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1. Introduction

As usual, by C(x) we denote the set of rational functions with complex coefficients. The set of

m×n matrices with elements in C(x) is denoted by C(x)m×n. By I we denote the identity matrix

of an appropriate order. Following the standard notations, A∗, R(A) and N (A) denote the conjugate

transpose, the range, and the null space of A ∈ C(x)m×n. In addition, nrank(A) denotes the normal
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rank of A (rank over the set C(x)) and C(x)m×n
r denotes the set of matrices from C(x)m×n with the

normal rank r. Similarly, rank(A) (resp. ind(A)) denotes the rank (respectively index) of a constant

matrix A. The subset of constant complex matrices C
m×n with rank r is denoted by C

m×n
r .

The fundamental result that defines conditions for the existence of outer inverses with prescribed

range and null space of A ∈ C
m×n
r is frequently used in the literature.We restate this result from [1]. If

T is a subspace ofCn of dimension dim (T) = t � r and S is a subspace ofCm of dimension dim (S) =
m − t, then A has a {2}-inverse X satisfyingR(X) = T andN (X) = S if and only if AT ⊕ S = C

m. The

matrix X satisfying XAX = X , R(X) = T,N (X) = S is unique and it is denoted by A
(2)
T,S .

The most important generalized inverses are particular appearances of outer inverses with pre-

scribed range and null space and correspond to appropriate choices of matrices T and S. The Moore–

Penrose A† and the weighted Moore–Penrose inverse A
†
M,N are equal to (see, for example [1,21]):

A† = A
(2)
R(A∗),N (A∗), A

†
M,N = A

(2)

R(A�),N (A�)
, (1.1)

where A� = N−1A∗M and N and M are positive definite matrices of the orders n × n and m × m,

respectively. The Drazin inverse AD and the group inverse A# of a given square matrix A are equal to

(see [1,21]):

AD = A
(2)

R(Al),N (Al)
, l � ind(A), A# = A

(2)
R(A),N (A). (1.2)

If A is a L-positive semi-definite matrix and L is a subspace of C
n which satisfies AL ⊕ L⊥ = C

n,

S = R(PLA), then the Bott–Duffin inverse A
(−1)
(L) and the generalized Bott–Duffin inverse A

(†)
(L) are

defined by [2,21]:

A
(−1)
(L) = A

(2)

L,L⊥ , A
(†)
(L) = A

(2)

S,S⊥ . (1.3)

Our basic motivation is the representation of the Moore–Penrose inverse A† from [9]. The com-

putational method introduced in [9] is derived from the QR decomposition of the matrix A. In the

present paper we develop two extensions of this algorithm. First generalization consists in the fact

that our algorithm is applicable for calculating an extensive class of A
(2)
T,S inverses, not only for comput-

ing the Moore–Penrose inverse. Furthermore, an extension of this algorithm to the set of one-variable

polynomial and rationalmatrices is presented. Insteadof theQRdecompositionofAweuse theQDRde-

composition of an appropriately chosenmatrixW and thus derived full-rank factorization. The choice

of QDR decomposition is critical in order to eliminate appearances of square roots in entries of the QR

decomposition.

A number of different approaches for the generalized inversion of polynomial and rationalmatrices

have been proposed. So far, the Leverrier–Faddeev algorithm, the Greville’s partitioning method and

the LDL∗ decomposition are used in the symbolic implementation of generalized inverses. Methods

for computing the Moore–Penrose inverse of polynomial matrices based on the Leverrier–Faddeev

algorithm are investigated in [4,6–8].

Various extensions of the Greville’s recursive algorithm from [5] which are applicable to rational

and polynomialmatrices have been established. The first result in this approach is the extension of the

Greville’s algorithm to the set of one-variable polynomial and/or rational matrices, introduced in [15].

The extension of results from [15] to the set of the two-variable rational and polynomial matrices is

introduced in [11]. Wang’s partitioning method from [20], aimed in the computation of the weighted

Moore–Penrose inverse, is extended to the set of one-variable rational and polynomial matrices in the

paper [18]. Also, the efficient algorithm for computing the weighted Moore–Penrose, appropriate for

sparsepolynomialmatriceswhereonlya fewpolynomial coefficients arenonzero, is established in [10].

In the paper [19] the Greville’s recursive principle is generalized to {1}, {1, 3}, {1, 4}-inverses and the

Moore–Penrose inverse and extended to the set of the one-variable rational and polynomial matrices.

The algorithm for computing {1, 2, 3}, {1, 2, 4} inverses and theMoore–Penrose inverse of a given

rational matrix, based on the LDL∗ factorization, is developed in [13]. Extension of that algorithm to
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the set of polynomial matrices whose elements are polynomials with real coefficients is presented in

the same paper.

Computationswhich include square roots entries are inappropriate for symbolic and algebraic com-

putations. Symbolic implementation of expressions

√∑q
i=0Ais

i which include constant matrices Ai,

i = 0, . . . , q and the unknown s is a very complicated problem in procedural programming languages

and a job whose execution requires a lot of processor time in packages for symbolic computation. In

addition, the square root of some matrix polynomials often occurs when generating the QR factoriza-

tion. Generating expressions that include square roots can be avoided by using theQDR decomposition.

This possibility is of essential importance in symbolic polynomial computation. Similarly as in [13],

our motivation in the present paper is to exploit the advantage of a square-root-free decomposition in

symbolic calculations and extend theAlgorithm qrginv from [9] to the set of polynomialmatrices.What

is themain reason to replace the LDL∗ with the QR decomposition? Themain disadvantage of the LDL∗
decomposition is that it is applicable only to symmetric positive definite matrices. This drawback fix a

limit to results from [13] to {1, 2, 3}, {1, 2, 4}-inverses and the Moore–Penrose inverse. Representa-

tionsproposed in thepresent article are applicable toamorewider set of outer inverseswithprescribed

range andnull space. For this purpose, insteadof the LDL∗ decomposition (used in [13]),weuse theQDR

factorizationof a rationalmatrix inorder to avoid entries containing square roots. Evidently, this form is

appropriate for themanipulationwith polynomial entries. Therefore, the proposed algorithm is highly

suitable for the implementation in procedural programming languages, because of square root-free

entries and the basic simplification method only requiring the evaluation of gcd of two polynomials.

The paper is organized as follows. Section 2 is divided in two subsections; in the first the algo-

rithm for symbolic computation of A
(2)
T,S inverses of one-variable polynomial or rational matrix A is

introduced, whereas in the second the implementation details of the proposed algorithmic procedure

are presented. Note that, the representation of outer inverses with prescribed range and null space is

derived on the QDRmatrix decomposition of an appropriately chosen matrixW . The algorithm is im-

plemented in the symbolic computational language MATHEMATICA. In Section 3, several illustrative

examples as well as the comparison with other known algorithms for symbolic computation of outer

inverses are presented. The conclusions of our work are discussed in Section 4.

2. Symbolic computation of A
(2)
T,S using QDR factorization

The basic QDR factorization of amatrix A generates threematrices: thematrix Q with rank equal to

the rank of A, the diagonal matrix D and the matrix R, in stages. Here we propose an algorithm for the

direct computation of the full-rank QDR decomposition, where the matrix Q is formed without zero

columns,R is generatedwithout zero rowsand thediagonalmatrixD iswithoutbothzero rowsandzero

columns. The QDR decomposition produces one more diagonal matrix with respect to the QR decom-

position, but returns matrices with square root free entries, preferable for the symbolic computation.

Algorithm 2.1 Full-rank QDR decomposition of a rational matrix A

Require: Matrix A ∈ C(x)n×m
s .

1: Construct the three zero matrices: Q ∈ C(x)n×s, D ∈ C(x)s×s, R ∈ C(x)s×m.

2: For i = 1, s repeat
2.1: Set the matrix B be equal to A − QDR.

2.2: Determine the first next nonzero column of the matrix B and denote it as c.

2.3: Set the ith column of Q be equal to c.

2.4: For j = i,m set Rij be equal to the inner product of the vector c with the jth column of B.

2.5: Set the element Dii to the reciprocal of the squared 2-norm of the column c.

Notice that the equation of the form A = QDR + B is stated at each step, where we start with

B = A. At the end of Algorithm 2.1 we have B = 0 and A = QDR. Let us mention that the matrix R

is upper triangular, and the columns of Q contain an orthogonal basis of the column space of A. The

implementation of this algorithm in MATHEMATICA is given in Appendix.
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In many cases, the Gram–Schmidt algorithm with column pivoting is required. At each stage the

column of B with the largest 2-norm is picked, instead of the first nonzero column. Then the matrix R

is column permuted upper triangular matrix, and the columns of Q again contain an orthogonal basis

for the column space of A.

Example 2.1. Consider the next two matrices:

F =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

3 −2

−1 1

0 0

0 0

0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, G =
⎡
⎣ 1 0 0 0 0 0

0 1 0 0 0 0

⎤
⎦ .

Choose the matrixW that is equal to their product

W = FG =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

3 −2 0 0 0 0

−1 1 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

The QDR decomposition of the matrixW is determined as
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

3 −2 0 0 0 0

−1 1 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

3 1
10

−1 3
10

0 0

0 0

0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎣

1
10

0

0 10

⎤
⎦

⎡
⎣ 10 −7 0 0 0 0

0 1
10

0 0 0 0

⎤
⎦ .

Example 2.2. Consider the following polynomial matrix:

W =

⎡
⎢⎢⎢⎣

−3 − 4x2 2 − 7x 4

−9x −3 + 3x2 −5

−2x + 9x2 9x2 −5

⎤
⎥⎥⎥⎦ .

Applying Algorithm 2.1 we get the following matrices from the QDR decomposition of W:

Q =

⎡
⎢⎢⎢⎢⎣

−3 − 4x2
x(81+170x−694x2+657x3−747x4+324x5)

9+109x2−36x3+97x4

−9x −3 + 3x2 + 9x(−6+48x−8x2−17x3+81x4)
9+109x2−36x3+97x4

x(−2 + 9x)
x(−12+231x−448x2+1019x3−9x4+144x5)

9+109x2−36x3+97x4

3x(90−217x+53x2+3742x3−1388x4−3444x5+5565x6+2052x7)
81+324x−704x2−2956x3+8998x4−11880x5+13824x6−486x7+2169x8

− x(−180+2279x+3163x2−10909x3+8706x4+10329x5−14904x6+8208x7)
81+324x−704x2−2956x3+8998x4−11880x5+13824x6−486x7+2169x8

3(−135−552x+675x2+2603x3−2674x4−1292x5+4108x6−60x7+912x8)
81+324x−704x2−2956x3+8998x4−11880x5+13824x6−486x7+2169x8

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,



P.S. Stanimirović et al. / Linear Algebra and its Applications 437 (2012) 1317–1331 1321

D =

⎡
⎢⎢⎢⎣

1

9+109x2−36x3+97x4
0

0 9+109x2−36x3+97x4

81+324x−704x2−2956x3+8998x4−11880x5+13824x6−486x7+2169x8

0 0

0

0

81+324x−704x2−2956x3+8998x4−11880x5+13824x6−486x7+2169x8

(45+94x−113x2−15x3+228x4)
2

⎤
⎥⎥⎥⎥⎦

,

R =

⎡
⎢⎢⎢⎣

9 + 109x2 − 36x3 + 97x4 −6 + 48x − 8x2 − 17x3 + 81x4

0 81+324x−704x2−2956x3+8998x4−11880x5+13824x6−486x7+2169x8

9+109x2−36x3+97x4

0 0

−12 + 55x − 61x2

−−135−654x+1135x2+716x3+1882x4+6048x5+879x6

9+109x2−36x3+97x4

(45+94x−113x2−15x3+228x4)
2

81+324x−704x2−2956x3+8998x4−11880x5+13824x6−486x7+2169x8

⎤
⎥⎥⎥⎦ .

Many representations for various generalized inverses of prescribed rank aswell as for the general-

ized inverses with prescribed range and kernel are known in the literature. The most useful represen-

tation for the research in the current paper is the following full-rank representation of outer inverses

with prescribed range and null space from [12].

Proposition 2.1 [12]. Let A∈ C
m×n
r , T be a subspace of C

n of dimension s � r and let S be a subspace

of Cm of dimension m − s. In addition, suppose that W ∈ C
n×m satisfiesR(W) = T,N (W) = S. Let W

has an arbitrary full-rank decomposition, that is W = FG. If A has a {2}-inverse A(2)
T,S, then:

(1) GAF is an invertible matrix;

(2) A
(2)
T,S = F(GAF)−1G = A

(2)
R(F),N (G).

In the particular case, a full-rank representation of the Drazin inverse AD based on an arbitrary

full-rank decomposition of Al , l � ind(A), is introduced in [17].

An alternative explicit expression for the generalized inverse A
(2)
T,S , which is based on the usage of

the group inverse, is given in [22]. The characterization, the representation theorem and the limiting

expression for A
(2)
T,S are derived in [22] using this representation.

Theauthorsof thepaper [3] establishedabasic representationandageneral representation theorem

for the outer inverse A
(2)
T,S . Based on this representation, several specific representations and iterative

methods for computing A
(2)
T,S are presented in [3].

The next statement represents a full-rank representation for outer inverses with prescribed range,

null space and rank, of the same general form as in Proposition 2.1. The statement is valid for rational

matrices and it is based on the full-rank factorization ofW arising from theQDRdecomposition defined

in Algorithm 2.1.

Lemma 2.1. Let A ∈ C(x)m×n
r be given. For an arbitrary matrix W ∈ C(x)n×m

s , s � r, consider its QDR

decomposition produced by Algorithm 2.1, of the form

W = QDR,
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where Q ∈ C(x)n×s
s , D ∈ C(x)s×s

s is a diagonal matrix and R ∈ C(x)s×m
s is an upper triangular matrix.

Let us assume that the condition

nrank(W) = nrank(RAQ) = s (2.1)

is satisfied. Define the set

Cs(W) = {xc ∈ C| nrank(W)= rank(W(xc))= rank(R(xc)A(xc)Q(xc))= s}. (2.2)

Then the following statement is valid on the set Cs(W):

A
(2)
R(Q),N (R) = Q(RAQ)−1R

= A
(2)
R(W),N (W).

(2.3)

Proof. Obviously, the factorization

W = QDR = (QD)(R), (2.4)

represents a full-rank factorization ofW on the setCs(W). Since D and RAQ are invertible, they satisfy

the reverse order law property (RAQD)−1 = D−1(RAQ)−1. Now, the first identity in (2.3) follows from

Proposition 2.1 and

QD(RAQD)−1R = Q(RAQ)−1R

= A
(2)
R(Q),N (R).

The identity

A
(2)
R(W),N (W) = A

(2)
R(Q),N (R)

is evidently satisfied in Cs(W) from (2.4) and invertibility of D. �

Remark 2.1. Notice that for a given matrix A ∈ C(x)m×n
r arbitrarily chosen matrix W ∈ C(x)n×m

s ,

s � r, produces corresponding outer inverse with prescribed range and null space of the form (2.3),

where (2.4) is the QDR decomposition ofW . The outer inverse A
(2)
R(Q),N (R) represents a function on the

set C(x). Elements of the outer inverse, denoted by gij , are also functions on C(x). Then the domain of

A
(2)
R(Q),N (R) is Cs(W)

⋂
i,j

Dom(gij), where Dom(gij) denotes the domain of gij .

Taking into account representations (1.1)–(1.3) for main outer inverses, we get the following rep-

resentations.

Corollary 2.1. For a given matrix A∈C(x)m×n
r and arbitrarily chosen matrix W ∈C(x)n×m

s with the QDR

decomposition defined in (2.4) the following statements are valid in Cs(W)
⋂
i,j

Dom(gij) :

(a) A
(2)
R(Q),N (R) = A† in the case of W = A∗;

(b) A
(2)
R(Q),N (R) = A

†
M,N in the case of W = A�;

(c) A
(2)
R(Q),N (R) = A# in the case of W = A;

(d) A
(2)
R(Q),N (R) = AD in the case of W = Al, l � ind(A);

(e) A
(2)
R(Q),N (R) = A

(−1)
(L) in the case ofR(W) = L, N (W) = L⊥;

(f) A
(2)
R(Q),N (R) = A

(†)
(L) in the case of R(W) = S, N (W) = S⊥. (2.5)
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The lack of numerical calculations that are based on the representation (2.3) is calculation of the

inverse matrix. Numerically more stable approach for computing (2.3) is to solve the set of equations

RAQX = R (2.6)

and then compute the matrix product

A
(2)
R(Q),N (R) = QX. (2.7)

Nowwe can propose the following Algorithm 2.2 for the evaluation of A
(2)
T,S inverses of a given rational

matrix.

Algorithm 2.2 Computing the A
(2)
T,S inverse of a rational matrix A using the QDR decomposition of

appropriately chosen rational matrixW .

(Algorithm QDRATS)

Require: The matrix A ∈ C(x)m×n
r .

1: Choose an arbitrary matrix W ∈ C(x)n×m of normal rank s � r.

2: Generate the full-rank QDR decomposition of the matrixW by applying Algorithm 2.1.

3: Solve the matrix equation (2.6) with respect to unknown matrix X .

4: Compute the output A
(2)
R(Q),N (R) = QX .

2.1. Symbolic computation of A
(2)
T,S inverse of a rational matrix

The implementation of Algorithm QDRATS is mainly based on the symbolic data processing pos-

sibilities incorporated in the package MATHEMATICA. In this subsection we want to accelerate this

implementation and to adapt it to procedural programming languages. For this purpose, we consider

arbitrary rational matrix A(x) ∈ C(x)m×n in the general form A(x) = A(x)

A(x)
, where the matrices A(x)

and A(x) are given in the polynomial form with respect to the unknown x:

A(x) =
aq∑
i=0

Aix
i, A(x) =

aq∑
i=0

Aix
i, (2.8)

where Ai, i = 0, . . . , aq and Ai, i = 0, . . . , aq arem × n constant matrices. Thus, Q and R are rational

matrices with elements having the forms:

Qij(x) =
∑qq

k=0qk,i,jx
k

∑qq
k=0qk,i,jx

k

, 1 � i � m, 1 � j � s,

Rij(x) =
∑rq

k=0rk,i,jx
k

∑rq
k=0rk,i,jx

k

, 1 � i � s, i � j � n,

(2.9)

where qq and rq (resp. qq and rq) are maximal exponents of the numerators (resp. denominators) of

the matrices Q and R, respectively. Notice that here and in the rest of the paper, variables with one

bar determine numerator’s coefficients and variables with two bars are used to denote denominator’s

coefficients.

Theorem 2.1. Let A ∈ C(x)m×n
r , W ∈ C(x)n×m

s be rational matrices, where s � r. Consider the full-

rank QDR decomposition of the matrix W where the elements of the matrices Q , R are of the forms (2.9).

Assuming that the condition (2.1) holds, let us denote an arbitrary (i, j)th element of the inverse matrix

N = (RAQ)−1 by

Nij(x) =
∑nq

k=0nk,i,jx
k

∑nq
k=0nk,i,jx

k

. (2.10)
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Then an arbitrary (i, j)th element of A
(2)
R(Q),N (R) for x ∈ Cs(W) can be evaluated as

(
A
(2)
R(Q),N (R)

)
ij
(x) = �ij

�ij

,

where

�ij(x) =
�q−αq+αq∑

t=0

⎛
⎝

min{j,s}∑
k=1

s∑
l=1

t∑
t1=0

αt1,i,j,k,lγt−t1,i,j,k,l

⎞
⎠ xt, (2.11)

�ij(x) = Polynomial LCM

⎧⎪⎨
⎪⎩

αq∑
t=0

αt,i,j,k,lx
t
∣∣k = 1,min{j, s}, l = 1, s

⎫⎪⎬
⎪⎭ =

�q∑
t=0

γ t,i,jx
t, (2.12)

where for k = 1,min{j, s}, l = 1, s, values γt,i,j,k,l, 0 � t � �q − αq are the coefficients of the

polynomial

�i,j,k,l(x) = �ij(x)

∑αq

t=0αt,i,j,k,lx
t

and the next two notations are used:

αt,i,j,k,l =
t1∑

t2=0

t1−t2∑
t3=0

qt2,i,lnt1−t2−t3,l,krt3,k,j, 0 � t � αq = qq + nq + rq, (2.13)

αt,i,j,k,l =
t1∑

t2=0

t1−t2∑
t3=0

qt2,i,lnt1−t2−t3,l,krt3,k,j, 0 � t � αq = qq + nq + rq. (2.14)

Proof. Weassume that the inversematrixN = (RAQ)−1 = {Nij(x)}si,j=0 is determined by (2.10). Then

(QN)ij(x) =
s∑

l=0

Qil(x)Nlj(x) =
s∑

l=1

∑qq
k=0qk,i,lx

k

∑qq
k=0qk,i,lx

k

∑nq
k=0nk,l,jx

k

∑nq
k=0nk,l,jx

k

=
s∑

l=1

∑qq+nq

k=0

(∑k
k1=0qk1,i,lnk−k1,l,j

)
xk

∑qq+nq

k=0

(∑k
k1=0qk1,i,lnk−k1,l,j

)
xk

.

Next we have the following calculations:

(Q(RAQ)−1R)ij(x) =
min{j,s}∑
k=1

(QN)ik(x)Rkj(x)

=
min{j,s}∑
k=1

s∑
l=1

∑qq+nq
t1=0

(∑t1
t2=0qt2,i,lnt1−t2,l,k

)
xt1

∑qq+nq
t1=0

(∑t1
t2=0qt2,i,lnt1−t2,l,k

)
xt1

∑rq
t2=0rt2,k,jx

t2

∑rq
t2=0rt2,k,jx

t2

=
min{j,s}∑
k=1

s∑
l=1

∑qq+nq+rq
t1=0

(∑t1
t2=0

∑t1−t2
t3=0 qt2,i,lnt1−t2−t3,l,krt3,k,j

)
xt1

∑qq+nq+rq
t1=0

(∑t1
t2=0

∑t1−t2
t3=0 qt2,i,lnt1−t2−t3,l,krt3,k,j

)
xt1

.

Finally, according to the Eq. (2.3), for x ∈ Cs(W) the (i, j)th element of the inverse A
(2)
R(Q),N (R) is

defined by:

(
A
(2)
R(Q),N (R)

)
ij

=
min{j,s}∑
k=1

s∑
l=1

∑αq

t=0αt,i,j,k,lx
t

∑αq

t=0αt,i,j,k,lx
t

= �ij

�ij

, (2.15)
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where the denominator and numerator polynomials are computed by

�ij(x) = PolynomialLCM

⎧⎪⎨
⎪⎩

αq∑
t=0

αt,i,j,k,lx
t
∣∣k = 1,min{j, s}, l = 1, s

⎫⎪⎬
⎪⎭ =

�q∑
t=0

γ t,ix
t,

�ij(x) =
j∑

k=1

s∑
l=1

⎛
⎝�i,j,k,l(x)

αq∑
t=0

αt,i,j,k,lx
t

⎞
⎠ ,

where each polynomial �i,j,k,l(x) is equal to

�ij(x)
/ αq∑

t=0

αt,i,j,k,lx
t =

�q−αq∑
t=0

γt,i,j,k,lx
t .

Therefore,

�ij(x) =
�q−αq+αq∑

t=0

⎛
⎝

min{j,s}∑
k=1

s∑
l=1

t∑
t1=0

αt1,i,j,k,lγt−t1,i,j,k,l

⎞
⎠ xt,

which coincides with the Eq. (2.11), and the proof is complete. �

Now, we are able to state an algorithm for the computation of the generalized inverse of a rational

matrix. This algorithm uses the procedure for the evaluation of the full-rank QDR decomposition, and

Algorithm 3.2 from [18] to compute the inverseN−1(x) of a given polynomial matrixN(x). Notice that,
in order to apply the Algorithm 3.2 from [18] to the rational matrix RAQ , one needs to transform it to

the form involving the quotient of a polynomialmatrix and a polynomial, inwhich case the polynomial

acts as a constant in the evaluation of the inverse matrix.

Algorithm 2.3 Computation of a rational matrix A
(2)
T,S inverse by using QDR factorization

(Algorithm QDRATS2)

Require: Rational matrix A(x) ∈ C(x)m×n
r .

1: Choose an arbitrary but fixed n × m rational matrix W of normal rank s � r.

2: Generate the full-rank QDR decomposition of the matrixW using the Algorithm 2.1. Transform the

rational matrices Q , R into the general form (2.9).

3: Transform the rational matrixM = RAQ into the form:

M = 1

p(x)
M1,

where p(x) is a polynomial and M1 is a polynomial matrix.

4: Find the inverse of the matrix M1 using the Algorithm 3.2 from [18]. Generate the inverse matrix

N = M−1 = p(x)M−1
1 , and transform it to the form:

Nij(x) =
∑nq

k=0nk,i,jx
k

∑nq
k=0nk,i,jx

k

.

5: Make the notations αq = qq + nq + rq, αq = qq + nq + rq, and for i = 1, n, j = 1,m perform

Step 5.1–Step 5.5.

5.1: For k = 1,min{j, s}, l = 1, s do the following calculations:

αt,i,j,k,l =
t1∑

t2=0

t1−t2∑
t3=0

qt2,i,lnt1−t2−t3,l,krt3,k,j, 0 � t � αq,

αt,i,j,k,l =
t1∑

t2=0

t1−t2∑
t3=0

qt2,i,lnt1−t2−t3,l,krt3,k,j, 0 � t � αq.
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5.2: Evaluate the denominator polynomial of the (i, j)th element of A
(2)
R(Q),N (R) as

PolynomialLCM

⎧⎪⎨
⎪⎩

αq∑
t=0

αt,i,j,k,lx
t
∣∣k = 1,min{j, s}, l = 1, s

⎫⎪⎬
⎪⎭ , (2.16)

and denote it by �ij(x) = ∑�q

t=0 γ t,i,jx
t .

5.3: For each k = 1,min{j, s}, l = 1, s compute the polynomial �ij(x)/
∑αq

t=0 αt,i,j,k,lx
t and

denote it by �i,j,k,l(x) = ∑�q−αq

t=0 γt,i,j,k,lx
t .

5.4: Calculate the numerator polynomial of the (i, j)th element of A
(2)
R(Q),N (R) as

�ij(x) =
�q−αq+αq∑

t=0

⎛
⎝

min{j,s}∑
k=1

s∑
l=1

t∑
t1=0

αt1,i,j,k,lγt−t1,i,j,k,l

⎞
⎠ xt .

5.5: Set the value of (i, j)th element of the matrix A
(2)
R(Q),N (R) to �ij(x)/�ij(x).

2.2. Implementation details

The complexity of the QDR decomposition is the same as the complexity of the QR decomposition.

The implementation of Algorithm QDRATS2 is done in the package MATHEMATICA and

presented in Appendix 4. We designed three main functions, called QDRDecomposition[A_List],
QDRATS[A_List,W_List] and QDRAlgorithm[A_List,W_List], for testing and verification

purposes.

The normal rank of a given rationalmatrix is computed using the standardMATHEMATICA function

MatrixRank, which works on both numerical and symbolic matrices [23].

The polynomial P(x) is primitive if all its coefficients are mutually co-prime. Rational functions

can be stored as ordered pairs of primitive numerators and denominators. Notice that the simplifi-

cation is crucial in Step 3 and Step 5.5, where the quotients of two polynomials are evaluated. The

function Simplify[ ] performs a sequence of algebraic and other transformations on a given expression

and returns the simplest form it finds [23]. The package MATHEMATICA is appropriate for symbolic

calculations and has built-functions for manipulating with unevaluated expressions.

In procedural programming languages, this simplification can be done by using the greatest com-

mon divisor of two polynomials. The fast gcd algorithm considering Chinese remainder theorem and

the simple Euclidean algorithm can be used for finding the greatest common divisor of two polynomi-

als. Coefficients in intermediate results can expand greatly in performing the Euclidean algorithm for

polynomial reminder. But, notice that one can evaluate the primitive part of the remainder. However,

the primitive part calculation requires many greatest common divisors of coefficients which can also

be large. Therefore, the Chinese Remainder Algorithm (CRA) can be used for the reconstruction of the

gcd coefficients back to integers.

3. Experiments with polynomial and rational matrices

In the next few examples we will examine our algorithm and then test some different implemen-

tations in order to compare processor times for some random test matrices.
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Example 3.1. Consider the following polynomial matrices

A =

⎡
⎢⎢⎢⎢⎢⎢⎣

−4x2 − 3 2 − 7x 4

−9x 3x2 − 3 −5

9x2 − 2x 9x2 −5

−4x2 − 3 2 − 7x 4

⎤
⎥⎥⎥⎥⎥⎥⎦

, W =

⎡
⎢⎢⎢⎣

3 7x 4 5

−9x 3x2 − 3 5 x + 5

−6 −14x −8 −10

⎤
⎥⎥⎥⎦ .

The matrix W is chosen quite randomly, only with suitable dimensions. We have r = nrank(A) = 3,

s = nrank(W) = 2. Algorithm 2.1 produces the following QDR factorization of W:

Q =

⎡
⎢⎢⎢⎢⎣

3
9x(8x2−1)

9x2+5

−9x
15(8x2−1)

9x2+5

−6 − 18x(8x2−1)
9x2+5

⎤
⎥⎥⎥⎥⎦

, D =
⎡
⎢⎣

1

81x2+45
0

0 9x2+5

45(1−8x2)
2

⎤
⎥⎦ ,

R =
⎡
⎢⎣
9

(
9x2 + 5

)
3x

(
44 − 9x2

)
60 − 45x 75 − 9x(x + 5)

0
45(1−8x2)

2

9x2+5

15(12x+5)(8x2−1)
9x2+5

15(16x+5)(8x2−1)
9x2+5

⎤
⎥⎦ .

The expression X = QDRAlgorithm[A,W] produces the following outer inverse of A:

X =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

− 3
(
72x4+108x3−148x2−3x+19

)

636x6+777x5+9129x4−9265x3−198x2+749x+352

108x4−875x3+297x2+98x−48

636x6+777x5+9129x4−9265x3−198x2+749x+352

− 3
(
172x3−241x2+39x+35

)

636x6+777x5+9129x4−9265x3−198x2+749x+352

212x4+199x3+702x2−59x−144

636x6+777x5+9129x4−9265x3−198x2+749x+352

6
(
72x4+108x3−148x2−3x+19

)

636x6+777x5+9129x4−9265x3−198x2+749x+352
− 2

(
108x4−875x3+297x2+98x−48

)

636x6+777x5+9129x4−9265x3−198x2+749x+352

− 3
(
72x4+108x3−148x2−3x+19

)

636x6+777x5+9129x4−9265x3−198x2+749x+352

108x4−875x3+297x2+98x−48

636x6+777x5+9129x4−9265x3−198x2+749x+352

− 3
(
172x3−241x2+39x+35

)

636x6+777x5+9129x4−9265x3−198x2+749x+352

212x4+199x3+702x2−59x−144

636x6+777x5+9129x4−9265x3−198x2+749x+352

6
(
72x4+108x3−148x2−3x+19

)

636x6+777x5+9129x4−9265x3−198x2+749x+352
− 2

(
108x4−875x3+297x2+98x−48

)

636x6+777x5+9129x4−9265x3−198x2+749x+352

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

According to Lemma 2.1 we get

X = A
(2)
R(Q),N (R) = A

(2)
R(W),N (W).

Using the MATHEMATICA’s standard function NullSpace [23] we get

N (R) =
⎡
⎢⎣

− 8x2−35x−15

9(8x2−1)
− 16x+5

3(8x2−1)
0 1

− 12x2−35x−12

9(8x2−1)
− 12x+5

3(8x2−1)
1 0

⎤
⎥⎦ .

Also, one can verify

R(Q) =
⎧⎨
⎩
9x

(
8x2 − 1

)
z

9x2 + 5
+ 3y,

15
(
8x2 − 1

)
z

9x2 + 5
− 9x y, −18x

(
8x2 − 1

)
z

9x2 + 5
− 6 y

⎫⎬
⎭ ,

where y, z are arbitrary complex numbers.

On the other hand, the expression QDRAlgorithm[A,Transpose[A]] implies computations

corresponding to the case of W = AT , and produces the Moore–Penrose inverse of A:
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A† =

⎡
⎢⎢⎢⎣

− 15(2x2+1)
456x4−30x3−226x2+188x+90

−36x2+35x−10

228x4−15x3−113x2+94x+45

12x2−35x−2

228x4−15x3−113x2+94x+45
5x(9x+7)

456x4−30x3−226x2+188x+90

16x2−8x−15

228x4−15x3−113x2+94x+45

20x2+36x+15

228x4−15x3−113x2+94x+45
3x(9x3+25x2−9x+2)

456x4−30x3−226x2+188x+90
− x(36x3−63x2+59x−4)

228x4−15x3−113x2+94x+45

3(4x4+20x2−6x−3)
228x4−15x3−113x2+94x+45

− 15(2x2+1)
456x4−30x3−226x2+188x+90

5x(9x+7)
456x4−30x3−226x2+188x+90

3x(9x3+25x2−9x+2)
456x4−30x3−226x2+188x+90

⎤
⎥⎥⎥⎦ .

The same result is obtained for W = A and W = Ak, k � 2, since the Drazin and group inverse are

equal to A†.

In the following example we will consider a rational matrix which Moore–Penrose inverse and the

group inverse are different.

Example 3.2. The following rational matrix

A1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

144(−1+8x2)
7(−36−25x+164x2)

0 0 108+175x+4x2

252+175x−1148x2

75+372x

252+175x−1148x2
1 0

3(25+124x)

7(−36−25x+164x2)

− 99(−1+8x2)
7(−36−25x+164x2)

0 1
99(−1+8x2)

7(−36−25x+164x2)
144(−1+8x2)

7(−36−25x+164x2)
0 0 108+175x+4x2

252+175x−1148x2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

is equal to the product AX1 of the matrix A from Example 3.1 and its outer inverse X1:

X1 =

⎡
⎢⎢⎢⎢⎢⎣

− 6(−452+395x+3418x2−6852x3+7344x4)
7(−1620−4509x+9098x2+18781x3−26365x4−8160x5+37392x6)

−10+35x−36x2

45+94x−113x2−15x3+228x4

6(435+784x−2434x2+976x3+6000x4)
7(−1620−4509x+9098x2+18781x3−26365x4−8160x5+37392x6)

−15−8x+16x2

45+94x−113x2−15x3+228x4

3(−297−982x+6631x2+9197x3−34020x4+33264x5+7200x6)
7(−1620−4509x+9098x2+18781x3−26365x4−8160x5+37392x6)

x(4−59x+63x2−36x3)
45+94x−113x2−15x3+228x4

−2−35x+12x2

45+94x−113x2−15x3+228x4
3(356+1665x+3616x2−11954x3+3208x4)

7(−1620−4509x+9098x2+18781x3−26365x4−8160x5+37392x6)
15+36x+20x2

45+94x−113x2−15x3+228x4
−2610−13524x−2861x2+26449x3+15660x4

7(−1620−4509x+9098x2+18781x3−26365x4−8160x5+37392x6)
3(−3−6x+20x2+4x4)

45+94x−113x2−15x3+228x4
3(297+478x−4713x2−11626x3+17045x4−6139x5+3132x6)

7(−1620−4509x+9098x2+18781x3−26365x4−8160x5+37392x6)

⎤
⎥⎥⎥⎥⎥⎦

.

The matrix A1 is idempotent and clearly satisfies ind(A1) = 1. The Moore–Penrose inverse of A1 is

generated in the caseW = AT
1, and it is equal to

A
†
1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

9(2873+4500x−26336x2−11200x3+108320x4)
47826+93600x−318719x2+1400x3+1954384x4

8100+53301x+65400x2+1488x3

47826+93600x−318719x2+1400x3+1954384x4

3(−900−89x+50600x2+143344x3)
95652+187200x−637438x2+2800x3+3908768x4

42201+37800x−457103x2+1400x3+1954384x4

47826+93600x−318719x2+1400x3+1954384x4

99(36−175x−1444x2+1400x3+9248x4)
95652+187200x−637438x2+2800x3+3908768x4

− 297(−25−124x+200x2+992x3)
47826+93600x−318719x2+1400x3+1954384x4

42642+118800x−110783x2−200200x3+622672x4

95652+187200x−637438x2+2800x3+3908768x4
432(−25−124x+200x2+992x3)

47826+93600x−318719x2+1400x3+1954384x4

99(−108−175x+860x2+1400x3+32x4)
47826+93600x−318719x2+1400x3+1954384x4

9(2873+4500x−26336x2−11200x3+108320x4)
47826+93600x−318719x2+1400x3+1954384x4

− 297(−25−124x+200x2+992x3)
47826+93600x−318719x2+1400x3+1954384x4

3(−900−89x+50600x2+143344x3)
95652+187200x−637438x2+2800x3+3908768x4

38025+93600x−161903x2+1400x3+1327120x4

47826+93600x−318719x2+1400x3+1954384x4
99(36−175x−1444x2+1400x3+9248x4)

95652+187200x−637438x2+2800x3+3908768x4

14256(1−8x2)
2

47826+93600x−318719x2+1400x3+1954384x4
42642+118800x−110783x2−200200x3+622672x4

95652+187200x−637438x2+2800x3+3908768x4

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.

For W = A1, we gain the group inverse, which is equal to the primordial matrix A1.
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Table 1

Mean processing times (in seconds) comparing several known algorithms to Algorithm 2.2 and Algorithm 2.3.

Test matrix from [24] A5 A6 A7 S5 S6 S7 F5 F6 F7
PseudoInverse [23] 0.3 0.6 1.1 0.1 0.5 0.9 0.5 0.9 1.4

Partitioning [15] 0.1 0.2 0.5 0.1 0.2 0.4 0.1 0.2 0.6

Lev.-Faddeev [6,16] 0.0 0.1 0.3 0.0 0.1 0.2 0.0 0.1 0.4

LDLGInverse [13] 8.8 73.5 1535.4 6.4 300.2 – 12.1 200.4 –

ModCholesky [14] 9.0 79.8 1588.8 8.7 323.5 – 13.2 212.1 –

QDRATS 1.2 13.9 197.2 0.1 1.1 73.0 1.5 16.4 235.8

QDRATS2 1.1 13.3 194.3 0.1 0.9 70.2 1.4 15.2 231.2

Example 3.3. Let us consider the matrix

A =
⎡
⎣ x − 1 x − 1 2x − 2

x x x

⎤
⎦

and choose W = A∗. We have nrank(W) = 2 and C2(W) = C\{1, 0}, since
rank(W(1)) = rank(W(0)) = 1 < 2.

NotationsW(1) andW(0) denote constant matrices obtained by replacing the symbol x by the values

x = 1 and x = 0, respectively. The Moore–Penrose inverse of A is given by

A† =

⎡
⎢⎢⎢⎣

1
2−2x

1
x

1
2−2x

1
x

1
x−1

− 1
x

⎤
⎥⎥⎥⎦ .

Clearly A† is not defined in the case x ∈ {1, 0} (or equivalently, in the case x /∈ C2(W)).

The comparison of different algorithms for symbolic computation of the Moore–Penrose inverse is

presented in Table 1. CPU time was used as a criterion for comparing observed algorithms. Algorithm

QDRATS2 is tested in the particular case W = A∗. The processing times are obtained by applying

MATHEMATICA implementation of various algorithms for the pseudoinverse computation on some

test matrices from [24].

The first row of the table contains the name of the test matrix from [24], proposed by Zielke, where

three groups of test matrices (A, S and F) are examined. The last row contains the processing times re-

quired by the QDRATS2 algorithm. Notice that QDRATS and QDRATS2 algorithms are less effective than

the partitioning method and the Leverrier–Faddeev algorithm, because of the several matrix multi-

plications required, where the intermediate results and coefficients can greatly expand. Compared to

the algorithms based on Cholesky and LDL∗ decomposition, our algorithm is superior. Again, the main

reason is the smaller number of matrix multiplications and therefore a smaller number of necessary

simplifications. Denote that the stroke ‘–’ means a long processor time required for the computation.

4. Conclusions

An algorithm for symbolic computation of A
(2)
T,S inverses of one-variable rational matrices is de-

rived. In this way, we initiate symbolic computation of generalized inverses which exploits the QDR

decomposition of the fixedmatrixW . The usage of square-root entries is avoided, which is of essential

importance in symbolic computation of polynomial and rational expressions. As far as we know, the

Leverrier–Faddeev algorithm, the Greville’s partitioning method and the LDL∗ decomposition based

method are used in symbolic computation of generalized inverses. Some comparative processing times

are provided on the set of rational test matrices.

Appendix

Algorithm 2.1 is implemented by the following MATHEMATICA function.
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The implementation of Algorithm 2.2 (QDRATS) is given in the next code, assuming that the matrix

equation (2.6) is solved using the standard function Inverse:
QDRATS[A_List, W_List] :=

Module[{N1, Q, Diag, R},

{Q, Diag, R} = QDRDecomposition[W];

N1 = Inverse[R.A.Q] // Simplify;

Return[Simplify[Q.N1.R]];

];

We report the MATHEMATICA implementation of Algorithm 2.3, called QDRATS2.
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[13] I.P. Stanimirović, M.B. Tasić, Computation of generalized inverses by using the LDL∗ decomposition, Appl. Math. Lett. 25 (2012)

526–531.
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[17] P.S. Stanimirović, D.S. Djordjević, Full-rank and determinantal representation of the Drazin inverse, Linear Algebra Appl. 311

(2000) 31–51.
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