
Human Female Hair Follicles Are a Direct,
Nonclassical Target for Thyroid-Stimulating Hormone
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Pituitary thyroid-stimulating hormone (TSH) regulates thyroid hormone synthesis via receptors (TSH-R)
expressed on thyroid epithelial cells. As the hair follicle (HF) is uniquely hormone-sensitive and,
hypothyroidism with its associated, increased TSH serum levels clinically can lead to hair loss, we asked
whether human HFs are a direct target for TSH. Here, we report that normal human scalp skin and
microdissected human HFs express TSH-R mRNA. TSH-R-like immunoreactivity is limited to the mesenchymal
skin compartments in situ. TSH may alter HF mesenchymal functions, as it upregulates a-smooth muscle actin
expression in HF fibroblasts. TSH-R stimulation by its natural ligand in organ culture changes the expression of
several genes of human scalp HFs (for example keratin K5), upregulates the transcription of classical TSH target
genes and enhances cAMP production. Although the functional role of TSH in human HF biology awaits further
dissection, these findings document that intracutaneous TSH-Rs are fully functional in situ and that HFs of
female individuals are direct targets for nonclassical, extrathyroidal TSH bioregulation. This suggests that organ-
cultured scalp HFs provide an instructive and physiologically relevant human model for exploring nonclassical
functions of TSH, in and beyond the skin.
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INTRODUCTION
Hair follicles (HFs) represent one of the most hormone-
sensitive tissue interaction systems in the mammalian body
(Slominski and Wortsman, 2000; Slominski et al., 2000;
Stenn and Paus, 2001; Tobin and Kauser, 2005; Ohnemus
et al., 2006; Paus et al., 2006) and are exquisitely thyroid
hormone-sensitive (Safer et al., 2001; Stenn and Paus, 2001).
As numerous endocrine abnormalities are associated with

hair loss (alopecia, effluvium) or unwanted hair growth
(hirsutism), it is clinically important to comprehensively
investigate the entire spectrum of potential (neuro)endocrine
controls of human HF growth and pigmentation—well
beyond the well-recognized impact of other hormones such
as androgens, estrogens, and retinoids on human hair growth
(Freinkel and Freinkel, 1972; Billoni et al., 2000; Messenger,
2000; Stenn and Paus, 2001; Larsen et al., 2003; Bravermann
and Utiger, 2005; Slominski et al., 2005; Ohnemus et al.,
2006).

It has been known for decades that thyroid disorders that
lead to elevated or decreased thyroid hormone serum levels
are associated with altered human skin and hair structure as
well as function (Freinkel and Freinkel, 1972; Messenger,
2000; Safer, 2005a, b). This includes, for example a higher
telogen rate (Freinkel and Freinkel, 1972), altered hair
diameter (Jackson et al., 1972), dry, brittle, coarse hair (Safer,
2005a), reduced hair bulb cell proliferation (Schell et al.,
1991), and hair loss (effluvium/alopecia) in hypo-
thyroidism, as well as increased hair bulb cell proliferation
(Schell et al., 1991) and hair loss in hyperthyroidism (Safer,
2005b). However, it is as yet entirely unknown whether
thyroid disorder-associated hair abnormalities are exclusively
due to altered thyroid hormone levels (which may directly
impact on the thyroid hormone-receptor expressing human
scalp (HF Billoni et al., 2000)), or whether other endocrine
players along the hypothalamic–pituitary–thyroid axis are also
involved in mediating any related hair effects. As thyroid
abnormalities are typically associated with major fluctuations
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Schleswig-Holstein, University of Lübeck, Ratzeburger Allee 160, D-23538
Lübeck, Germany. E-mail: ralf.paus@uk-sh.de

8These authors contributed equally to this work.

Abbreviations: ACTA, a-actin; BV, blood vessel; CTGF, connective tissue
growth factor; CTS, connective tissue sheath; DP, dermal papilla; FLNA,
filamin Aa; GPX3, glutathione peroxidase 3; HFs, hair follicles; HS, hair shaft;
IVL, involucrin; KRT5, keratin 5; MK, matrix keratinocytes; MTCO1,
cytochrome c oxidase 1; N, nerves; NBs, nerve bundles; PKM2, pyruvate
kinase; SWG, sweat gland; TBS, Tris-buffered saline; TG, thyroglobulin;
TSH, thyroid-stimulating hormone (thyrotropin); TSH-R, thyrotropin-receptor;
TTF-1, thyroid transcription factor-1

http://dx.doi.org/10.1038/jid.2008.361
mailto:ralf.paus@uk-sh.de


in the serum level of thyroid-stimulating hormone (TSH)
(Larsen et al., 2003; Bravermann and Utiger, 2005), it is
particularly interesting to study the direct effects of TSH, the
major pituitary regulator of thyroid hormone synthesis, on
human hair growth.

Thyroid-stimulating hormone operates by activating a
cognate receptor (TSH-R) expressed on thyroid epithelial
cells (Larsen et al., 2003; Bravermann and Utiger, 2005).
However, recent evidence also suggests that there are
extrathyroidal target cells for TSH stimulation (Drvota et al.,
1995; Klein, 2003; Scofield et al., 2005; Garrity and Bahn,
2006), including adipose tissue (Bell et al., 2000; Sorisky
et al., 2000). Moreover, both cultured human HF keratino-
cytes and human dermal papilla fibroblasts express TSH-R
mRNA in vitro (Slominski et al., 2002), and human skin
fibroblasts reportedly express functional TSH-R proteins
in vitro (Agretti et al., 2005). Therefore, it is intriguing to
ask whether normal human skin and/or skin appendages may
also serve as a direct target for TSH.

To clarify this is important in the context of our ongoing
endeavor to characterize the complex neuroendocrine
controls of human HF biology (Kobayashi et al., 2005; Ito
et al., 2005a; Kauser et al., 2006; Peters et al., 2006;
Slominski et al., 2007). Clinically, such studies may carry
added importance, as the TSH-R is one of the most common
targets for autoimmunity (Grave’s disease), whereas thyroid
autoimmunity classically is associated with skin abnormal-
ities (for example myxedema, altered pigmentation and hair
texture, effluvium, skin inflammation), whose pathogenesis
is poorly understood (Leonhardt and Heymann, 2002;
Bravermann and Utiger, 2005; Rose and Mackay, 2006). As
it has long been controversially debated whether extrathyr-
oidal TSH-Rs (including intracutaneous TSH-R) are important
in the establishment of anti-TSH-R autoimmune responses
(Kohn et al., 2000; Rapoport et al., 2000; Daumerie et al.,
2002; Slominski et al., 2002; Agretti et al., 2005), we wanted
to clarify whether or not normal human skin expresses these
(apparently rather immunogenic) autoantigens. There are
conflicting reports as to whether TSH-R is expressed in
healthy human pretibial and periorbital skin (Rapoport et al.,
2000; Daumerie et al., 2002; Agretti et al., 2005), and
the published immunohistological evidence remains unper-
suasive.

Therefore, we investigated whether human skin in general,
and human scalp HFs in particular, express functional TSH-
Rs and are direct, nonclassical, extrathyroidal targets for TSH-
R-mediated signaling. Owing to the clinical importance of
scalp HF, the availability of excess human scalp skin from
routine female facelift surgery, and the establishment of
optimally suited human HF organ culture assays (Philpott
et al., 1990; Foitzik et al., 2006), we opted for studying this
region of the integument. TSH-R expression was examined by
reverse transcriptase (RT)–PCR and immunohistology,
whereas TSH-R-mediated signaling was assessed by cAMP
measurement, DNA microarray, and qPCR analysis of
normal, microdissected, organ-cultured human scalp HF. In
addition, we examined the functional effects of TSH on
organ-cultured human scalp HFs.

RESULTS
TSH receptor mRNA and protein are expressed in human scalp
skin and hair follicle mesenchyme

RT–PCR and immunohistology were performed in order to
clarify whether normal human scalp skin and HFs express TSH-
R on the gene and protein level in situ. We were able to
demonstrate specific transcripts at the expected base-pair
length (582 bp) in RNA extracts prepared from freshly
microdissected human scalp HFs (the total number of follicles
studied per group was 54–60, derived from three separate
individuals) in anagen VI (Figure 1a). These transcripts
corresponded to specific, TSH-R-like protein immuno-
reactivity (IR) in human scalp skin and its appendages. Thyroid
gland sections were used as positive and negative controls and
TSH-R IR was confined to the expected regions (Figure 2).

Intriguingly, and in striking contrast to the classical TSH-R
expression by thyroid epithelial cells, within the detection
limits of our standard immunohistology protocol (ABC
peroxidase), TSH-R expression in human scalp skin appeared
to be largely restricted to defined mesenchymal compart-
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Figure 1. TSH receptor (TSH-R) (a) and thyroglobulin (TG) (b) mRNA is

expressed in human scalp skin and hair follicles. TSH administration up-

regulates TG mRNA expression in hair follicle organ culture (b, c). (a)

Detection of TSH-R transcripts in human HFs. 1: HFs (30 HFs per group), 2:

thyroid gland, 3: negative control; (b) 18–20 microdissected hair follicles from

three different female patients (1, 2; 3, 4; 5, 6) were treated with either vehicle

(1, 3, and 5) or with TSH (2, 4, and 6). A semiquantitative PCR was performed

for thyroglobulin (TG) and thyroid transcription factor-1 (TTF-1). M: marker,

B: brain (positive control), S: full skin, C: negative control; (c) the intensity of

TG bands was quantified. Data of TG expression were normalized to the

expression of a housekeeping gene (S18, 18S rRNA subunit) of the same

sample; average value from three different patients is shown. There was a

significant difference (Po0.05 by Mann–Whitney U-test) found between

vehicle and treated groups. Mean±SEM, the total number of follicles studied

per group was 54–60, derived from three separate individuals.
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ments of the pilosebaceous unit (namely, to the follicular
dermal papilla (DP), the connective tissue sheath (CTS), and
the arrector pili muscle), but was not seen in interfollicular
dermal fibroblasts (Figure 2a–c and e). Furthermore, also
isolated, CD90-positive DP fibroblasts expressed TSH-R
in vitro (Figure 5e). In addition, large cutaneous nerve
bundles (NBs), blood vessels (BVs), and periglandular
myoepithelial cells around sweat (SWG) and sebaceous
glands also showed prominent TSH-R-like IR (Figure 2d–h)
in situ. The intensity of TSH-R IR did not exhibit noticeable
interindividual variations in the 13 female individuals whose
scalp skin and HFs were examined.

Next we investigated whether TSH-R expression shows
hair-cycle-dependent changes in situ. The localization of
TSH-R IR in catagen scalp HFs showed a rather similar
staining pattern as that of anagen VI scalp HFs ones
(mesenchymal localization), but a slightly more intensive
staining in the DP and in the retracting HF basement
membrane (Figure 2c). As we had only access to telogen

HFs from human gluteal skin, we performed TSH-R staining
on these skin samples, which may exhibit regional differ-
ences compared to human scalp skin. Similar to anagen VI
HFs, TSH-R IR was predominantly localized to mesenchymal
compartments (DP, CTS) in comparable intensity. However,
in these telogen samples, we also observed few single TSH-R-
IR cells in the HF epithelium (Figure 2d). Thus, there appear
to be only minor TSH-R expression changes during human
HF cycling, and the restriction of TSH-R expression to the HF
mesenchyme seen in terminal scalp HFs may not hold true for
all other human skin HF populations and locations.

TSH does not significantly modulate human hair growth and
pigmentation in vitro

To study direct, functional effects of TSH on classical hair
biology parameters (that is hair shaft (HS) growth, follicle
cycling, and pigmentation of isolated human HFs),
1–100 mU TSH ml�1 was administered to the serum-free
culture medium of microdissected, organ-cultured human

Figure 2. Human scalp hair follicles express thyroid stimulating hormone receptor (TSH-R) protein only in their mesenchyme. (a) TSH-R immunoreactivity is

restricted to mesenchymal compartments of scalp anagen VI HFs (dermal papilla, DP, and connective tissue sheath, CTS) in situ. (b) Follicular keratinocytes of

scalp skin (IRS: inner root sheath keratinocytes, ORS: outer root sheath, HS: hair shaft) do not express the receptor. NC: negative control (by omitting of the

primary antibody). (c) Catagen scalp HFs show a similar staining pattern, but a slightly more intensive immunoreactivity in the DP and retracting basal

membrane. (d) TSH-R IR on telogen hair follicles of buttock skin was predominantly localized (similarly to anagen phase) to mesenchymal compartments (DP,

CTS) in comparable intensity. However, we observed few single positive cells in the HF epithelium (s. arrows). ES: epithelial strand, CH: club hair. (e) Positive

staining was also found on the arrector pili muscle (MAP), nerve bundles (NBs), periglandular myoepithelial cells around the sweat (SWG) and sebaceous glands

(SGs). (f) Cutaneous nerves (N) and blood vessels (BV). (g) Higher magnification of positively stained sweat glands (SWG). (h) Higher magnifications of BVs and

NBs. (i) The expected TSH-R immunostaining of the basolateral site of thyroid gland epithelial cells served as positive control, whereas the absence of TSH-R

immunoreactivity on the apical site of the cells provides an internal negative control (Bravermann and Utiger, 2005). Scale bars¼50 mm.
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anagen VI scalp hair bulbs. These doses were selected as they
are within the range of customarily employed TSH doses in
cell culture studies and as the lowest dose tested here lies
only moderately above the elevated TSH serum levels in
severely hypothyroid patients, which can reach up as high as
0.5 mU ml�1 (Bravermann and Utiger, 2005).

However, as shown in Figure 3a, neither HS elongation
(which occurs in this physiologically and clinically highly

relevant assay system at almost the same speed as on the
living human scalp Philpott et al., 1990), nor the rate of hair
matrix keratinocyte (MK) proliferation or apoptosis (Figure
3c–e) were significantly altered by high-dose TSH adminis-
tration. We also asked whether TSH influences the anagen–-
catagen transition, the only segment of human HF cycling
that can currently be studied in vitro (Philpott et al., 1990;
Philpott, 1999; Jarrousse et al., 2001; Paus and Foitzik, 2004;
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Figure 3. High-dose TSH does not significantly modulate human hair shaft elongation (a), HF cycling (b), HF keratinocyte proliferation/apoptosis (c–e) and

pigmentation (f–h) in vitro. (a) Anagen VI HFs from human scalp skin were treated with three different TSH concentrations, and hair shaft elongation was

measured every second day. (b) Quantitative hair cycle staging of vehicle- or TSH-treated HFs (shown are only the data for HFs treated with 100 mU ml�1 TSH;

the results for 1 and 10 mU ml�1 TSH were very similar). The percentage of anagen VI and early catagen follicles was determined by morphological analysis

(quantitative hair cycle histomorphometry). (c–e) Ki-67 (proliferation—red)/TUNEL (apoptosis—green) double immunofluorescence shows no significant

differences (c) between (d) vehicle- and (e) TSH-treated groups upon quantitative immunohistomorphometry. Positive cells were counted only in the hair matrix

below Auber’s level (dotted white line). (f–h) Melanin (produced by the HF pigmentary unit) was visualized by Masson-Fontana histochemistry and was

quantitatively compared the ImageJ software (NIH) in the indicated reference area on 20 test and control HFs. DP: dermal papilla. All these experiments were

repeated three times using approximately 20 HFs from three different patients. Representative images are shown. Scale bars¼ 50 mm, mean±SEM, N¼ 15–20.
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Ito et al., 2005b). Likewise, TSH did not significantly alter
human HF cycling in vitro, as measured by quantitative hair
cycle histomorphometry (Foitzik et al., 2006; Bodó et al.,
2005) (Figure 3b). TSH also failed to significantly alter
intrafollicular melanin production, as assessed by quantita-
tive Masson-Fontana histochemistry (Figure 3f–h).

TSH does not induce marked changes in human HF
mesenchyme proliferation in situ

It had previously been proposed that pretibial and periocular
skin dermal fibroblasts may be stimulated by TSH by cognate
receptors (Porcellini et al., 2003). As our own analyses had
revealed very prominent TSH-R expression in the fibroblasts
of the CTS of human scalp HFs, we specifically checked for
differences in the number of Ki-67-positive cells in this
mesenchymal HF compartment between vehicle- and TSH-
treated HFs. However, by quantitative immunohistomorpho-
metry, the number of proliferating cells/microscopic field did
not differ significantly between test and control HFs in situ
(vehicle: 2.03±1.21 SEM, TSH: 3.36±2.59 SEM, P40.05).
Immunohistologically, TSH did not substantially up- or
downregulate the IR intensity or pattern of its cognate
receptor in organ-cultured human scalp HFs (Figure S1A–D,
Supplementary Materials and Methods).

TSH administration stimulates cAMP secretion into the culture
medium

These disappointing results had left us without any evidence
that the prominently expressed TSH-R proteins in human
scalp skin and HFs are functionally active. Therefore, we next
analyzed whether engagement of the TSH-R by its high-
affinity ligand is associated with any change in the cAMP
level, as cAMP upregulation is the classical second messen-
ger of TSH-R activation (Povey et al., 1976; Bravermann and
Utiger, 2005). As shown in Figure 4a, this is indeed the case:
30.02±2.38 pmol ml�1 cAMP was secreted into the culture
medium after TSH treatment (in the presence of isobutil-1-
methylxanthine, a potent inhibitor of cAMP degradation to
AMP), a three times higher cAMP level than found in the
supernatant of vehicle-treated control HFs. This indicates that
TSH-Rs expressed in the CTS of human scalp HF engage in
their expected signaling activity. This finding is in agreement
with the previous demonstration that TSH stimulates cAMP
production in HaCaT keratinocytes and melanoma cells in a
dose-dependent manner (Slominski et al., 2002). This again
supports the above conclusion.

TSH treatment of human HFs does not induce measurable
thyroid hormone secretion, but upregulates the transcription of
classical TSH target genes (thyroglobulin, thyroid transcription
factor-1)

Next we also explored whether this TSH-R signaling activity
alters the transcription of classical TSH target genes. As the
most prominent function of TSH in the thyroid gland is the
stimulation of thyroid hormone synthesis and secretion
(Bravermann and Utiger, 2005), we first asked whether human
scalp HFs exhibit the enzymatic apparatus to produce thyroid
hormones. However, we were not able to detect the key
enzyme for thyroid hormone production, thyroid peroxidase

(Bravermann and Utiger, 2005), either at mRNA (data not
shown), or at protein levels (Figure S1E and F). Furthermore, we
searched for the presence of thyroid hormones in the super-
natant of cultured human scalp HFs by electrochemilumines-
cence immunoassay and did not find any evidence for
measurable thyroid hormone above background levels in the
culture medium (van Beek et al., 2008). Thus, human scalp HFs
do not seem to be able to produce thyroid hormones,
constitutively or in response to TSH stimulation.

Subsequently, we studied whether TSH stimulation of
organ-cultured human scalp HFs modulates classical target
genes of TSH-R stimulation. TSH upregulates expression of
the chief matrix glycoprotein for thyroid hormone synthesis
and storage, thyroglobulin (TG), by specific transcription
factors, for example thyroid transcription factor-1 (TTF-1),
(Suzuki et al., 1998, 1999; Bravermann and Utiger, 2005).
Therefore, the level of intrafollicular TTF-1 and TG transcrip-
tion with and without TSH stimulation was assessed by
RT–PCR (18–20 follicles per group from 3 different patients
were studied).

Although the TG mRNA was detected in keratinocytes and
some melanoma cells cultured in vitro by RT–PCR (Slominski
et al., 2002), extrathyroidal TG transcription in human skin in
situ, has not been reported before. Thus, both RNA extracted
from freshly microdissected human scalp HF (not shown), or
from organ-cultured, vehicle-treated HF contained TG
transcripts of the expected length (395 bp) as shown by
RT–PCR (cp. Figure 1b). The specificity of the amplification
products was confirmed by sequence analysis, which
revealed full agreement with the DNA sequence of the most
recently published sequence of human TG (GenBank
accession number NM_003235) (Figure S2, Supplementary
Materials and Methods). Moreover, TSH stimulation was
indeed able to upregulate the steady-state level of TG
transcripts (Figure 1b and c). However, employing different
primary antibodies and distinct secondary detection systems,
we failed to obtain convincingly specific immunohistological
evidence for the translation of TG transcripts into TG protein
in human scalp skin (that is the IR patterns observed were not
convincingly and reproducibly above background; data not
shown). However, we cannot yet rule out definitively that TG
mRNA is translated.

In the same HF samples, we also detected specific
transcripts for TTF-1 (289 bp RT–PCR fragment), whose
mRNA steady-state levels were also upregulated after TSH
administration in 2 of 3 tested patients (Figure 1b). This TSH-
induced upregulation of TG and TTF-1 transcripts suggests
that the TSH-Rs of human scalp HFs are indeed functionally
active and that the intrafollicular stimulation of TG transcrip-
tion by TSH occurs in the recognized manner (that is by
TTF-1) (Suzuki et al., 1998, 1999).

TSH stimulation alters the gene expression profile of human
scalp hair follicles and reveals previously unknown
extrathyroidal TSH target genes

To obtain additional evidence for TSH-R functionality, the
expression of extrathyroidal target genes of TSH stimulation
was investigated in two independent sets of organ-cultured
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Figure 4. TSH administration increases cAMP secretion into the culture medium and causes differential gene expression changes. (a) HFs were treated with

TSH (100 mU ml�1) and cAMP were measured using a competitive assay by R&D Biosystems. TSH induced a threefold increase of cAMP concentration
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(100 mU ml�1) and microarray analysis (Human Whole Genome Microarray; Miltenyi, Cologne, Germany; expression differences visualized by Agilent
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Table 1). (c–j) Confirmation of selected TSH target candidate genes. (c) Relative expression of CTGF by real-time quantitative-PCR. TSH treatment upregulates (f)
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human scalp HFs (derived from two different, healthy
women). The DNA microarray was performed from samples
that had been treated with TSH (100 mU ml�1) or vehicle.
Rigid selection criteria were employed to single-out ‘‘differ-
entially expressed’’ genes by accepting only equidirectional
expression changes in HF RNA extracts from both examined
individuals with a P-value of o0.0001, and fold changes of
41.5 as strong indications for ‘‘differential gene expression’’
after HF stimulation with TSH. By these selection criteria and
possible skin/HF-relevance further genes were selected:
KRTHa1, keratin 5 (KRT5), involucrin (IVL), keratin-asso-
ciated protein 4-4, keratin-associated protein 4-7, a-actin 2
(ACTA2), fibronectin 1, keratin-associated protein 4-14,
filamin Aa (FLNA), connective tissue growth factor (CTGF),
glutathione peroxidase 3 (GPX3), pyruvate kinase (PKM2),
cytochrome c oxidase 1 (MTCO1), respectively (Figure 4b;
Table 1).

For selected genes, TSH-induced gene expression was
confirmed by examining HFs from a third and fourth, distinct
patient by quantitative real-time PCR (for CTGF, GPX3, and
PKM2, from HF homogenate) and/or by immunhistochem-
istry (KRT5, IVL, ACTA (a-isoform, but not aorta-specific
ACTA2 was investigated), FN (isoform not specified), FLNA,
and MTCO1). It has to be noted that, to our knowledge there
are no reliable, well-established antibodies to ACTA2 and
FN1 available. Therefore a closely related protein of the same
protein family was investigated.

As shown in Figure 4c, we could confirm by real-time PCR
that TSH upregulates CTGF transcription, whereas the
transcription level of GPX3 and PKM2 remained unaltered
(Figure S1G). By quantitative immunohistomorphometry,
significantly altered protein expression in situ was evident
for ACTA, MTCO1, and KRT5. As shown in Figure 4g, ACTA
immunohistochemistry showed an intensive staining in
human CTS fibroblasts in vitro, which further increased
after TSH stimulation. TSH-like IR also localized to SWG
myofibroblasts and BV smooth muscle in situ (inserts in
Figure 4g and h), serving as positive control. The ACTA
immunostaining intensity of human CTS fibroblasts in situ
was significantly enhanced (*Po0.05) in TSH-treated follicles
(Figure 4d, g and h). Furthermore, after TSH stimulation of

organ-cultured human HFs, MTCO1 was upregulated in
several compartments of the HF (MKs, DP, proximal and
distal CTS) (Figure 4d–f). Also, TSH stimulated significantly
K5-IR in the hair matrix (Figure 4d, i and j).

These data convincingly document that the TSH-Rs
expressed by normal human scalp HF in situ are functionally
active, and suggest several (direct or indirect) target genes for
TSH-R-mediated signaling in extrathyroidal human tissues
such as the skin, namely CTGF, MTCO1, ACTA, and KRT5.

Cultured human dermal papilla fibroblasts are direct targets of
TSH-R-mediated signaling

As all TSH effects described here so far had been seen in
complex miniorgans, which are composed from several cell
populations of different origin and function, we finally
checked whether TSH-R expressing, isolated human HF cell
populations also respond to TSH stimulation. Therefore we
performed a DP cell culture, employing passage 1 and 2 cells
(Figure 5). By immunofluorescence microscopy analysis,
TSH-R was identified on cultured DP fibroblasts (Figure 5a),
which also were immunoreactive for the fibroblast marker
CD90, as expected (Figure 5a). TSH treatment significantly
and dose-dependently increased the secretion of cAMP by
DP cells into the culture medium (Figure 5b). Similar to
organ-cultured HF, treatment of cultured DP fibroblasts with
TSH prominently and dose-dependently upregulated the
expression of specific transcript steady-state levels: As seen
in Figure 5c, the mRNA steady-state levels for PKM2, GPX3,
CTGF, and MTCO1 were 16- to 75-fold higher in DP cells
treated with 100mUml�1 TSH than in vehicle-treated control DP
cells. The upregulation of MTCO1 was also verified by
immunofluorescence (Figure 5d). These data underscore that
TSH-R expressing cellular key constituents of the human HF
mesenchyme (that is DP cells) retain their responsiveness to the
cognate ligand even upon isolation, culture, and repeated passage.

DISCUSSION
Here, we show that human scalp HFs are direct targets for
TSH, and identify TSH-R-mediated signaling as a to our
knowledge this is previously unreported neuroendocrine
pathway in human skin, besides the well-recognized endo-

Table 1. TSH causes differential gene expression changes in human scalp HFs

Name Microarray Confirmed by qPCR Confirmed by IH

Cytochrome c oxidase I m � Yes

Connective tissue growth factor m Yes �

Actin, a2, smooth muscle m � Yes

Keratin-associated protein KAP 4-4 m � �

Keratin-associated protein KAP 4-7 m � �

Keratin-associated protein KAP 4-14 m � �

Keratin K5 m � Yes

Keratin, hair, acidic, 1Ha1K31 k � �

Abbreviations: m, upregulated; k, downregulated; � , not investigated; yes, microarray could be confirmed.
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crine modulation of human skin and HF biology, for example
by thyroid hormones, androgens, and estrogens (Freinkel and
Freinkel, 1972; Billoni et al., 2000; Messenger, 2000; Stenn
and Paus, 2001; Larsen et al., 2003; Bravermann and Utiger,
2005; Ohnemus et al., 2006).

However, TSH failed to show significant effects on human
HS elongation, anagen duration, and hair matrix proliferation
in female human scalp HF organ culture. Despite the
presence of functional TSH-Rs in human scalp HFs, the
elevated levels of TSH seen in hypothyroid patients, there-
fore, do not likely reflect direct TSH effects, but rather result
from thyroid hormone effects: Indeed, we have just shown
that both tetraiodothyronine and thyroxin prolong the
duration of anagen in organ-cultured human HFs (van Beek
et al., 2008).

If intracutaneous TSH-R expression plays any role in
antithyroid autoimmunity at all, our data also suggest that
CTS and DP fibroblasts—rather than interfollicular dermal
fibroblasts—may present the autoantigens against which
TSH-R autoantibodies are generated (Kohn et al., 2000;
Leonhardt and Heymann, 2002; Bravermann and Utiger,
2005; Rose and Mackay, 2006). By immunhistochemistry,
TSH-R expression was almost exclusively observed in the
mesenchymal compartment of scalp skin HFs, whereas
interfollicular dermal fibroblasts of normal human scalp and

buttock skin did not show TSH-R IR in situ. Intriguingly, the
human HF mesenchyme, appears to enjoy some (relative)
protection from immune rejection (Paus et al., 2006), even
upon allotransplantation across the gender barrier (Reynolds
et al., 1999). One wonders, therefore, whether the develop-
ment of anti-TSH-R autoimmunity and subsequent thyroid
disease may be causally linked to a prior collapse of immune
sequestration of/tolerance to HF mesenchyme-associated
TSH-R antigens.

The mesenchymal expression of TSH-R in human scalp
HFs also may explain why TSH stimulation did not alter
intraepithelial hair growth parameters (that is HS elongation,
hair matrix proliferation/apoptosis, and HF pigmentation), as
the HF epithelium and the HF pigmentary unit embedded in it
(Tobin and Paus, 2001) apparently do not express TSH-R
during anagen VI or catagen. However, the fact that the
expression of clearly intraepithelial genes and/or gene
products (such as keratin 5, hair-keratin Ha1/K31 gene
(KRTHa1, now KRT31 Langbein and Schweizer, 2005; for
new keratin nomenclature see Schweizer et al., 2006)) was
also altered by TSH suggests that the stimulation of cognate
receptors in HF mesenchyme exerts indirect signaling effects
that profoundly impact on HF epithelial functions.

Thus, it is conceivable that TSH stimulation of cognate
receptors in the CTS of the HF upregulates production and
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Figure 5. Cultured dermal papilla fibroblasts serve as functional, direct target for TSH signaling. (a) Cultured, CD90-positive dermal papilla cells express

TSH-R. NC, negative control (by omitting the primary antibody). (b) Dermal papilla cells were treated with TSH (10 and 100 mU ml�1) and cAMP

concentration was measured in the culture supernatant. (c) Treatment of cultured DP fibroblasts with TSH upregulated the expression of some specific

mRNA transcripts in a dose-dependent manner. Pyruvate kinase (PKM2), glutathione peroxidase (GPX3), connective tissue sheath growth factor (CTGF),

cytochrome c oxidase 1 (MTCO1) transcription was investigated by quantitative real-time PCR. (d) The upregulation of MTCO1 was also verified by

immunofluorescence. NC, negative control (by omitting the primary antibody). Scale bars¼ 50 mm.
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secretion of diffusible factors—such as CTGF (Table 1; Figure
4b and c). These HF-mesenchyme-derived factors may then
alter specific functions of the HF epithelium (such as the
production of selected hair keratin and keratin-associated
proteins; Table 1) in a paracrine manner. Central, and
possibly peripheral, TSH secretion may thus trigger complex
regulatory loops that recruit, for example mesenchymal
factors (such as CTGF) to indirectly modulate HF epithelial
functions (Figure 6). The characteristics of these epithelial–-
mesenchymal interactions may slightly differ between in-
tegumental regions and hair cycle stages, as indicated by our

results on TSH-R IR in human buttock telogen HFs, where a
few TSH-R-positive cells were identified even inside the HF
epithelium. In addition, we cannot exclude a direct action of
TSH on epidermal keratinocytes, as TSH-R is transcribed in
adult and neonatal keratinocytes, and as TSH stimulation
increased cAMP in HaCaT keratinocytes in vitro (Slominski
et al., 2002).

That two classical TSH target genes, TG and TTF-1, are
upregulated in human scalp HFs after TSH treatment in vitro
at the transcriptional level (Figure 1), serves as further
evidence for the functionality of the intrafollicularly
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Figure 6. TSH regulates the expression of several epithelial and mesenchymal factors by functional TSH-R expressed in the scalp HF mesenchyme.

TSH-R expression in human scalp skin was exclusively observed in the mesenchyme of the HFs (in red). TSH-R activation enhanced cAMP production,

connective tissue growth factor (CTGF), thyroglobulin (TG), and thyroid transcription factor-1 (TTF1) transcription in organ-cultured HFs. TSH treatment

stimulated MTCO1 mRNA and protein expression in the dermal papilla (DP), connective tissue sheath fibroblasts (CTS), and matrix keratinocytes

(MK). CTS fibroblasts upregulated the molecular chaperone HSP47 (heat-shock protein 47), whereas downregulated a-smooth muscle actin (ACTA)

expression after TSH treatment. We observed enhanced keratin K5 (KRT5) mRNA and protein expression in the MK.
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E Bodó et al.
Human Hair Follicles as Direct TSH Target



expressed TSH-R receptors, and blends in well with the
demonstration that TSH activates the cAMP signaling path-
way (Figure 4) that is characteristically employed by the
TSH-R (Povey et al., 1976; Bravermann and Utiger, 2005).
Although we had previously found TG transcripts in a
human keratinocyte line (HaCaT cells) and in some human
melanoma cell lines in vitro (Slominski et al., 2002),
TG transcripts had never before been detected in normal
human skin in situ. Thus, our findings provide the evidence
that TG is transcribed in human scalp skin and HFs, and
suggest that HFs utilize the same transcription factor for
upregulating TG expression that is employed by thyroid
epithelial cells (that is TTF-1) (Suzuki et al., 1998, 1999).

Furthermore, we show that human scalp HF offer an easily
handled, physiologically relevant discovery tool for identify-
ing previously unreported, nonclassical TSH target genes.
This unconventional, but instructive new model provides
important pointers to previously unknown TSH functions well
beyond skin and hair biology. Our differential gene expres-
sion analyses identify several TSH target genes in human
scalp HFs that have not previously been considered in the
context of TSH/TSH-R biology (for example keratin asso-
ciated protein genes KAPs, CTGF, ACTA), which—directly or
indirectly—are regulated by TSH. Gene and/or protein
expression changes for CTGF, ACTA, MTCO1, and K5 were
independently confirmed by quantitative PCR and/or quanti-
tative immunohistomorphometry in HFs derived from addi-
tional patients, while the differential transcription of other
genes (FLNA, IVL) identified by microarray analysis could not
be confirmed in this manner.

Although the functional significance of these TSH target
genes in human skin and HF biology requires systematic
further dissection, our data indicate that, in extrathyroidal
tissues, TSH exerts functions well beyond its classical
spectrum (that is stimulation of thyroid hormone production
and thyroid growth; regulation of thyroid enzyme production
(Kohrle, 1990; Larsen et al., 2003; Bravermann and Utiger,
2005)): For example, FLNA is an important element of normal
connective tissue function in human skin (Gomez-Garre
et al., 2006), whereas CTGF modulates WNT signaling and
interacts with the WNT receptor complex (Mercurio et al.,
2004; Mou et al., 2006)—key regulators of HF morphogen-
esis and cycling (Schmidt-Ullrich and Paus, 2005). The
observed stimulation of follicular MTCO1 expression in situ
by TSH raises the possibility that TSH also impacts on HF
energy metabolism by upregulating, for example MTCO1
(Sheehan et al., 2004). TSH also directly upregulates PKM2,
glutathione peroxidase, and mitochondrial cytochrome c
oxidase in human DP fibroblasts in vitro, further supporting a
role for TSH signaling in HF metabolism and oxidation
processes.

That TSH upregulates the myofibroblast marker ACTA, in
turn, may suggest that TSH can promote the transformation of
normal fibroblasts to myofibroblasts, as it typically occurs in
wound healing (Tomasek et al., 2002; Werner and Grose,
2003). We speculate that downregulation of HSP47 and the
simultaneous upregulation of ACTA may indicate a transfor-
mation of HF-associated fibroblasts towards a myoepithelial

phenotype (Goldberg et al., 2007; Hinz, 2007; Lygoe et al.,
2007). As the follicular CTS is also prominently involved in
wound healing (Gharzi et al., 2003) and as HF organ culture
goes along with substantial wounding (that is microdissec-
tion), human HF organ culture may serve as an unconven-
tional, but instructive model for exploring the role of TSH in
cutaneous wound healing.

These examples illustrate that the human HF invites
exploitation as a uniquely instructive, clinically relevant
model system for dissecting previously unreported nonclassi-
cal, peripheral activities of TSH in a prototypic neuroecto-
dermal–mesodermal interaction system (Paus and Cotsarelis,
1999; Lindner et al., 2000; Stenn and Paus, 2001; Ito et al.,
2004, 2005a; Kobayashi et al., 2005; Schmidt-Ullrich and
Paus, 2005; Slominski, 2005; Foitzik et al., 2006).

MATERIALS AND METHODS
Hair follicle microdissection, organ culture, and hair shaft
elongation
Anagen VI HFs were isolated from normal human scalp skin

obtained after written informed patient consent from healthy females

undergoing routine face-lift surgery for cosmetic purposes as

described (Philpott et al., 1990), adhering to Helsinki guidelines

and with permission from the ethics committe of the University of

Lübeck. Buttock skin was also obtained from plastic surgery from

female patient. Isolated HFs were either snap-frozen immediately

(for RT–PCR analysis) or organ-cultured as previously described

(Bodó et al., 2005; Ito et al., 2005a; Foitzik et al., 2006), following

the basic technique pioneered by Philpott et al. (1990). Bovine TSH

(which activates also human TSH-R Clark et al., 1982) (1, 10,

100 mU ml�1) (from Sigma-Aldrich, Taufkirchen, Germany) or

vehicle (distilled water) were administered once for each change

of culture medium (that is every 48 h). HFs (15–20) were used per

group and that all experiments where repeated twice, each

experiment using HFs from one (different) individual.

Hair shaft length measurements of TSH-treated HFs were

performed every second day on individual HFs using a Zeiss inverted

binocular microscope with an eyepiece measuring graticule.

Dermal papilla cell culture

After microdissection of anagen VI HF from scalp skin biopsies,

isolation of DP fibroblasts from HF was established according to

Magerl et al. (2002). Outgrowing cells were then cultured in cell

growth basal medium supplemented with 4% fetal bovine serum,

5mg ml�1 insulin, and 1 ng ml�1 basic fibroblast factor (all from

PromoCell, Heidelberg, Germany). The passages of 1–2 were used.

Semiquantitative RT-PCR

Total RNA was isolated from cultured HFs using the RNeasy kit

(Qiagen, Hilden, Germany). Total RNA (0.5 mg) was reverse-

transcribed with SuperScript First-Strand Synthesis System (Applied

Biosystems, Foster City, CA). For the PCR analysis of TSHR

standardization of the cDNA samples was performed by amplifica-

tion of the housekeeping gene G6-PDH using undisclosed primer

pairs from Roche (Mannheim, Germany). PCR amplification (94 1C

for 2 minutes; 40 cycles of 94 1C for 30 seconds, 58 1C (G6-PDH), or

50 1C (TSH-R) for 30 seconds, 68 1C for 30 seconds) was

performed with the following primers (MWG Biotech, Ebersberg,
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Germany): TSH-R forward: ATGAGGCGATTTCGGAGGATGGA;

TSH-R reverse: ATGCATGACTTGGAATAGTTCTC.

For the semiquantitative PCR analysis of TG and TTF-1 (TTF) the

quality and quantity of cDNA in all samples were standardized by

the amplification of housekeeping gene 18S rRNA subunit. PCR

amplification (95 1C for 2.5 minutes; 25 (18S), 35 (TG), or 30 (TTF1)

cycles of 94 1C for 30 seconds, 60 1C (18S), 64 1C (TG), or 58 1C

(TTF1) for 30 seconds, 72 1C for 30 seconds; 72 1C for 5 minutes) was

performed with the following primers (Integrated DNA Technology

Inc., Corallville, IA): 18S forward: TTCGGAACTGAGGCCATGAT,

18S reverse: TTTCGCTCTGGTCCGTCTTG, TG forward: CCGCCG

TCATCAGCCATGAG, TG reverse: TGAGTCCTCGCCACCCAGA

GAA, TTF1 forward: CAGTGTCTGACATCTTGAGT, TTF1 reverse:

AGCGCTGTTCCGCATGGTGT. PCR products were visualized on a

0.7% (TSH-R) or 2% (TG, TTF-1) agarose gel with ethidium bromide

and the photographed bands were quantified by the ImageJ software

(National Institutes of Health, Bethesda, MD). Data of TG expression

were normalized to the expression of 18S of the same sample. For

TG transcripts, brain extracts served as positive control. Nontem-

plate control (by omitting RNA) was used as negative control.

DNA sequence analysis

The specificity of the amplification of the TG cDNA was assessed by

a melting curve analysis on a Light Cycler (Roche). In addition, the

sequence of the TG cDNA obtained after PCR amplification was

analyzed following the dideoxy method using the forward and

reverse PCR primer, respectively. DNA sequences were analyzed by

377 DNA sequence analyzer (Applied Biosystems) (Sanger, 1981).

Quantitative immunhistochemistry and immuncytochemistry

For the detection of TSH-R, alpha-smooth muscle actin (ACTA)

protein, keratin 5 and cytochrome c oxidase I, peroxidase-based

ABC (avidin–biotin complex, Vectastain; Vector, Wertheim, Ger-

many) (Foitzik et al., 2006) immunohistology was performed

(Table 2). Aceton-fixed, 8mm thick human scalp skin/HF frozen

sections were blocked with H2O2 (3% in phosphate-buffered saline,

15 min). After 20 min pretreatment with goat normal serum (10% in

phosphate-buffered saline), slides were incubated with the primary

antibodies (for dilutions see Table 2, antibodies were diluted in Tris-

buffered saline (TBS) percent goat normal serum) over night at 4 1C,

followed by a secondary biotinylated goat anti-mouse/rabbit/guinea

pig antibody (1:200; Jackson ImmunoResearch Laboratories,

Cambridgeshire, UK), respectively. Subsequently, streptavidin-

conjugated horseradish peroxidase (Vectastain ABC kit; Vector;

30 min) and its substrate (peroxidase substrate kit, AEC; Vector) were

applied. Cell nuclei were counterstained with hematoxylin (Sigma-

Aldrich). For TSH-R immunohistology, frozen human thyroid

sections were used as positive and internal negative controls, and

primary antibody was omitted as an additional negative control.

Human skin served as positive control for ACTA, and keratin 5

stainings: ACTA is expressed by the myoepithelial cells of SWGs

(Schon et al., 1999) and BVs (Scofield et al., 2005), whereas basal

layer of epidermal and outer root sheath keratinocytes express

keratin 5 (Langbein et al., 2005). The intensity of these immunos-

tainings was quantified by ImageJ software (National Institutes of

Health). Staining intensity of defined reference regions in the HF (see

figure legends) was measured and compared between control and

TSH-treated groups.

For the immunodetection of TSH-R on cultured DP fibroblasts,

acetone-fixed (5 min, �20 1C) CTS cells were preincubated with

10% normal goat serum in TBS followed by the overnight incubation

with the TSH antibody (1:100 in TBSþ 2% goat normal serum). For

the detection of the primary antibody, the Rhodamine Red-

conjugated goat anti-mouse antibody was used (1:200 in TBS;

Jackson ImmunoResearch Laboratories), finally slides were counter-

stained with DAPI.

For the detection of the fibroblast marker CD90 as well as

MTCO1, similar labeling procedures were performed using mouse

anti-CD90 (1:100 in TBS; Dianova, Hamburg, Germany) and anti-

MTCO1 (1:50 in TBS; Mitosciences, Eugene, OR) primary anti-

bodies, respectively. In both cases, visualization was performed

using goat anti-mouse FITC-conjugated (1:200 in TBS; Vector)

secondary antibodies.

Quantitative histomorphometry and hair cycle analysis

For HF cycle staging hematoxylin–eosin (Sigma-Aldrich, Taufkirchen,

Germany) staining, and for histochemical visualization of melanin,

routine Masson-Fontana staining was performed on frozen sections.

Quantitative Masson-Fontana histochemistry was employed as

described (Ito et al., 2005a) (this simple histochemical method is a

very sensitive and reliable indicator of changes in intrafollicular

melanin synthesis, as recently shown by standard tyrosinase

expression and enzyme activity assays (Kauser et al., 2006), which

have confirmed our previous, quantitative Masson-Fontana histo-

Table 2. Antibodies used for immunhistochemistry

Name Host Dilution Method Source Clone

TSH-R1 (Costagliola et al., 1998) Mouse 1:200, 1:1,000,

1:100

ABC, TSA,

indirect IF

InVivo BioTech Services, Henningsdorf,

Germany

BA-8

MHC class II (Falini et al., 1984) Mouse 1:100 Direct IF DAKO, Glostrup, Denmark CR3/43

MTCO12 Mouse 1:50 ABC Mitosciences, Eugene, OR, USA 1D6E1A8

SMA (Skalli et al., 1986) Mouse 1:50 ABC Sigma-Aldrich, Taufkirchen, Germany 1A4

Keratin K5 (Langbein et al., 2005) Guinea pig 1:500 ABC PROGEN, Heidelberg, Germany —

TSH-R, thyrotropin-receptor; MTCO1, cytochrome c oxidase 1.
1The TSHR antibody was directed against the TSH non-binding region of the outer membrane TSH-R domain and was generously provided by InVivo
BioTech Services (Costagliola et al., 1998).
2For reference staining with the MTCO antibody see www.mitosciences.com/ms404.html.
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chemistry-based finding that CRH stimulates melanogenesis in

human scalp HFs14). Staining intensity was analyzed in a defined

reference region of the HF pigmentary unit, using the ImageJ

software (National Institute of Health). Quantitative hair cycle

histomorphometry (that is HF cycle staging) was carried out

according to well-defined morphological criteria, and the percen-

tage of HFs in anagen or catagen was determined, as described

(Bodó et al., 2005; Foitzik et al., 2006).

Determination of cAMP concentration in culture supernatant

HFs or DP cells were treated for 24 hours with vehicle or TSH

(100 mU ml�1; Sigma-Aldrich) in the presence of 0.45 mM 3-isobutil-1-

methylxanthine (Sigma-Aldrich), a potent inhibitor of camp phospho-

diesterase. Culture supernatant was collected for the quantitative

determination of cAMP concentration, using Parameter Cyclic AMP

Assay (R&D Systems, Wiesbaden-Nordenstadt, Germany).

Microarray and q-PCR analysis of selected candidate genes

Gene expression analysis of HFs from two different individuals (30

HFs per patient) using Human Whole Genome Oligo Microarray

(44K) was performed by Miltenyi Biotech GmbH (Bergisch-Gladbach,

Germany) as a commercial service. Freshly isolated HFs (20 per

group, all derived from a single donor) were treated with vehicle/TSH

(100 mU ml�1) for 24 hours, total RNA was isolated according to

standard protocols (Trizol; Sigma-Aldrich). Quality of total RNA was

controlled via the Agilent 2100 Bioanalyzer System. Linear amplifica-

tion of RNA and hybridization of whole genome oligo microarray was

performed according to the manufacturer’s protocols.

Candidate genes were selected according to the following criteria:

equidirectional expression changes in both individuals, P-value

o0.0001, 41.5-fold changes. Given the usually exceptionally high

congruence of differential gene expression results obtained with

Human Whole Genome Oligo Microarray with independent,

confirmatory quantitative PCR assays (manufacturer’s information),

due to the extreme difficulty to obtain sufficient additional human

scalp HF samples for such confirmatory analyses, and due to the

unavailability of sufficient corresponding funding, microarray results

were not confirmed with qPCR. They can therefore be considered

only as exploratory. In compensation for this shortcoming, very strict

selection criteria were employed to identify only genes that were

modulated in a substantial and interindividually reproducible manner.

Selected genes were then subjected to qPCR analysis performed

by the company Abiol Biotech (Debrecen, Hungary) as a commer-

cial service of separate RNA extracts derived from a third female

individual, using an ABI PRISM 7000 Sequence Detection System

(Applied Biosystems) and the 50 nuclease assay (Bodó et al., 2005). In

addition, expression of selected genes was also defined on cultured

DP fibroblasts. From control and TSH-treated HFs (20 per group),

and cultured fibroblasts total RNA was isolated using Trizol

(Invitrogen). Then, 3mg of total RNA were reverse transcribed

into cDNA by using 15 units of AMV reverse transcriptase

(Promega, Madison, WI) and 0.025 mg/ml random primers (Promega).

PCR amplification was carried out by using the TaqMan primers

and probes (recognizing the following human genes: Assay ID

hs00170014_m1 for CTGF, hs00173566_m1 for GPX3,

hs00987255_m1 for PKM2), (Assay ID) hs02596864_g1 for

MTCO1 using the TaqMan Universal PCR Master Mix Protocol

(Applied Biosystems). As internal controls, transcripts of glyceral-

dehyde 3-phosphate dehydrogenase were determined (Assay ID:

Hs99999905_m1 for human glyceraldehyde 3-phosphate dehydro-

genase).

Statistical analysis

Data were analyzed using a two-tailed Student’s t-test for unpaired

samples, and Po0.05 values were regarded as significant.
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