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Atopic dermatitis and skin disease

Filaggrin loss-of-function mutations are associated with
enhanced expression of IL-1 cytokines in the stratum
corneum of patients with atopic dermatitis and in a murine
model of filaggrin deficiency
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Background: Filaggrin (FLG) mutations result in reduced
stratum corneum (SC) natural moisturizing factor (NMF)
components and consequent increased SC pH. Because higher
pH activates SC protease activity, we hypothesized an enhanced
release of proinflammatory IL-1 cytokines from corneocytes in
patients with atopic dermatitis (AD) with FLG mutations
(ADFLG) compared with that seen in patients with AD without
these mutations (ADNON-FLG).
Objectives: We sought to investigate SC IL-1 cytokine profiles
in the uninvolved skin of controls and patients with ADFLG

versus patients with ADNON-FLG. We also sought to examine
the same profiles in a murine model of filaggrin deficiency
(Flgft/Flgft [FlgdelAPfal] mice).
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Methods: One hundred thirty-seven patients were studied. NMF
levels were ascertained using confocal Raman spectroscopy;
transepidermal water loss and skin surface pH were measured.
IL-1a, IL-1b, IL-18, IL-1 receptor antagonist (IL-1RA), and
IL-8 levels were determined in SC tape strips from 93 patients.
All subjects were screened for 9 FLG mutations. Flgft/Flgft

(FlgdelAPfal) mice, separated from maFlgft/maFlgft (flaky tail)
mice, were used for the preparation and culture of primary
murine keratinocytes and as a source of murine skin. RT-PCR
was performed using primers specific for murine IL-1a, IL-1b,
and IL-1RA.
Results: SC IL-1 levels were increased in patients with ADFLG;
these levels were inversely correlated with NMF levels. NMF
values were also inversely correlated with skin surface pH. Skin
and keratinocytes from Flgft/Flgft mice had upregulated
expression of IL-1b and IL-1RA mRNA.
Conclusions: ADFLG is associated with an increased SC IL-1
cytokine profile; this profile is also seen in a murine homologue
of filaggrin deficiency. These findings might have importance in
understanding the influence of FLG mutations on the
inflammasome in the pathogenesis of AD and help individualize
therapeutic approaches. (J Allergy Clin Immunol
2012;129:1031-9.)

Key words: Atopic dermatitis, confocal Raman spectroscopy,
eczema, filaggrin, natural moisturizing factor, pH, transepidermal
water loss, IL-1, IL-18, skin barrier, FLG gene mutations, Flgft/Flgft

(FlgdelAPfal) mice

The recent identification of mutations in the gene encoding the
key epidermal protein filaggrin (FLG) as a remarkably strong and
widely replicated risk factor for atopic dermatitis (AD) has led to
a new focus on skin barrier deficiency in patients with AD. How-
ever, the functional consequences of FLG mutations and the
downstream mechanisms that underlie immunologic changes in
AD skin remain largely unknown.1,2

Before the discovery of FLG mutations, Elias and Feingold3

hypothesized a barrier abnormality as a driving force for develop-
ment of an inflammatory response in patients with AD. This so-
called outside-inside hypothesis is in contrast to amore traditional
view known as the inside-outside hypothesis, which holds
that skin barrier defects in patients with AD are a secondary
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ransepidermal water loss
consequence of the inflammatory response to irritants and aller-
gens.4 Elias et al5-7 subsequently hypothesized that reduced levels
of filaggrin and in particular its acidic derivative urocanic acid
lead to increased pH of the stratum corneum (SC), altering the ac-
tivity of the multiple serine proteases and 2 ceramide-generating
enzymes that regulate homeostasis of the SC.7 Another important
downstream consequence of increased pH and serine protease ac-
tivity is generation of the active primary cytokines IL-1a and IL-
1b from their inactive proproteins, representing the first step in
the cytokine cascade that has been proposed as a primary contrib-
utor to inflammation in patients with AD. Sustained antigen in-
gress through a defective barrier leading to a TH2-dominant
infiltrate is proposed as a secondary cause of inflammation in pa-
tients with AD.
Mediators from the IL-1 gene family control innate immune

responses through a number of mechanisms, including promoting
the recruitment of leukocytes and regulating synthesis of the
extracellular lipid bilayers as the principal barrier of the skin.5,8,9

IL-1 mediators also bridge the innate and adaptive immune sys-
tems and thus constitute an important function in immune de-
fense.10,11 There are 11 members of the IL-1 family of which
IL-1a, IL-1b, IL-1 receptor antagonist (IL-1RA), and IL-18
have been most thoroughly studied. IL-1a and IL-1b initiate re-
sponses by binding to the IL-1 receptor, which is antagonized by
IL-1RA. These elements of the IL-1 system are represented in
the epidermis. Keratinocytes constitutively produce high amounts
of IL-1a, and the epidermis contains important quantities of
biologically active preformed IL-1a.12,13 In addition, in
inflammatory conditions human keratinocytes also produce
IL-1b14; however, blood monocytes, tissue macrophages, and
dendritic cells are considered the primary sources of IL-1b.10

IL-1a is produced in the cytoplasm as a precursor protein (pro–
IL-1a) and processed into amature protein by the intracellular cal-
cium–dependent cysteine protease calpain, which has an optimum
activity at neutral pH.12,15 The precursor of IL-1b is biologically
inactive and must be cleaved into its biologically active form, a
process that is largely mediated by caspase-1, although some ser-
ine proteases and several other enzymes have been reported to
cleaveboth IL-1a and IL-1b.10,12,16,17 Caspase-1 is a cysteine pro-
tease that also cleaves precursors of IL-18, a cytokine that plays an
important role in the pathogenesis ofAD.18,19 The pHoptimumfor
caspases ranges between 6.5 and 6.8.20 Thus multiple proteases
crucial for SC homeostasis and cleavage of IL-1 cytokines have
optimal activity at pH values higher than the physiologic outer
SC/skin surface layer pH.5-7 Release of IL-1 cytokines leads to
cutaneous inflammation through the induction of secondary cyto-
kines, such as IL-8, and upregulation of endothelial adhesionmol-
ecules.10,12 Production of IL-1b has also been linked to the
sensitization and initiation phase of contact allergy.21,22

Although little is known about the very early events initiating
atopic skin inflammation, it is likely that primary proinflamma-
tory cytokines play an important role. Although several research
groups have investigated IL-1 cytokines in the lesional and
noninvolved skin of patients with AD,22-24 thus far, no study has
focused on cytokine levels in patients with AD in relation to FLG
genotype. Using Raman spectroscopy, we have recently shown
that FLG genotype is a major determinant of natural moisturizing
factor (NMF) in the SC.25,26 In the present study we sought to de-
termine the levels of IL-1 cytokines in the SC of uninvolved skin
and to relate these levels to FLG genotype, pH, and levels of fil-
aggrin degradation products, which are the constituents of
NMF. Furthermore, in a complementary murine study we exam-
ined the effects of filaggrin status on IL-1 expression in the skin
and isolated keratinocytes.
METHODS

Clinical study: Subjects
One hundred thirty-seven unrelated Irish children with a history of

moderate-to-severe AD were recruited from dedicated secondary and tertiary

referral AD clinics; the collection used in this study overlaps but is not

identical to that used for previous studies.26 Diagnosis and phenotyping of AD

wasmade by experienced pediatric dermatologists. All subjectsmet theUnited

Kingdom diagnostic criteria.27 Exclusion criteria from the study were patients

who had received systemic therapy, such as oral corticosteroids or immuno-

suppressants, in the preceding 3 months and patients whose ancestry was

not exclusively Irish (4/4 grandparents). Detailed phenotypic data were col-

lected and are presented in Table I. The Nottingham Eczema Severity Score

(NESS)28 was selected as a measure of chronic disease severity. The study

was conducted in accordance with Helsinki Declarations and was approved

by the Research Ethics Committee of Our Lady’s Children’s Hospital, Dublin,

Ireland. Full written consent was obtained from all patients or their parents.
Genotyping
All patients were screened for the 9 most common FLGmutations found in

the Irish population (R501X, Y2092X, 2282del4, R2447X, S3247X, R3419X,

3702X, S1040X, and G1139X) and as previously described.26 These 9 muta-

tions account for greater than 95% of all FLGmutations in the Irish population

(Irvine and McLean, unpublished data). On the basis of screening for these 9

prevalent mutations, 59% were carriers of 1 or more FLG mutations (42%

FLG1/1 [homozygote wild-type; ie, 0 null alleles], 40% FLG1/2 [heterozy-

gote null allele/wild-type; ie, 1 null allele], and 18% FLG2/2 [patient homo-

zygous for null alleles; ie, 2 null alleles]).
Determination of cytokines in the SC
The levels of cytokines in the tape strips were measured in the SC of the

volar forearm by using a previously described method.29 Briefly, round adhe-

sive tape discs (3.8 cm2, D-Squame; CuDerm, Dallas, Tex) were attached to

the skin of the forearm. Each tapewas pressed onto the volar aspect of the fore-

arm for 10 seconds with standardized force by using a disc pressure applicator

(CuDerm).30 The tape strip was gently removed with tweezers and stored in a

closed vial at 2808C until analysis. The first strip was discarded because it

might have contained dirt and remnants of cosmetic products; the second,

third, and fourth tape strips were applied on the same skin spot. The collected

3 tape strips were cut into 2 equal pieces. For the analysis, halves of 3 strips

were pooled for the analysis. To determine the amount of soluble protein

and cytokines, 2 mL of PBS (Merck, Darmstadt, Germany) with 0.005%

Tween-20 (Sigma-Aldrich, Zwijndrecht, The Netherlands) was added to



TABLE I. Cohort characteristics according to genotype

FLG

genotypey

All

mutations

combined

Age (y),

median

(range)

Male sex,

no. (%)

NESS,

median

(range)

TEWL (g/m2/h),

median (range)

Log IgE,*

mean (SD)

NMF (AU),

median (range) pH, mean (SD)

Screened (n) 137 137 137 137 99 131 129 58

1/1 57 (41.6%) 8 (3-17) 34 (59.6%) 12 (4-15) 12.6 (5.2-47.4), n 5 39 2.9 (1.0), n 5 54 1.33 (0.73-1.65), n 5 51 4.75 (0.51), n 5 20

1/2 55 (40.1%) 7 (1-17) 32 (58.2%) 12 (4-15) 14.05 (5.3-33.0), n 5 43 2.8 (0.8), n 5 54 0.83 (0.40-1.29), n 5 54 4.79 (0.37), n 5 26

2/2 25 (18.2%) 8 (3-17) 15 (60.0%) 12 (6-15) 15.9 (8.5-36.1), n 5 17 3.1 (0.7), n 5 23 0.58 (0.18-0.76), n 5 24 5.34 (0.41), n 5 12

P value .84� .97§ .36� .22� .45k <.0001k <.0006{

AU, Arbitrary unit.

*IgE data were positively skewed. The mean of the log-transformed data is presented.

�1/1 denotes no FLG mutation, 1/2 denotes 1 FLG mutation, and 2/2 denotes 2 FLG mutations.

�Comparison of means among the 3 groups of FLG mutations using the Kruskal-Wallis test.

§Comparison of proportions using the x2 test for comparison of a 2 3 3 3 3 contingency table.

kComparison of means among the 3 groups of FLG mutations using ANOVA.

{ANOVA.
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each vial, and the vials were left on ice for 30 minutes. Extraction was per-

formedwith an ultrasound sonifier equippedwith a probe (Salm&Kipp, Breu-

kelen, The Netherlands) for 15 minutes in ice water. The extract was

centrifuged (for 1 minute at 15,000g), and supernatant aliquots of 225 mL

were refrozen at 2808C until required for further analysis.

Concentrations of IL-1a, IL-1b, IL-1RA, and IL-8 in the SC strips were

measuredwith a Luminex-basedmultiplex system (Bio-PlexHumanCytokine

27-plex panel and single plexes; Bio-Rad Laboratories, Hercules, Calif) on a

Bioplex 100, according to the manufacturer’s instructions. Samples were

diluted 4-fold. The amount of cytokines was normalized for the protein

content, which was determined by using the Micro BCA protein assay kit

(Pierce, Rockford, Ill), with the BSA supplied as standard. For statistical

analysis, cytokine concentrations of less than the limit of detection were given

a value of half the limit of detection. The limit of detection was 0.2 pg/mL for

IL-1a, 0.01 pg/mL for IL-1b, 1.4 pg/mL for IL-1RA, 0.3 pg/mL for IL-8, and

0.045 pg/mL for IL-18.
Biophysical analysis of the SC
Skin biophysical measurements were performed under standardized con-

ditions (room temperature of 228C-258C and humidity levels of 30% to 35%).

Before measurements, patients were acclimatized for a minimum of 10

minutes. All measurements were performed by one of 2 investigators (G. M.

O’R. and P. M. J. H. K.). Topical therapies, including emollients, were

withheld from the measurement sites for 48 hours preceding the study.

Transepidermal water loss (TEWL) and pH were measured on nonlesional

skin of the extensor forearm (Tewameter 300 and Skin-pH-Meter, PH905;

Courage and Khazaka Electronic GmbH, Cologne, Germany).

NMF was measured in the SC of the thenar eminence by using confocal

Raman microspectroscopy (model 3510 Skin Composition Analyzer; River

Diagnostics, Rotterdam, The Netherlands). The principles of this method and

the procedure have been described elsewhere.25,26

In a further 17 adult control subjects and 25 white patients with AD, we

determined the levels of IL-1a by using a specific ELISA kit (Biosource

International, Camarillo, Calif). Healthy volunteers had no visible skin abnor-

malities or history of past or present ADor other skin diseases. All of themwere

wild-type for the 4 most common FLG mutations in the Dutch population

(R501X, 2282del4, R2447X, and S3247X). Patients with AD were given diag-

noses according to the Hanifin and Rajka criteria31,32 and were divided into 2

subgroups according to the presence of FLG mutations. We excluded patients

who had received systemic therapy, such as corticosteroids and immunosup-

pressants, or phototherapy in the past 3 months. The test sites, both midvolar

arms, had been free of dermatitis for at least 3 months before the experiment.

Written informed consent was obtained from all subjects before participation.

The study was approved by the Ethics Committee of the Academic Medical

Center, Amsterdam, and was conducted according to the principles of the Dec-

laration of Helsinki. Nine of the patients with AD were wild-type for FLGmu-

tations (ADNON-FLG), and 12 were heterozygous and 4 were homozygous or

compound heterozygous carriers of 4 investigated mutations (ADFLG).
Murine study
Adult (12- to 14-week-old) C57BL/6J or congenic Flgft/Flgft (FlgdelAPfal)

mice, separated frommaFlgft/maFlgft (flaky tail) mice, were used for the prep-

aration and culture of primary murine keratinocytes.33 These mice are homo-

zygous for murine Flg loss-of-function mutations and express no filaggrin

protein.33 Mice were housed in a pathogen-free facility in individually venti-

lated and filtered cages under negative pressure (Tecniplast, Northants, United

Kingdom). All animal experiments were performed in compliance with Irish

Department of Health and Children’s regulations and approved by the Trinity

College Dublin BioResources Ethical Review Committee.

Murine keratinocyte culture
Isolation of murine primary keratinocytes was performed as previously

described.34,35 Briefly, the epidermis was separated from the dermis of tail

skin after overnight incubation in 0.25% trypsin (Lonza, Basel, Switzerland).

Keratinocytes were isolated from the SC with trituration, centrifuged at 150g,

and filtered through a 100-mm sieve (BD Biosciences, San Jose, Calif), fol-

lowed by further centrifugation. The cells were resuspended in calcium-free

KGM-2 media (BulletKit, Lonza) and adjusted to 0.05 mmol/L Ca21, with

50 U/mL penicillin and 50 mg/mL streptomycin (Gibco, Carlsbad, Calif).

Cells were plated on fibronectin/collagen-coated dishes and incubated at

368C at 7% CO2. The keratinocytes were cultured for 4 days, at which point

the attached keratinocytes were analyzed for expression of cytokine mRNA

or induced to differentiate. Cells were cultured in KGM-2 BulletKit media ad-

justed to 0.5 mmol/L Ca21 and harvested for analysis at 72 hours to induce

keratinocytes to undergo terminal differentiation.
RNA isolation and real-time PCR
RNAwas isolated from primary keratinocytes, prepared as above, or dorsal

skin from mice by using the RNeasy kit (Qiagen, Crawley, United Kingdom)

and reverse transcribed with the Quantitect reverse transcription kit incorpo-

rating a genomic DNA elimination step (Qiagen). Real-time quantitative PCR

was performed on an ABI Prism 7900HT sequence detection system (Applied

Biosystems, Paisley, United Kingdom) using predesigned TaqMan gene

expression assays specific for murine IL-1a (Mm00439620_m1), IL-1b

(Mm01336189_m1), and IL-1RA (IL-1rn;Mm00446186_m1). Specific gene

expression was normalized to murine glyceraldehyde-3-phosphate dehydro-

genase. Fold expression was calculated by using the comparative cycle

thresholdmethod of analysis and is presented as relative quantification.36 Data

expressed as relative quantification were calculated and compared with glyc-

eraldehyde-3-phosphate dehydrogenase as a housekeeping gene.
Statistical analysis
Patients were characterized a priori into 3 genotypes (FLG1/1, FLG1/2,

and FLG2/2), where FLG1/1 represents patients with 0 FLG mutations,

FLG1/2 represents patients with 1 FLG mutation (heterozygotes), and



FIG 1. Box-and-whiskers plot cytokine levels in the SC by FLG genotype showing the median (midline) and

interquartile ranges. *P < .05 and ***P < .001, as determined by using Kruskal-Wallis and Dunn multiple

comparison tests. The differences in IL-18 and IL-1RA levels between the ADNON-FLG and ADFLG groups

have been tested by using the 2-sided Mann-Whitney test.
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FLG2/2 represents patients with 2 FLG mutations (homozygotes or com-

pound heterozygotes). For testing of distribution, we used the Shapiro-Wilk

test. Data on cytokine levels were log-transformed and presented as medians

with interquartile ranges (25th-75th box length). For comparison of differ-

ences between the genotype subgroups of patients with AD, ANOVA followed

by a post hoc Tukey analysis was applied. In case of deviation from normal

distribution, we used the Kruskal-Wallis and Dunn multiple comparison tests.

P values of less than .05 were considered statistically significant. For the cor-

relation analysis, we used the Spearman rank correlation test in the case of de-

viation from normal distribution. The Student t test was used to test for

statistical differences between wild-type and Flgft/Flgft mice in cytokine

mRNA expression in isolated skin or keratinocytes. The Prism 5 (GraphPad

Software, Inc, San Diego, Calif) and SPSS (17.0; SPSS, Inc, Chicago, Ill)

software programs were used for statistical calculations.
RESULTS

Patients’ characteristics
Clinical characteristics and summary data of the study cohort,

including FLG genotype, are outlined in Table I. The 3 FLG gen-
otype subgroups had similar disease severity, as assessed by using
the NESS. TEWL values, which are one measure of skin barrier
function, were not significantly different among the 3 AD sub-
groups (P > .05, Kruskal-Wallis test). Although there was an ap-
parent increase in IgE levels in patients with AD with respect to
the number of FLG mutations (Table I), there was no significant
difference in total IgE levels between the FLG subgroups. FLG
mutations were associated with reduced levels of NMF
(Table I). The difference between patients with ADFLG and pa-
tients with ADNON-FLG was highly (P < .001) significant, as was
the difference between the FLG1/1 and FLG2/2 (P < .001) and
FLG1/1 and FLG1/2 (P < .05, Kruskal-Wallis test followed by
Dunn Multiple comparison test) subgroups. The amounts of ex-
tracellular protein harvested by using tape strips did not signifi-
cantly differ between patient groups with and without FLG
mutations (data not shown). Because the study took some time
to complete, not all data points were collected from all patients.
Patient numbers collected for each analysis are shown in Table I.
Cytokine levels in relation to FLG allele status and

NMF
Patients with ADFLG had higher amounts of IL-1a and IL-1b

compared with patients with ADNON-FLG (Fig 1). The differences
in IL-1RA and IL-18 levels between the 3 subgroups did not reach
significance, as assessed by using Dunnmultiple comparison test-
ing. However, a statistically significant difference for both
IL-1RA and IL-18 levels was observed between carriers of FLG
null mutations (ADFLG and ADNON-FLG: P < .05 and P 5 .02, re-
spectively, Mann-Whitney 2-sided test). Levels of IL-8 and the
IL-1RA/IL-1a plus IL-1b ratio were not significantly different
between the FLG subgroups nor between the patients with ADFLG

and ADNON-FLG.
Correlations between IL-1 cytokines, IL-8 levels, and clinical

parameters are further shown in Table II. Levels of IL-18 were as-
sociated with those of IL-1b; however, neither IL-18 nor IL-1b
levels were correlated with IL-1a levels. Interestingly, IL-1b
and IL-18 levels, but not IL-1a levels, were positively correlated
with IL-1RA and IL-8 levels (Table II). The IL-1RA/IL-1a plus
IL-1b ratio was positively correlated with IL-18 and IL-8 levels;
disease severity, as measured based on the NESS; TEWL; and IgE
levels.We did not observe an association between pH and IL-1 cy-
tokine levels (Table II). Correlations between NMF and IL-1



TABLE II. Correlations between IL-1 cytokine levels, IL-8 levels, and clinical parameters

IL-1a IL-1b IL-18 (n 5 87) IL-8 (n 5 91) NESS (n 5 92) TEWL (n 5 78) IgE (n 5 86) pH (n 5 40)

IL-1a NS NS NS 20.30 (20.48

to 20.09),

P < .005

NS NS NS

IL-1b NS 0.41 (0.21

to 0.57),

P < .005

0.31 (0.10

to 0.49),

P < .005

NS 0.32 (0.10

to 0.51),

P < .005

NS NS

IL-18 NS 0.41 (0.21

to 0.57),

P < .005

0.38 (0.18

to 0.55),

P < .0005

NS 0.33 (0.11

to 0.52),

P < .005

NS NS

IL-1RA NS 0.50 (0.33

to 0.65),

P < .0001

0.50 (0.32

to 0.65),

P < .0001

0.32 (0.11

to 0.49),

P < .005

0.31 (0.10

to 0.48),

P < .005

0.42 (0.21

to 0.60),

P 5 .0001

NS NS

IL-1RA/IL-1a

plus IL-1b

20.64 (20.75

to 20.49),

P 5 .02

0.33 (0.13

to 0.51),

P 5 .001

0.40 (0.20

to 0.57),

P < .0001

0.24 (0.04

to 0.44),

P 5 .02

0.39 (0.19

to 0.55),

P 5 .0002

0.39 (0.19

to 0.55),

P < .0001

0.26 (0.04

to 0.45),

P < .05

NS

Results are presented as Spearman correlation coefficient values (2-tailed) with 95% CIs and significance.

NS, Not significant.

FIG 2. Correlation between levels of cytokines and NMF in the SC of patients with AD. Correlations are

unadjusted for FLG mutations. a.u., Arbitrary units; r, Spearman (2-tailed) correlation coefficient.
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cytokine levels are shown in Fig 2 and Table III; the NMF level
was inversely associated with levels of all investigated IL-1
cytokines.
In the small additional adult study, levels of IL-1a in the

SC of patients with ADFLG were significantly higher than
those in healthy control subjects and patients with ADNON-FLG

(see Fig E1 in this article’s Online Repository at www.
jacionline.org).
SC pH in relation to FLG allele status
Homozygous and compound heterozygous carriers (FLG2/2)

had higher pH values than wild-type (FLG1/1) or heterozygous
(FLG1/2) carriers (Fig 3). Levels of NMF in the SC of the patients
with AD were negatively correlated with skin surface pH, as
shown in Fig 4. The correlation was more striking in the subgroup
of FLG mutation carriers (Fig 4, left graph) compared with all
subjects (Fig 4, right graph).

http://www.jacionline.org
http://www.jacionline.org


TABLE III. Correlations between NMF, cytokine levels, and clinical parameters

IL-1a

(n 5 84) IL-1b (n 5 84) IL-18 (n 5 80)

IL-1RA

(n 5 84)

IL-8

(n 5 83)

NESS

(n 5 129)

TEWL

(n 5 99)

IgE

(n 5 126) pH (n 5 58)

NMF 20.37 (20.55

to 20.17),

P 5 .0005

20.50 (20.65

to 20.31),

P < .0001

20.39 (20.57

to 20.18),

P < .0005

20.30 (20.48

to 20.08),

P < .01

NS NS 20.35 (20.51

to 20.15),

P 5 .0004

NS 20.35 (20.56

to 20.09),

P < .01

Results are presented as Spearman correlation coefficient values (2-tailed) with 95% CIs and significance.

NS, Not significant.

FIG 3. Distribution of pH values according to FLG status (mean6 SD). **P <

.01, as determined by using the ANOVA post hoc Tukey test.
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Animal study in Flgft/Flgft (FlgdelAPfal) mice
Skin and keratinocytes from Flgft/Flgft mice have upregu-

lated expression of IL-1b and IL-1RA mRNA. mRNA expres-
sion of IL-1b and IL-1RA is upregulated in primary epidermal
keratinocytes in the proliferative (Fig 5, A) and terminal dif-
ferentiation (Fig 5, B) states, but there was no significant
change in levels of IL-1a. Dorsal skin from Flgft/Flgft

mice had increased IL-1b mRNA expression but not IL-1a
expression relative to levels detected in wild-type animals
(Fig 5, C).
DISCUSSION
In this study we sought to investigate whether levels of IL-1

cytokines, including IL-1a, IL-1b, IL-18, and IL-1RA, are
increased in the uninvolved skin of patients with AD with FLG
loss-of-function mutations. Although we have recently shown
that AD severity per se influences SC NMF status,37 this is a mi-
nor effect compared with the major effect that FLG genotype
has on NMF.26,37 Because AD severity was similar across all
3 FLG genotype subgroups, this AD severity effect is unlikely
to influence the results presented herein.
We found increased IL-1a, IL-1b, IL-18, and IL-1RA expres-

sion in patients with AD FLGmutations compared with that seen
in wild-type patients with AD. In line with these results, IL-1 cy-
tokine levels correlated inversely with NMF levels in the SC. In a
complementary murine study we also observed altered mRNA
IL-1 expression in the skin and cultured keratinocytes of mice
with an Flg loss-of-function mutation.

Our findings support the hypothesis by Elias et al5-7 that ‘‘re-
duced levels of filaggrin and in particular its acidic derivatives
such as urocanic acid, lead to increased pH of the SC, which
may promote activity of serine proteases involved in cleavage
of the pro-forms of IL-1a and IL-1b.’’7,16,17 Here we show a
correlation between increased pH and decreased NMF levels,
which is consistent with recent data. An increased (less acidic)
pH can activate proteases with neutral-to-alkaline pH optima to
process inactive forms of IL-1a, IL-1b, and IL-18 that are
stored in the cytosol of corneocytes.16,38-41 Consistent with
this view, Hosomi et al42 showed increased activity of
caspase-1 in the SC of patients with Netherton syndrome, an
autosomal recessive inherited disease characterized by features
of AD and uninhibited breakdown of filaggrin in the SC.
Increased pH in the FLG2/2 genotype subgroup compared
with the FLG1/1 and FLG1/2 subgroups and the negative cor-
relation between NMF and pH demonstrated in the present
study support the view that NMF contributes to the pH of the
SC. This is in good agreement with a recent study by Jun-
gersted et al.43 However, we found no correlation between
SC pH and the SC levels of either IL-1a or IL-1b, but this
might be due to a lack of power in our study to determine
this correlation. It should be noted that we measured pH on
the skin surface and that this measurement might not be
representative of the epidermal compartment, where proforms
of IL-1 cytokines are activated. Furthermore, activity of
proteases and consequently levels of IL-1 might be influenced
also by factors other than pH, such as increased calcium
concentration caused by reduced water in the SC. We showed
previously that carriers of FLG mutations have reduced levels
of NMF, which likely contribute to reduced SC water con-
tent.25,26,30 The activity of serine proteases is calcium depen-
dent, and thus increased calcium concentrations caused by
decreased cytosolic water content could favor their activa-
tion.44-46 Proteolytic activity can be influenced further by
exogenous proteases, such as those derived from house dust
mite, cockroach, and Staphylococcus aureus. Allergens
derived from house dust mites and S aureus exhibit cysteine
and serine protease activity.47-51 Consistent with these findings,
Inoue et al52 reported increased levels of a caspase-1–mediated
IL-18 in the SC of patients with AD; IL-18 production was
associated with S aureus colonization. Recently, we have shown
that the presence of filaggrin breakdown products results in
reduced growth rates of S aureus and decreased expression
of several proteins known to be involved in colonization
and inflammation of skin.53 Thus reduced levels of filaggrin
degradation products might lead to the increased growth of
S aureus and consequently to enhanced activity of proteases
in the skin.
In the murine study, using Flgft/Flgftmice, upregulated expres-

sion of IL-1b and IL-1RA mRNA was seen in skin and isolated
keratinocytes. No difference in IL-1a expression was detected.
The murine results suggest that loss-of-function mutations in
FLG are a determinant of increased epidermal IL-1b expression.
In the murine study we measured mRNA, which should not be
influenced by SC pH-enhancing protease activity, and thus a



FIG 4. Skin pH values in relation to NMF levels. Left, Patients with ADFLG. Right, Patients with ADFLG plus

patients with ADNON-FLG. a.u., Arbitrary units; r, Pearson (2-tailed) correlation coefficient.

FIG 5. A and B, Expression of IL-1a and IL-1b in keratinocytes and skin from Flgft/Flgft mice. mRNA expres-

sion of IL-1b and IL-1RA in primary epidermal keratinocytes in the proliferative (Fig 5, A) and terminal dif-

ferentiation (Fig 5, B) states. C, IL-1a and IL-1b mRNA expression in dorsal murine skin. Data are

representative of 3 independent experiments (means 6 SEMs). *P < .05.
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pH-driven increase in protease activity is unlikely to entirely ex-
plain the increased IL-1b levels in these mice.
Filaggrin has a key role in aggregation of the keratin filaments

in the corneocytes and is likely to play a role in the integrity of
the SC through other indirect effects.1,2 Barrier disruption itself
stimulates keratinocyte proliferation, as well as cytokine and
chemokine production, including IL-1a and IL-1b.54-56 How-
ever, as shown by us and others, the skin barrier in patients
with AD is impaired irrespective of FLG mutation status,26,43,57

and thus barrier dysfunction sensu latu would not appear to ex-
plain differences in IL-1 cytokine levels between patients with
AD with and without FLG mutations. Our data suggest that
there is an FLG-specific effect on the IL-1 cytokine profile.
Our small pilot study, which includes healthy adult control
subjects (see Fig E1), also supports an FLG-specific effect rather
than a general AD effect. In this small study control subjects had
similar IL-1a levels to those seen in patients with ADNON-FLG,
whereas among patients with AD, those with FLG mutations
had increased IL-1a levels.
IL-1a and IL-1b are potent proinflammatory mediators, but

their activity is counteracted by IL-1RA, levels of which were
also increased in patients with ADFLG. The IL-1RA/IL-1a plus
IL-1b ratio was similar in all 3 FLG subgroups. Levels of
IL-1b and IL-18, but not IL-1a, were positively correlated with
levels of IL-1RA and IL-8. This might indicate that in patients
with ADFLG, IL-1b and IL-18 drives inflammation, although we
cannot exclude other underlying proinflammatory stimuli. The
nature of this proinflammatory stimulus remains to be deter-
mined, but it might be independent of the variation in skin pH.
For example, it is known that IL-4 and IL-13, which are overex-
pressed in unaffected AD skin,58-60 can drive IL-1RA expression.
These cytokines, when coexpressed, have a further inhibitory ef-
fect onFLG expression,61 and thus a positive feedback loopmight
be in place.
Taken together, our human andmurine data support the concept

that there might be a pre-existing enhanced or proinflammatory
status in the skin of patients with AD that relates to FLG muta-
tions. Additional work is required to clarify the temporal link be-
tween FLG mutations and the enhanced amounts of these
proinflammatory cytokines in human subjects, but the murine
work presented herein suggests that it is an early effect. Themajor
findings for IL-1b are paralleled by those for IL-18, which share
the same maturation and secretory mechanism. It would be inter-
esting to investigate whether subjects with FLG mutations but
without a history of AD also have increased amounts of IL-1
cytokines.
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Key messages

d Among patients with AD, those with ADFLG have a dis-
tinct SC cytokine profile from those with ADNON-FLG.

d Similar cytokine profile findings were replicated in a mu-
rine homologue of filaggrin deficiency.

d This is the first study to link FLG mutations with altera-
tions in IL-1 levels.
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FIG E1. Levels of IL-1a in the SC of healthy control subjects and patients

with AD FLG genotype. The differences have been tested by using the Stu-

dent t test (*P < .05). Data are presented as mean values 6 SDs. CTRL1/1,

Homozygote wild-type subject without AD.
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