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Abstract

In this paper, we show that the method of monotone iterative technique is valid to obtain two
monotone sequences that converge uniformly to extremal solutions of first and second order periodic
boundary value problems and periodic solutions of functional differential equations. We obtain some
new results relative to the lower solutianand upper solutiog with o < 8.
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1. Introduction

The method of upper and lower solutions coupled with the monotone iterative has been
applied successfully to obtain results of existence and approximation of solutions for pe-
riodic boundary value problems for first and second order ordinary differential equations
(see [1] and references therein).
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Some attempts have been made to extend these techniques to study periodic boundary
value problems of functional differential equations (FDES). In [2,3], the periodic problem

Y= f(t, . y0), y(0) = y(T),

is considered, but in both papers it is required tfiat, u, ) be monotone in the third
variable.
In this paper, we apply monotone iterative technique to study first and second order pe-
riodic boundary value problems and periodic solutions of functional differential equations.
We consider the following periodic boundary value problems (PBVPSs):

VO = F@y@®). @), tel=0, T],
{ (0 = y(T), (1.1)

{ —"t) = f(t,y@®), y(0®)), tel,
y(0) =y(T), y'(0)=y(T),

wheref € C(I x R, R),w € C(I, [a, b]), herea, b are constants such th& 7' C [a, b],
T >0.

In a similar way to deal with (1.1)—(1.2), we consider theeriodic solutions of the
following functional differential equations (FDES):

Y0 = f(t.y®),y(@()), teR, (1.3)
—y"(1)=f(t.y®), y(@(1))), t€R, (1.4)

where f € C(R3,R), f(t,u,v) = f(t + T,u,v), T >0,0() =1 —1(t), T € C(R, R),
t)=t@+7T).

The definitions of solutions of (1.1)—(1.4) will be given in Section 3.

Note that (1.1)—(1.4) include ordinary, retarded and advanced differential equations.

PBVP (1.1)is considered by Liz and Nieto [4,5] without assumfrige monotone in the
third variable. Recently, (1.1)—(1.4) are considered by Jiang and Wei [6] without assuming
f to be monotone in the third variable by applying monotone method. However, in [4—6],
the results are only valid for delay differential equations.

The main purpose of this paper is to improve and generalize the work of [2—6]. The new
method we use for dealing with the maximum principle is different from [4—6].

In this paper, Section 2 is devoted to the maximum principle, which is the key to devel-
oping the monotone technique. Section 3 is devoted to develop the monotone method for
(1.1)—(1.4).

(1.2)

2. Maximum principle

To prove the validity of the monotone iterative technique, we shall use the following
maximum principle.

In the proof of our maximum principle below, we will use the lemma of Cabada [7].

Lemma 2.1 [7]. If thelinear problem
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2" (1) + Mz(1) =0,
D) -zP®B)=0, i=0,....n—2,
2" D)y =" Vpy=1

has a unique solution r € C*[a, b], the problem

u™ (1) + Mu(t) = o (1) € L*(1),
uD@)—u®By=2, i=0,...,n—1,

has a unique solution u given by the expression

b n—1
u(t) = / Gu(t,s)o(s)ds + Y rOOrn-1,
p i=0
where
_Jra+t—s), a<s<t<b,
G"(t’s)_{r(b—i—t—s), a<t<s<b.

Theorem 2.1. Let y € E; = C([a, b], R)NC1([0, T], R) and M > 0, N > O such that

(i) YO+ My@) + Ny(w()) >0,
(i) ¥ =y(T),
iy y© =y@), tela,0],

y(I)=y@®), trelT,b],
eMT 1

@iv) N <1,

tel,

where w € C(I, [a, b]). Then y(t) > 0, Vr € [a, b].

Proof. There exist$ € [0, T'] such that

= max ) = max y(1r),
y(&) te[cmy() te[a’b]y()

thus
y'(t)+My(@t)+ Ny@E) >0, tel,
y(0) = y(T).

Leto(r) =y'(t) + My(t) + Ny(§) > 0 andi = y(0) — y(T) > 0.

Then we have
Y (@) +My@®)+NyE)=o(), tel,
y(0) = y(T) + 4.
Letu(r) =y(@) + (N/M)y(&); thus we obtain

693
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W) +Mult)=0(), tel,
u0)y=u(T)+ 1.
Letr(¢) be the unique solutione C*°[0, T'] to the problem
r'(t)+Mr(@)=0, r(0)=r(T)+ 1.
From Lemma 2.1, we obtain
Jo G(0,5)0(s)ds +Ar(0), t€]a,0],
u(t)y =1 [ G(t,)o(s)ds +xrr(r), 1€[0,T],
Jo G(T,s)a(s)ds +rr(T), t€lT,b],

where
M(T+s—t)
%, 0<s <t <T,
G, ) =1 i
:MT—_lv 0<r<s<T,
and
eM(T—1)

1) = ——.
r() eMT—l

A direct calculation shows that
MT

By (2.1) and (2.3),

eMT —1°

T T

r(T)(/cr(s)ds—i—k) <u(t) <r(0)(/a(s)ds+k), vVt € [a, b].

0 0
Sinceu(t) = y(t) + (N/M)y(§), by (2.4) we have
T

_ M < M 0 ds+ X
y(é)—MJrNu(E)\MJFNr() /U(S) s+1).
0

On the other hand, by (2.4) we also have
T

(0 = ut) - %y(&) > r(T) (x +/o(s>ds> - %y(&)

0
T

2 (A—i—/cr(s)ds) <r(T)— M]_\'I_NF(O))

0
T

N
= (A+/o(s)ds)r(0)(8— M+N>’

0
wheres = r(T)/r(0) =1/eMT.

(2.1)

(2.2)

(2.3)

(2.4)
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From the assumption (iv), we obtaiN/(M 4+ N) < §. So we gety(¢t) > 0, Vt €
[a,b]. O

Remark 2.1. Condition (iv) in Theorem 2.1 is the same as in [5,6], but we extend the range
of w(?).

Theorem 2.2. Let y € Ez = C([a, b], Ry N C?3([0, T], R) and M > 0, N > 0 such that

i) =Y+ My@®)+Ny(w®) >0, tel,
(i)  y(0)=y(D), y'(0) < y/(T),
(i) YO =y@), tela,01U[T,b],
2
(iv) %(sh@) <1,

where shx = (e* —e™)/2, w € C(I, [a, b]). Then y(¢t) > 0, Vt € [a, b].

Proof. Letz(t) = —y(¢), thus
Z"(t) = Mz(t) — Nz(w(®)) >0, tel,
z(0) = z(T), Z'(0) = Z/(T),
z(0)=z(), tela,0lUI[T,b].

There existg € [0, T] such that

z(§) = zer]f'()i,r}]Z(t) = IQP(EE]Z(I)’

thus
Z"(t) —Mz(t) — Nz(§) 20, rel,
z(0) = z(T), Z'(0) = Z/(T).

Leto(t) =z7"(t) — Mz(t) — Nz(§) > 0 andx =7/ (0) — Z/(T) > 0. Then we have
7'(t) — Mz(t) — Nz(§) =0 (1), tel,
z(0) = z(T), 70)=7(T) + A.

Letu(r) =z(t) + (N/M)z(§), thus
W' () —Mu(t)=o@), tel,
u(0) =u(T), w0 =u/(T)+ A.

Letr(¢) be the unique solutione C*°[0, T'] to the problem
r"(t) — Mr(t) =0,
r(0) =r(T), r(0)=r(T)+ 1.

From Lemma 2.1, we obtain
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o JE G, 5)a(s)ds +rr(), 1€[0, T,
u =
fOT G0, s)a(s)ds +rr(0), tela,0MUI[T,b],

wherem = /M,
em(t—S')+er:1inTT—t+3') ’ O < s g t < T,
G(t,s) = 2m(1—em?)
’ ° el?i(T+t*S)+elﬂ(S*t) O < ‘ < < T
2m(lfe'"T) 9 X IS X 3
and
emt _i_em(Tft)
r¢)=— <0.
@) 2m(1— emT)
A direct calculation shows that

1+emT T zemT/Z
> =r(O<Gt,)<r| 5 )| =577
2nd—enty OO0 r(z) 2= eT)
By (2.5) and (2.7) we have that

T T
r(O)(/a(s)ds+A> <u(t) ér(%)(/a(s)ds—i—)»), vVt € [a, b].
0 0

Sinceu(t) = z(t) + (N/M)z(§), so by (2.8) we have that

T

= M ) > M 0) )d A
26) = g u®) > 3 /o(s s+

0

On the other hand, by (2.8) we also have

N T - N
2(t) = u(t) — Mz(§)<r(§> A+/o(s>ds — Sa®
0

T
( +/c7(s)ds>< ( )— M]—V|-Nr(0))
0
T
N
= <k+/a(s)ds>r(0)(8— M+N)’
0
where
s 1(T/2 _ 21/

r(0) T 14 emT’

(2.5)

(2.6)

2.7)

(2.8)

From the assumption (iv), we obtaM/(M + N) < §. So we get;(¢r) <0, i.e.,y(t) =

—z(t) 20,Vtela,b]. O
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Remark 2.2. Condition (iv) in Theorem 2.2 is weaker than condition (iv) in Theoreff 2
of [6], and it holds providedV is suitably small. Condition (iv) in Theorem2Z of [6] is
2N [ TM\?
—(|sh——) <1
M 2

In the same way as proof of Theorems 2.1 and 2.2, we have the following results.

Theorem2.3.Lety € X1 ={y € CX(R, R): y(t) = y(t+T)}and M > 0, N > O such that

i) Y@ +My@)+Ny(w() >0, teRr,
MT

(i) N <1,

wherew() =t —1t(), 1€ C(R,R),T®)=1(t+T), T >0. Theny(t) >0, Vt € R.

Theorem2.4.Lety € X ={y € C3(R,R): y(t)=y(t+T)}and M > 0, N > O such that
i) —y"()+My@)+Ny(w®) >0, teR,
2
(i) 2—N(sh@) <1,
M 4

wherew() =t —1(), 1€ C(R,R),7(t) =1+ T), T >0.Then y(¢t) >0, Vt € R.

3. Monotone method for PBVPs and periodic solutions of FDEs

In this section, we are in a position to prove the validity of monotone method for (1.1)—
(1.4).
First we consider PBVPs (1.1) and (1.2). We shall denote by
Eor={y € E1: y(t) =y(0), Vt € [a, 0] andy (1) = y(T), V1 € [T, b]}

and

Eoz2={y € E2: y(t) = y(0), Vt € [a,0]U[T, b1},
whereE; (i =1, 2) are defined in Section 2.
Fora, B € Eg; (i =1, 2), we shall writea < B if a(¢) < B(¢) forall r € [a, b]. In such
a case, we shall denote
[e. Bl={y € Eoi: a <y < B, i =12}
A functiona € Ep; is said to be a lower solution to (1.1), if it satisfies

o (1) < fta@), a(w(), tel,
{a(O) <a(T). (3.1)

An upper solution for (1.1) is defined analogously by reversing the inequalities of above.
A functiona € Eg> is said to be a lower solution to (1.2), if it satisfies
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—a" (1) < f(t,a(®), a(w(1), tel, (3.2)
a(0)=a(T), o0 =o' (T). )

An upper solution for (1.2) is defined analogously by reversing the inequalities of above.
Afunctiony € Ep1 (or Egp) is said to be a solution to (1.1) (or (1.2)) if itis both a lower
and an upper solution to (1.1) (or (1.2)).
By similar arguments as in [6], we can prove Theorems 3.1 and 3.2 below.

Theorem 3.1. Supposethat there exists a lower solution « and an upper solution g of (1.1)
suchthat o < 8 on [a, b]. Assume that there exist two constants M > 0, N > 0 satisfying

(Hy)  f(t,uz,v2) — f(t,u1,v1) =2 —M(u2 —uy) — N(v2 — v1)

for t € I, whenever a(f) <u1 <upz < B(1) and a(w(t)) < vy < vz < B(w(?)),;
MT

(H2) N <1

Then there exist two sequences {«,} and {8,}, nondecreasing and nonincreasing, re-
spectively, with g = « and So = 8, which converge uniformly and monotonically to the
extremal solution to the problem (1.1) in the segment [«, 8].

Theorem 3.2. Supposethat there exists a lower solution « and an upper solution g of (1.2)
suchthat o < 8 on [a, b]. Assume that there exist two constants M > 0, N > 0 satisfying

(B1)  f(t,uz,v2) — f(t,u1,v1) = —M(u2 —u1) — N(v2 — v1)
for t € I, whenever a(r) <u1<uz < B@) and a(w(t)) < vy < v2 < B(w(t));
2
(B2) 2—N<Sh@> <1
M 4

Then there exist two sequences {«,} and {8,}, nondecreasing and nonincreasing, re-
spectively, with g = « and o = 8, which converge uniformly and monotonically to the
extremal solution to the problem (1.2) in the segment [«, 8].

Next we consider periodic solutions of (1.3) and (1.4). Ketand X, be as in Section 2.
A functiona € X1 is said to be a lower solution to (1.3) if it satisfies

o ()< fta@), a(w®)), t€R. (3.3)
An upper solution for (1.3) is defined analogously by reversing the inequalities of above.
A functionx € X> is said to be a lower solution to (1.4) if it satisfies
=" (1) < f(t,a@), a(w(®))), 1€R. (3.4)

An upper solution for (1.4) is defined analogously by reversing the inequalities of above.
A functiony € X; (or X>) is said to be a solution to (1.3) (or (1.4)) if it is both a lower
and an upper solution to (1.3) (or (1.4)).
Also by similar arguments as in [6], we have the following results.
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Theorem 3.3. Supposethat there exists a lower solution « and an upper solution g of (1.3)
suchthat o < 8 in R. Assume that there exist two constants M > 0, N > 0 satisfying

(Hy)  f(t,uz,v2) — f(t,ur,v1) = —Mu2 —u1) — N(v2 — v1)

for t € R, whenever a(r) <ui <uz < B(t) and a(w(t)) < vi < vz < B(w(?));

(Hy) M1
_— < 1.
2 M

Then there exist two sequences {«,} and {8,}, nondecreasing and nonincreasing, re-
spectively, with g = « and So = 8, which converge uniformly and monotonically to the
extremal T-periodic solution to (1.3) in the segment [«, B].

Theorem 3.4. Supposethat there exists a lower solution « and an upper solution g of (1.4)
suchthat o < 8 in R. Assume that there exist two constants M > 0, N > 0 satisfying

By f(t,uz,v2) — f(t,uy,v1) 2 —Mup —u1) — N(vz —v1)
for t € R, whenever o(f) <ui <uz < B(1) anda(w(?)) < vy < vz < B(w(?));

2
(B2) 2—N<sh¥> <1

M
Then there exist two sequences {«,} and {8,}, nondecreasing and nonincreasing, re-
spectively, with g = « and So = 8, which converge uniformly and monotonically to the
extremal T-periodic solution to (1.4) in the segment [«, B].
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