity for families. The working hypothesis of Healthy
PLACES is that residents of a smart growth community will
demonstrate higher levels of physical activity and healthier life-
style attitudes compared to residents from nearby low-
density, conventional communities. The recruited intervention
group consists of families who recently moved to The Preserve, a
newly developed smart growth community in Chino, California.
Families from six nearby communities (within 30 min drive of The
Preserve) who considered moving into The Preserve were recruited
as the comparison group and were matched on demographics and
income. Participant families include one parent and one child of age
8-14 and are followed for four years. Institutional Review Boards at
the University of Southern California and University of California
Berkeley approved the study and written informed consent and
minor assent were obtained from parents and children.

The current study was cross-sectional and included Healthy
PLACES data collected March 2009-March 2010. The baseline
sample included 386 children.

2.2. Measures

2.2.1. Demographic and anthropometric

Survey data included age, gender, ethnicity, annual household
income, and home address. Missing income data were imputed
with the median of the entire sample of 386 ($60,000). Height and
weight were measured using a stadiometer (PE-AIM-101) and an
electronically calibrated digital scale (Tanita WB-110A) to the
nearest 0.1 cm and 0.1 kg, respectively. Body Mass Index (BMI)
was calculated as kg/m?.

2.2.2. Activity and location

Participants were provided with an Actigraph GT2M acceler-
ometer (Actigraph LLC, FL, USA) for objective assessment of
physical activity, and a BT-335 portable GPS (GlobalSat Technol-
ogy Corp, Taiwan) to collect location information simultaneously.
The accelerometers recorded date, time, activity counts and steps.
The 16 M bit, 1575.42 MHz GPS units recorded date, time,
latitude, longitude, altitude, and speed using datum World
Geodetic Survey 1984 (up to 60,000 geo-locations). Wide Area
Augmentation System (WAAS)/EGNOS/MSAS and a SiRF star III
chipset improved tracking accuracy (5 m 2D RMS). Phone mes-
sages reminded participants to recharge units (battery life 25 h).
Both devices were pre-set to record at 30-s intervals. They were
attached to a belt and worn on the right hip continuously for
7 days except when sleeping, bathing, or swimming. Data collec-
tion will continue annually for each parent and child pair for
4 years.

2.2.3. Greenness exposure

To assess greenness objectively, the merged accelerometer-
GPS data (30-s intervals) were overlaid on NDVI data in a
geographical information system ArcGIS 9.3 (ESRI, Redlands,
CA). NDVI was calculated from Landsat 5 Thematic Mapper
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satellite imagery available from the US Geological Survey at 30 m
pixel resolution for the period March-May 2010. NDVI is an
indicator for the amount of vegetation in each pixel (Cohen and
Goward, 2004). The index ranges from —1 to +1 and higher values
indicate more vegetation. Each location-activity point was assigned
an NDVI value as a measure of greenness exposure. Negative values,
generally representing water, ice, and bare earth, were coerced to
zero. NDVI was subsequently re-scaled by dividing all values by the
10-90th percentile range. This facilitated interpretation of regres-
sion analysis coefficients since a one-unit change in NDVI, the
predictor variable, would have been outside the range of observed
data. With re-scaling, a one-unit change represents the difference
between the 10th and the 90th percentile values.

2.3. Data merging and processing

Accelerometer and GPS data were merged and processed in
R v2.9.2 (R Development Core Team). Records were matched
by date and time to the nearest 30-s epoch. Recording intervals
with > 60 min of consecutive zero activity counts were classified
as accelerometer non-wear (Troiano et al., 2008). Accelerometer
activity count data were classified as MVPA using age-specific
thresholds for predicted metabolic equivalents >4 derived
from the Freedson equation (Freedson et al., 2005). Activity
outliers were identified as records with > 16,383 counts per 30-
s. Records with speeds > 169 kph (105 mph) were considered
outliers because typical driving speeds are well below this value.
Motorized activity was identified by speeds > 32 kph (20 mph)
since typical bicycling speeds range from 15 to 30 kph (9.32-
18.64 mph).

To identify home and neighborhood points, children’s home
addresses were geocoded in ArcGIS. Since the geocoding road
layer did not contain several new roads in the smart growth
community, some addresses were geocoded manually using
iTouchMap (iTouchMap.com) and validated with MapQuest and
Google Maps. Activity data were identified as home points if they
fell within the 30 m Euclidian distance buffer about the home.
Points within 500 m of the home were identified as neighborhood
points. A 500 m radius is often used to represent neighborhoods
as it approximates a 10-15 min walk (Wolch et al., 2010).

2.4. Data analysis

2.4.1. Scope

The initial inclusion criterion was that children have > 3 days
with a minimum of 4 h of valid GPS-accelerometer data each,
where valid data excluded missing, outlier, night (11pm-5am),
and accelerometer non-wear data.

To investigate physical activity behavior of children within the
neighborhood environment outside of home and school, the scope
of the analysis was limited to neighborhood data and excluded
home and motorized activity. Data recorded during school hours
(9am-2pm weekdays, August 31-June 10) were removed (Chino
Valley Unified School District, 2011). After removal of home,
school-time, and motorized data, participants with <1h of
neighborhood data were excluded from analysis.

2.4.2. Analyses overview

The primary objective of this study was to explore
whether momentary greenness exposure was associated with
contemporaneous physical activity behavior. A spatially-explicit
analysis at the 30-s time-location point scale was conducted. For
comparison, the relationship between greenness exposure and
daily amount of physical activity at the individual level was also
examined.

2.4.3. Momentary analysis

Geovisualization of momentary (30-s epoch) data allowed
exploration of neighborhood activity patterns. The effect of
greenness on the within-person variation of physical activity
was tested in a multilevel model clustered on the individual.
The unit of analysis was the 30-s epoch. Logistic regression was
applied to examine the association between momentary exposure
to greenness (NDVI) and the odds of contemporaneous moderate-
to-vigorous physical activity. A random effect on individual
adjusted for repeated measures. To address potential non-inde-
pendence among observations a spatial moving density term of
MVPA was included. This term was a kernel density estimate of
all individuals’ instances of MVPA within 100 m interpolated to
every observation in the analysis. The estimation procedure
was analogous to a weighted moving average with a decay
function that down-weights more distant observations (Bailey
and Gatrell, 1995). Potential individual-level confounders
included race, categorized into Caucasian/White, African Amer-
ican/Black, Hispanic, Asian, and other (other, mixed, bi-racial,
Hawaiian/Pacific Islander, American Indian), age (8-10 and 11-14),
gender, and annual household income. Individual BMI was included
to adjust for potential differences in activity by body composition. A
time-varying categorical variable representing three types of leisure
time, “before and after school”, “school weekends”, and “summer”,
assessed temporal variation of activity. This variable also served to
partially adjust for seasonal effects on activity behavior. To examine
differences in behavior of children from smart growth versus
conventionally designed low-density communities, a community
design group variable was included and its interaction with
greenness (NDVI) was tested to assess whether community
design modifies the association between greenness and MVPA.
Model selection was based on stepwise forward regression
(p-value < 0.05).

Since observations closer in distance tend to be more similar,
the presence of spatial autocorrelation, indicating non-indepen-
dence among observations, was assessed. Empirical semi-vario-
grams were inspected to assess the degree of correlation as a
function of distance between observations (Bailey and Gatrell,
1995). A Moran'’s I was calculated in OpenGeoDa 0.9.9.8 based on
a Thiessen polygon contiguity matrix with a Queen’s case con-
nectivity of order 4 to evaluate more formally model residual
autocorrelation (GeoDa).

2.4.4. Individual-level analyses

For comparison, the relationship between greenness and
physical activity was also assessed at the individual level. Two
individual-level analyses examined whether children’s amount of
MVPA performed in their neighborhood was associated with their
exposure to greenness within their neighborhoods. Both analyses
fit a negative binomial generalized linear model in which the
outcome was the average daily minutes of neighborhood-MVPA.
For model 1, 30-s epochs were first classified as occurring in
‘greener’ spaces if their NDVI value was greater than the 90th
percentile of all points included in the analysis. Epochs were then
aggregated by individual to create a categorical greenness expo-
sure variable that classified children as having experienced an
average of nearly zero, 1.5-20, or > 20 min of daily exposure to
greener spaces within the neighborhood. In model 2, greenness
exposure assessment was coarser as it was not based on GPS data
but on the mean NDVI value for the neighborhood (500 m buffer
around homes). Both analyses were conducted on the same
dataset as the momentary analysis and controlled for gender,
age, income, and race. Other covariates included BMI, community
design group, and the interaction between community design and
the greenness variables.
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3. Results

3.1. Descriptive statistics

Of the 386 children at baseline, 178 (Table 1 footnote) did not
meet inclusion criteria for the neighborhood analysis, reducing the
final sample to 208. Sixty-five were from the smart growth inter-
vention group and 143 were from the comparison group, residents of
nearby conventional communities. The smart growth group had a
higher median annual income, larger percentage of Asians, and
smaller percentage of Hispanics than the comparison group
(Table 1). Both groups had similar gender, age, and BMI distributions.
Kruskal-Wallis and ANOVA tests found demographics of the final
sample were similar to those of participants excluded from analysis.

After removal of outlier, missing, accelerometer non-wear,
motorized, night, and school-time data, the median value for a
child’s average daily minutes recorded time in the neighborhood
was greater for the smart growth group (51.64) than the conven-
tional group (31.86) (Table 1). Median values for a subject’s
average daily minutes of neighborhood-MVPA were 7.50 and
425 for the smart growth and conventional groups, respectively
(p-value=0.05). The smart growth group had a higher median
value for neighborhood average NDVI (Table 1).

Accelerometer and GPS summary statistics in Table 2 illustrate
smart growth residents had greater percentages of missing GPS
data than the conventional group.

3.2. Momentary analysis

Exposure to greenness was significantly associated with the
probability of MVPA at the momentary 30-s epoch scale (Table 3).

This was consistent with geovisualization suggesting MVPA often
occurred in proximity to green areas (Fig. 1). The interaction
between NDVI and community design group was significant
(p-value < 0.05), producing an odds ratio of MVPA that was
slightly higher for smart growth (OR=1.39, 95% CI 1.36-1.44)
compared to conventional community residents (OR=1.34, 95%
CI 1.30-1.38). For smart growth residents, a momentary exposure
to a higher level of greenness (an NDVI increment of 0.11, which
was equivalent to the difference between the 10th and 90th
percentile values) was associated with a 39% increase in odds of
MVPA compared to a 34% increase in odds for conventional
community residents.

Table 3 shows that on average, girls were less likely to engage
in MVPA than boys. There was no evidence of association between
the likelihood of MVPA and age, race, income or community
design group. The probability of MVPA was not associated with
BMI (p-value=0.28). Children were less likely to perform MVPA
during school-season weekends compared to before- and after-
school on weekdays. The likelihood of MVPA during summer-
season days was no different from school-season before- and
after-school weekdays.

Empirical semi-variograms suggested observations were
spatially autocorrelated up to a range of 100 m. Hence, a 100 m
MVPA kernel density term was included in the model. Inclusion of
this term negligibly affected parameter and standard error esti-
mates. A Moran’s I test of autocorrelation on the final model
residuals rejected the null hypothesis (p-value <0.001) but the
magnitude of the Moran’s I was small (0.09) indicating that
although significant, the effect of remaining autocorrelation on
the estimation was likely minimal.

Table 1
Demographic, activity, and neighborhood greenness characteristics of the 208 participants included in the analysis by community design group?.
Conventional (n=143) Smart growth (n=65) p-value®
Gender: n (%)
Male 70 (48.95) 30 (46.15) 0.71
Female 73 (51.05) 35 (53.85)
Age: n (%)
8-10 years 53 (37.06) 26 (40.00) 0.69
11-14 years 90 (62.94) 39 (60.00)
BMI: (kg/m2)
Median (range) 19 (13-39) 19 (13-33) 0.20
Race: n (%)
Caucasian 37 (25.87) 18 (27.69) 0.78
African American 3(2.10) 5 (7.69) 0.05
Hispanic 68 (47.55) 19 (29.23) 0.01
Asian 8 (5.60) 14 (21.54) <0.01
Other (mixed, other, Haw/PI, Am. Ind) 27 (18.88) 9 (13.85) 0.38
Annual household income®: ($1000s)
Median (range) 48 (5-160) 80 (5-160) <0.001
Neighborhood average daily minutes ¢
Median (range) 31.86 (7.93-438.57) 51.64 (10.25-220.67) 0.01
Neighborhood-MVPA average daily minutes ¢
Median (range) 4.25 (0-47.67) 7.50 (0-36.50) 0.05
Neighborhood average NDVI ¢
Median (range) 0.05 (0-0.68) 0.10 (0-0.74) < 0.001

2 178 participants did not meet inclusion criteria. Twenty-five participants were missing their GPS or accelerometer file. Thirty-four did not meet the initial minimum
valid days criterion. Sixty had <1 h of neighborhood points. Fifty-nine did not have data reflecting their geocoded address.
5 ANOVA and Kruskal-Wallis tests applied for assessing differences between groups.

€ US Dollars.

d Calculated after excluding missing, outlier, accelerometer non-wear, motorized, night, and school data.

¢ Derived from LANDSAT imagery. NDVI is calculated as the relative reflectance of radiation from near infrared to visible red spectra (NIR-Red/NIR+Red) and is an
indicator of vegetation as growing plants reflect near-infrared and absorb radiation in the visible range. Negative 30 m x 30 m pixel values primarily representing water
were reassigned to 0, then mean NDVI was calculated for all 30 m x 30 m pixels within 500 m buffers around geocoded residential addresses. For the regression model
neighborhood mean NDVI values were rescaled by dividing by the 10-90™ percentile range of these values.
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Table 2
Accelerometer and GPS sampling characteristics of the 208 participants included in the analysis by community design group®.

Conventional (n=143)

mean (range)

Smart Growth (n=65) p-value®
mean (range)

7.90 (6.00-8.00)
0.91 (0-24.20)
29.93 (2.51-77.54)
<0.01 (0-0.03)
<0.01 (0-0.000084)
38.02 (18.20-75.54)
1.96 (0-5.53)

Number of days

% Missing accelerometer data“
% Missing GPS data

% Accelerometer outliers®

% GPS outliers®

% Accelerometer non-wear"

% Motorized®

7.90 (7.00-8.00) 0.26
1.46 (0-21.01) 0.01
39.90 (7.52-76.60) <0.001
0.29 (0-18.73) 0.80
<0.01 (0-0.000081) 0.79
37.43 (6.92-64.00) 0.73
2.34 (0.03-4.86) 0.04

2 Summary statistics describe data collected between 5am-11pm, excluding school hours on weekdays 9am-2pm during the school season August 31-June 10.
b ANOVA and Kruskal-Wallis tests applied for assessing differences between groups.
€ The mean values in this table represent the means for “% of 30-s epochs for each participant”.

d Accelerometer records with greater than 16,383 counts per 30-s epoch.
€ GPS records with speeds greater than 169 kph (105 mph).

f Accelerometer records comprising at least 60 min of consecutive zero activity counts.

& GPS records with speeds greater than 32 kph (20 mph).

Table 3

The association between momentary greenness exposure and the odds of MVPA at 30-s interval point locations. The analysis was restricted to residential neighborhood
activity and the logistic model included a random effect on individual to account for nested measures®.

Definition B (95% CI) OR (95% CI) p-value
Response variable
MVPA 0: Sedentary/light
1: Moderate/vigorous
Covariates
NDVIP Normalized difference vegetation index 0.29 (0.27, 0.32) 1.34 (1.30, 1.38) <0.001
Community 0: Conventional
1: Smart growth 0.23 (—0.20, 0.65) 1.26 (0.82, 1.92) 0.29
Gender 0: Male
1: Female —0.50 (—0.85, —0.14) 0.61 (0.43, 0.87) 0.01
Age 0: 8-10 years
1: 11-14 years —0.37 (-0.76, 0.02) 0.69 (0.47, 1.02) 0.06
Income Annual income ($1000 US dollars) —0.005 (—0.009, 0) 0.995 (0.991, 1.000) 0.06
Race Reference: Caucasian
African American —-0.21 (—1.20, 0.78) 0.81 (0.30, 2.18) 0.67
Hispanic —0.05 (-0.51, 0.41) 0.95 (0.60, 1.50) 0.82
Asian -0.33 (-0.97,0.32) 0.72 (0.38, 1.38) 0.33
Other® —0.37 (-0.93, 0.18) 0.69 (0.40, 1.20) 0.19
Leisure Reference:
School weekends Before and after school until 2300 h —0.47 (-0.52, —0.41) 0.63 (0.59, 0.66) <0.001
Summer on school-season weekdays —0.19 (—0.60, 0.23) 0.83 (0.55, 1.26) 0.38
MVPA kernel® —16.85 (—26.17, —7.53) <0.001

NDVI x Community Interaction 0.04 (0.001, 0.085)

1.044 (1.001, 1.089)

0.04

@ There was a total of 142,552 30-s epochs for 208 participants. The epoch was the unit of analysis.

b Negative NDVI values primarily representing water were assigned 0. For regression all values were rescaled by dividing by their 10-90th percentile range.

€ Race category “other” includes mixed, other, Hawaiian/Pacific Islander, and American Indian.
4 MVPA kernel density estimate (bandwidth 100 m) included to address spatial autocorrelation.

3.3. Individual-level analyses

Two individual-level analyses were conducted examining the
association between mean daily minutes of MVPA performed in
the neighborhood and two different neighborhood greenness
exposure predictors (Table 4). While controlling for potential
confounders gender, age, income, and race, model 1 results
suggest that for neighborhood activity children who experienced
1.5-20 min of daily exposure to greener spaces ( > 90th percen-
tile) engaged in 2.11 times the daily rate of MVPA of children with

nearly zero daily exposure to greener spaces. Children who
experienced >20min of daily exposure to greener spaces
engaged in 4.72 times the daily rate of MVPA of children with
nearly zero daily exposure to greener spaces. This relationship
exhibited a linear trend (p-value < 0.001). The median values for
average daily neighborhood-MVPA were 2.9, 7.6, and 14.6 min for
children who experienced neighborhood exposure to greener
spaces of nearly zero, 1.5-20, and > 20 min daily, respectively.
Approximately 50% of children had nearly zero daily exposure to
greener spaces within the neighborhood. In model 2 the coarser
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greenness exposure predictor, mean neighborhood NDVI, was not
associated with daily neighborhood-MVPA.

Race was not significant in either model. Gender was
consistently significant with coefficient approximately —0.46
(p-value < 0.01), indicating boys engaged in 1.58 times the daily
rate of neighborhood-MVPA of girls. The coefficient for age
(0: 8-10, 1: 11-14) was —0.33 and only significant in model 2
(p-value=0.03). Income (thousands US dollars) coefficient, —0.01,
was only significant in model 1 (p-value < 0.05). BMI, community
design, and the community design interaction with the greenness
variables were never significant.

4. Discussion and conclusions

Novel exposure assessment methods were used to test
whether momentary greenness exposure was associated with
the likelihood of MVPA for children residing in smart growth

3_;&‘ S
RS

Physical Activity Level
Sedentary

@ Light

® Moderate / Vigorous

Fig. 1. Geovisualization of a child’s personal monitoring points show MVPA
occurring within green areas and during active transport (* home points shifted
for confidentiality).

Table 4

and conventionally designed communities. The analysis was
limited to neighborhood activity outside of homes during non-
school hours. For children ages 8-14, momentary greenness was
positively associated with physical activity while controlling for
individual confounders and a spatial moving density of MVPA.
Results at the 30-s epoch scale suggest a 34-39% increase in odds
of MVPA for a 10th to 90th percentile increase in exposure to
greenness quantified by an NDVI increase of 0.11. In the typical
neighborhood settings assessed in this dataset, this incremental
change in greenness usually corresponded to the difference
between a mostly paved area and mostly grass or shrub
covered area.

This is one of the first studies to use objective measures to
examine the contemporaneous association between greenness
and free-living activity of children, and the first to assess the
effect modification by community design in a quasi-experimental
setting. Study findings were consistent with Jones et al. (2009)
who found common locations for children’s physical activity
included gardens and green spaces. However, these authors
analyzed aggregated GPS-accelerometer data (MVPA bouts > 5 -
min) and green spaces were classified by land use type (e.g.
gardens, parks, grassland). The current results were also consis-
tent with Wheeler et al. (2010) who found a 37% increase in odds
of MVPA (OR=1.37) for epochs occurring in green spaces for 10-
11 yr-old boys. These authors also used GPS, accelerometer, and
land use data. The variation in how greenness is quantified and
defined presents challenges for comparing results across studies.
Some researchers quantify proximity to or availability of specified
green land uses (Roemmich et al., 2006; Maas et al., 2008)
whereas greenness exposure was quantified in the current study
indiscriminate of land use.

The association reported between momentary greenness and
physical activity was slightly stronger for children living in the
smart growth community compared to nearby conventional low-
density communities. This finding supports the hypothesis that
well-designed communities may provide more useful green
spaces. Indeed there may be multiple important interactions
between greenness and other design features, namely walkability,
esthetics, safety, and mixed land uses. Geovisual inspection of the
data suggests a fair amount of green-MVPA may have occurred
during active transport to/from school. Analysis of the leisure-
time variable found children more likely to engage in neighbor-
hood-MVPA before and after-school compared to weekends

Individual-level analyses of mean daily minutes of MVPA performed in the neighborhood in relation to two different greenness exposure predictors. The negative binomial
generalized linear models controlled for gender, age, income and race. Other covariates tested were BMI, community, and the interaction between community and

greenness variables.

Model*” B (95% CI) Exp(p) (95% CI) p-value
multiplicative effect on daily min MVPA
Response variable: MVPA time
Mean daily minutes of neighborhood-MVPA
Negative binomial regression with a log link
Predictor model 1: exposure to greener spaces®
0: near zero average daily exposure (Ref.)
1: 1.5-20 min average daily exposure 0.75 (0.47, 1.02) 2.11 (1.60, 2.77) <0.001
2: >20 min average daily exposure 1.55(1.13, 1.97) 4.72 (3.09, 7.20) <0.001
Predictor model 2: neighborhood greenness
Mean neighborhood NDVI¢ 0.13 (-0.27, 0.53) 1.14 (0.77, 1.70) 0.51

? n=208 participants.

b Gender significant in both models. Income significant in model 1. Age significant in model 2. Race, BMI, the community design variable, and the community design

interaction with the greenness variables were not significant in either model.

€ 30-s epochs with NDVI > 90th percentile of dataset values were classified as a “greener space”.
4 Negative NDVI 30 m x 30 m pixel values primarily representing water were assigned 0. Mean NDVI was calculated for all 30 m x 30 m pixels within 500 m
buffers around geocoded residences. For the regression neighborhood mean NDVI values were rescaled by dividing by their 10-90th percentile range.



52 E. Almanza et al. / Health & Place 18 (2012) 46-54

during the school-season (p-value < 0.001). This was consistent
with previous research demonstrating after-school time spent
outdoors is an important source of physical activity (Cleland et al.,
2008; Cooper et al., 2010). A centrally located school in the smart
growth community may have promoted active transport, expo-
sure to greener spaces, opportunities for unstructured play, and
increased MVPA.

4.1. Strengths

A strength of the current study was the use of novel exposure
assessment methods to investigate micro-geographic associations
between momentary (30-s) greenness and physical activity. The
momentary analysis approach provided information on condi-
tions wherein MVPA occurs, thus allowing stronger inference
about the environmental context of activity. In comparison, the
two individual-level analyses highlighted the value of a momen-
tary approach. In contrast to the momentary analysis, neither
individual-level model found an interaction between greenness
and community design. Furthermore, these models did not
explicitly link greenness exposure to contemporaneous instances
of MVPA. Rather, they examined daily average neighborhood-
MVPA as a function of two spatially-implicit neighborhood
exposure variables. It is of note that the coarser of the two
exposure variables (model 2), mean neighborhood NDVI, was
not associated with neighborhood-MVPA. Conversely, the green-
ness exposure variable based on aggregation of momentary GPS
data (model 1) produced results that mirrored the spatially-
explicit momentary analysis. Specifically, individual-level model
1 suggests children who experienced > 20 min of daily exposure
to greener spaces within neighborhoods engaged in almost
5 times the daily rate of neighborhood-MVPA of children
with nearly zero daily exposure to greener spaces. These findings
suggest an increase in power to detect associations with spatially-
explicit analyses.

The analytical sample (n1=208) represented a wide range of
ages, income levels, and a substantial proportion of ethnic
minorities (42% Hispanic). This was particularly important for
working towards understanding activity behavior of low-income
minorities who are especially vulnerable to obesity (Cohen et al.,
2007). Additionally, sampling captured all waking hours week-
days and weekends during summer and school-year months,
which allowed assessment of temporal variation of behavior.
Furthermore, the study’s quasi-experimental design mitigated
self-selection bias since the demographically-matched compar-
ison group recruited from nearby communities consisted of
families who considered moving into the newly developed smart
growth intervention community.

Finally, the study addressed potential spatial autocorrelation
among observations by inclusion of the MVPA kernel density
estimate in the model. Although more refined methods are
warranted in the future, the authors are unaware of similar
attempts to incorporate spatial terms into models exploring
relationships between the environment and activity using GPS
and accelerometer data.

4.2. Limitations

Several study limitations are noted. First, negative NDVI values
representing water or bare earth were set to zero, but clouds may
also register negative values potentially misclassifying land below
clouds. The satellite imagery used, however, had less than 6%
cloud cover and these clouds were primarily outside the spatial
extent of participant residential communities. Another potential
source of bias was that the imagery was obtained for March-May
of 2010; whereas space-time-activity data was collected between

March 2009 and March 2010. Seasonal differences between
imagery and data-collection periods may have led to greenness
exposure misclassification especially in relation to the phenology
of large shade trees and landscaping within communities. Addi-
tionally, analyses did not assess how weather and amount of
daylight affected children’s activity. The inclusion of the leisure-
time variable, however, partially addressed seasonality factors
since one of the categories represented summer months. Further-
more, the data-collection protocol excluded late-July, August, and
January to offset extreme weather effects.

GPS measurement error made it especially difficult to distin-
guish children’s home points (within 30 m buffer). Geovisualiza-
tion indicated buffers likely captured yard, street, and
neighboring home activity, thereby excluding such activity from
analysis. This misclassification was unlikely to bias results
because of the focus on more common spaces (e.g., parks, walk-
ways) within neighborhoods. A further limitation on the use of
accelerometers was their insensitivity to bicycling activity. This
problem was unlikely to bias results because cycling occurred
infrequently within this population. Moreover, non-wear time for
particular activities (e.g. sports, swimming) may have under-
represented environments supportive of these activities.

The loss of GPS signal reduced the amount of useable accel-
erometer data for spatial analyses. To maximize data retention for
analysis, instead of using standard accelerometer cut-offs of
8-10 h, a valid day consisted of >4 h of valid GPS-accelerometer
data and inclusion criteria required a minimum of 3 valid days.
Thus far, researchers have used various GPS analysis criteria. To
define a valid GPS day Troped et al. (2010) used a cut-off of
1 standard deviation below the mean of recorded daily data
(40 min), while Cooper et al. (2010) included children with
>3 h of outdoors GPS-accelerometer data on > 1 day. Standardi-
zation of inclusion criteria for GPS-accelerometer studies is
warranted.

The current study focused on neighborhood activity outside of
homes and school-hours in suburban settings. As such, results are
not generalizable to rural settings or behavior outside neighbor-
hoods, inside homes, or during school-hours. Additionally,
restricting the analyses excluded 119 participants because of
insufficient neighborhood data. Analyses with the excluded data
(e.g. inside homes, outside neighborhoods) would improve under-
standing of children’s overall activity behavior.

Lastly, the use of NDVI for greenness exposure was a strength
in that it captured most green features in the environment and
was not limited to pre-classified green spaces, which may fail to
include small or non-standard green areas. The current analysis
was limited, however, as it did not assess the type of greenness
feature (e.g. open, tree-lined walkway, recreational area, garden),
accessibility, safety, frequency of organized sports at open green
spaces, or whether some spaces promoted higher levels of activity
due to quality or esthetics (Humpel et al., 2002; Bedimo-Rung
et al., 2005; Giles-Corti et al., 2005; Hoehner et al., 2005; Hillsdon
et al., 2006; Mitchell and Popham, 2007; Lee and Maheswaran,
2011). In particular, features of parks and public open spaces that
may be important determinants of use for physical activity
include trees, playgrounds, recreational facilities, drinking foun-
tains, toilets, walking trails, and water features such as a pond
(Giles-Corti et al., 2005; Kaczynski et al., 2008; Potwarka et al.,
2008; Veitch et al., 2011). Furthermore, research has found that
parks with age-appropriate playgrounds, trees, birds, walking
paths, and basketball courts are significantly associated with
greater physical activity among children and youth (Cohen
et al., 2006; Timperio et al., 2008). These findings highlight the
need of future research to look closer at specific features and
qualitative differences of green areas while using objective
measurement tools. In future studies, the authors will integrate
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current objective data with other GIS layers (e.g. park) as well as
environment and recreational programming information from
field audits (Day et al., 2006; Wolch et al., 2010) to tease out
which features and types of green areas are most associated with
physical activity of children in the Healthy PLACES study.

4.3. Conclusions

Results from momentary epoch-level and aggregated individual-
level analyses indicate greenness is positively associated with
children’s physical activity. Although these results suggested
modest effect sizes, the health impacts could be cumulatively
substantial at the population-level. Additionally, the current
finding that the greenness association was stronger for smart
growth residents suggests future research should explore further
whether community design moderates individuals’ use of green
spaces. In particular, the authors plan to examine how other
smart growth elements interact with greenness to increase the
likelihood of MVPA.

The current study extends the knowledge base with objective
measures of greenness, time-location, and free-living activity of
children. It also takes a step toward addressing spatial depen-
dence among observations, which has relevance to other studies
that attempt to draw inference from large personal monitoring
datasets. Finally, if a greenness-physical activity effect is demon-
strated longitudinally over the course of the Healthy PLACES
study and it is linked to other health outcomes, this would
provide an even stronger justification for integrating green spaces
into community planning to promote health.
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