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ABSTRACT The surface expansion that is induced by the lateral pressure in the brush region of lipid membranes containing
grafted polymers is deduced from the scaling and mean-field theories for the polymer brush, together with the equation of
state for a lipid monolayer at the equivalence pressure with fluid lipid bilayers. Depending on the length and mole fraction of
the polymer lipid, the membrane expansion can be appreciable. Direct experimental evidence for this lateral expansion comes
from recent spin-label measurements with lipid membranes containing poly(ethylene glycol)-grafted lipids. The expansion in
lipid area modifies the elastic constants of the polymer-grafted membranes in a way that opposes the direct elastic response
of the polymer itself. Calculations as a function of polymer lipid content indicate that the net change in isothermal area
expansion modulus of the membrane is negative but small, in contrast to previous predictions. A similar situation applies to
the curvature elastic moduli of membranes containing short polymer lipids. For longer polymer lipids, however, the direct
contribution of the polymer brush to the bending elastic constants dominates, and the increase in bending moduli with
increasing polymer lipid content rapidly exceeds the basal values of the bare lipid membrane. The spontaneous (or intrinsic)
curvature of the component monolayer of polymer lipid-containing membranes is calculated for the first time. The polymer
brush contribution to spontaneous curvature scales quadratically with the polymer length, and at least quadratically with the
mole fraction of polymer lipid.

INTRODUCTION

Lipids with hydrophilic polymers grafted at the polar head-
group, e.g., the N-poly(ethylene glycol) derivatives of phos-
phatidylethanolamine (PEG lipids), now find extensive ap-
plication as components of sterically stabilized liposomes
that are designed as drug delivery systems (see, e.g., Lasic
and Needham, 1995). The polymer brush region formed at
the liposome surface serves to stabilize the liposome against
interactions with serum proteins and diverse elements of the
immune system, hence prolonging the lifetime in the circu-
lation. In practice, ethylene glycol polymers that are used in
grafting commonly have high molecular weights relative to
those of the parent grafted lipid, e.g., PEG-2000 or PEG-
5000 of molecular weights 2000 and 5000, respectively. In
addition to their desired transverse repulsive interactions,
they will therefore exert lateral interactions of considerable
strength that are likely to modify the properties of the host
liposomal membrane. This is typified by the known ten-
dency of PEG lipids to induce micelle formation (see, e.g.,
Hristova and Needham, 1995; Belsito et al., 2000). Indeed,
lateral expansion of lipid membranes resulting from the
lateral pressure exerted within the surface polymer brush
has recently been inferred directly by the increase in mo-
tional freedom of spin-labeled lipid chains in lipid mem-
branes, on incorporating polymer-grafted lipids (Montesano
et al., 2001). Such lateral expansion of the membrane sur-
face area will also affect the elastic properties of the lipid

membrane. These are characterized specifically by the area
expansion modulus, KA, which plays a significant role in
liposome permeability and by the curvature elastic moduli,
kc, which can affect both the morphology and stability of the
lamellar liposomal membrane.
Both the area extension elasticity (Hristova and Need-

ham, 1994) and the curvature elasticity (Milner and Witten,
1988; Hristova and Needham, 1994) have been considered
previously. In the latter work, scaling laws were established
for the direct contribution of the polymer brush to the elastic
moduli. In both cases it was tacitly assumed that the lipid
contribution to the elastic moduli was unchanged by the
presence of the polymer brush. Because, as argued above,
the grafted polymer exerts a lateral pressure on the lipids,
this must not necessarily be the case. Recent work already
mentioned has shown that the motional freedom of spin-
labeled lipid chains is increased by the membrane admixture
of polymer-grafted lipids with chainlength identical to that
of the host lipids (see also Belsito et al., 2000). The purpose
of this paper is to treat the membrane stretching and bending
by including these effects on the lipids, and to estimate their
relative importance. It is found that the lateral expansion
induced by the polymer brush can be appreciable and that
this has important consequences for the elastic expansion
moduli, but less so for the elastic curvature moduli if the
grafted polymers are relatively long. Spontaneous curvature
of the component monolayers containing polymer-grafted
lipids is also treated quantitatively for the first time.

RESULTS AND DISCUSSION

Lateral pressure in the polymer brush

The first question is whether the lateral pressure exerted by
the grafted polymer is sufficient to have a significant effect

Received for publication 10 January 2001 and in final form 3 July 2001.
Address reprint requests to Dr. Derek Marsh, Abt. 010 Spektroskopie,
Max-Planck-Institut für biophysikalische Chemie, Am Fassberg 11,
D-37077 Göttingen, Germany. Tel.: 49-551-201-1285; Fax: 49-551-201-
1501; E-mail: dmarsh@gwdg.de.
© 2001 by the Biophysical Society
0006-3495/01/10/2154/09 $2.00

2154 Biophysical Journal Volume 81 October 2001 2154–2162

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/82200732?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


on the membrane lipids. Theories derived from polymer
physics (De Gennes, 1979; Milner et al., 1988; Hristova and
Needham, 1994, 1995) give the free energy of the polymer
brush, expressed per lipid molecule, as:

Fpbrush � Xp � kBTnpam
2mF�Xp/Al�mF (1)

where np is the number and am the size of monomer units in
the polymer, Al is the membrane area per lipid molecule,
and Xp is the mole fraction of polymer lipids. A value of
am � 0.39 nm, corresponding to the volume of an oxyeth-
ylene monomer for PEG in solution (Evans et al., 1996), is
assumed throughout. This corresponds quite closely with
the value required by the latter authors to fit experimental
adhesion data. As usual, kB is Boltzmann’s constant and T is
the absolute temperature. The exponent mF is 5/6 in the de
Gennes scaling theory, and is 2/3 in the mean-field theory.
The lateral pressure (�p � ��Fp/�Al) that is created by the
polymer brush is therefore:

�p
brush � mFkBTnpam

2mF�Xp/Al�mF�1 (2)

The dependence on polymer lipid content for membranes
containing PEG lipids of representative PEG molecular
masses is given in Fig. 1. For comparison, the equiva-
lence surface pressure between lipid bilayers and mono-
layers is in the region of �eq � 35 mN m�1, which is
comparable to the hydrophobic free energy density
(Marsh, 1996a). Depending on polymer lipid content and
chain length, it is clear from Fig. 1 that the polymer brush

may exert a significant lateral pressure on the membrane
lipids. Values given for the shorter polymers (especially
for np � 8), which are in any case small, must be treated
with some caution, however. For these, neither the mean-
field treatment nor scaling theory is likely to be a good
approximation.

Equilibrium area per lipid molecule

The net tension, �lat, in the membrane is the resultant of the
cohesive hydrophobic lateral tension (or free energy densi-
ty), �phob, and the opposing lateral pressures, �lipid and
�p
brush, which are contributed by the lipids and by the

polymer brush, respectively (Evans and Waugh, 1977; Cevc
and Marsh, 1987):

�lat � �phob � �lipid � �p
brush (3)

This equation is the condition for mechanical equilibrium of
the membrane under tension. The lateral pressure contrib-
uted by the polymer is given by Eq. 2. That contributed by
the lipid can be obtained from the equation of state for a
lipid monolayer under conditions of equivalence with the
bilayer (see Marsh, 1996a). It is expressed most generally
by a virial expansion:

�lipid � kBT� 1Al � B2
Al2

�
B3
Al3

� · · ·� (4)

where Al is the area per lipid molecule and B2, B3, etc. are
the virial coefficients. Terms up to third-order, with B2 �
2.51 nm2 and B3 � 0.779 nm4, are found sufficient to
parameterize the �-A isotherms of a dioleoyl phosphatidyl-
choline monolayer at the oil-water interface (Marsh, 1996a).
The latter reproduces well the area per lipid molecule and
area expansion modulus of fluid-phase lipid bilayers at the
monolayer-bilayer equivalence surface pressure: �eq �
�phob (Cevc and Marsh, 1987; Marsh, 1996a). It should be
noted that, although representing the �-A isotherm very
well at pressures around the bilayer-equivalence value, B2
and B3 so determined are not true virial coefficients because
of the truncation of the expansion.
In the presence of the polymer brush, the equilibrium

area per lipid molecule, Al, in the tension-free state is
obtained by putting �lat � 0 in Eq. 3. This corresponds to
the free energy minimum, because the membrane tension
is given by the first derivative with respect to the mem-
brane area: �lat � �Ftot/�Al (Evans and Skalak, 1980;
Cevc and Marsh, 1987). Correspondingly, the equilib-
rium area per lipid molecule, Al,o, in the absence of the
polymer is given by the same condition, but with �p

brush

� 0 in Eq. 3. This can be used to eliminate �phob, and to
work instead with the direct experimental observable,
Al,o. The equilibrium area per lipid, Al, in the presence of

FIGURE 1 Lateral pressure, �p, exerted by the polymer brush, predicted
from Eq. 2 as a function of mole fraction, Xp, of polymer lipid in the
membrane. Calculations are for T � 293 K, am � 0.39 nm, Al � 0.65 nm2,
and the following degrees of polymerization: np � 8, 17, 45, and 114,
which correspond to PEGs with molar masses of 350, 750, 2000, and 5000
Da, respectively. Solid lines are predictions of scaling theory and dashed
lines are predictions of mean-field theory.
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the polymer brush is then given by the solution of the
following equation:

� 1Al,o �
1
Al� � B2� 1Al,o2 �

1
Al2�

� B3� 1Al,o3 �
1
Al3� � mFam

2mFnp�XpAl�
mF�1

� 0 (5)

Because the lateral pressure in the polymer brush can reach
relatively high values (see Fig. 1), an exact numerical so-
lution is needed for Al to cover all polymer lipid sizes and
contents. Results are given in Fig. 2, as a function of
polymer lipid mole fraction in the membrane, for various
representative PEG lipids. The range of polymer lipid con-
centrations shown in Fig. 2 encompasses those for which
micelles are formed (see, e.g., Belsito et al., 2000). An
increase in area of 5% is achieved at mole fractions of
polymer lipid of Xp � 0.575 (0.535), 0.38 (0.34), 0.22
(0.19), and 0.135 (0.11) for polymer lengths of np � 8, 17,
45, and 114, respectively, as predicted by scaling (mean-
field) theory. This is the maximum area extension supported
by giant lipid vesicles under externally applied tension. It
was used by Hristova and Needham (1995) as a criterion to
define the saturation concentration of polymer lipid in a
lamellar phospholipid membrane. These values are all

greater than those for the onset of micelle formation in PEG
lipid/phosphatidylcholine mixtures, but less than those for
complete micellization (see, e.g., Belsito et al., 2000).
Analytical solutions for low lateral pressures exerted by

the polymer brush are also of interest. These apply to short
polymer lipids and/or low polymer lipid contents. Expand-
ing Eq. 5 up to first-order in the area increase, 	A �
Al � Al,o, induced by the polymer brush, yields the follow-
ing approximate solution:

	A
Al,o

�
mFam

2mFnp�Xp/Al,o�mF�1

�Al,o�1 � 2B2Al,o�2 � 3B3Al,o�3� �

mF�mF � 1�am
2mFnp�Xp/Al,o�mF�1

(6)

This equation is simply the first-order elastic response of the
membrane to the presence of the polymer brush. For mean-
field theory (i.e., mF � 2/3), it coincides with the result
obtained by Hristova and Needham (1995). It will be seen
below that the first term in parentheses of the denominator
in Eq. 6 is simply the area elastic modulus, KAo , of a lipid
layer divided by kBT. To the lowest order, the area expan-
sion induced by the polymer brush scales directly with the
polymer length, np, and with the mF � 1 power of the mole
fraction of polymer lipid, viz. Xpm�1.
Equation 6, with explicit inclusion of KAo , is a suitable

approximation for membranes with very high elastic mod-

FIGURE 2 Dependence of the fractional increase, (Al � Al,o)/Al,o, in area per lipid molecule induced by the lateral pressure in the polymer brush, as a
function of the mole fraction, Xp, of polymer lipid. Values are obtained from the numerical solution of Eq. 5, with B2 � 2.51 nm2, B3 � 0.779 nm4, am �
0.39 nm, and Al,o � 0.65 nm2. The degree of polymerization, np, of the grafted polymer is indicated on the figure. Solid lines are predictions from scaling
theory and dashed lines are those from mean-field theory.
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uli. Examples are membranes in the gel phase or containing
near-saturating amounts of cholesterol (see, e.g., Evans and
Needham, 1987). In these cases, the area expansion induced
by the polymer brush will be considerably smaller than the
values given in Fig. 2. From Eq. 6, it is predicted that the
reduction factor is approximately the inverse ratio of the
area elastic moduli.

Stretching elasticity

The isothermal elastic constant for area expansion, KA, is
given by the derivative of the tension with respect to the
fractional change in membrane area (Evans and Skalak,
1980):

KA � Al���lat
�Al �T (7)

where, as already defined, Al is the area per lipid molecule
in the tension-free state. The calculation performed below is
for a single lipid and polymer layer, i.e., for half a mem-
brane thickness. For a bilayer membrane, the values of KA
are simply twice this. From Eqs. 2–4, the area expansion
modulus of a single layer in the presence of the polymer
brush is given by:

KA � kBT� 1Al � 2B2
Al2

�
3B3
Al3 �

� mF�mF � 1�kBTam
2mFnp�XpAl�

mF�1

(8)

In the absence of grafted polymer, the expansion modulus
(KAo ) of the lipid layer is given simply by the first term on
the right with Al � Al,o. The change in expansion modulus
induced by the polymer lipid is therefore:

KA � KAo

kBT
� �� 1Al,o �

1
Al

� 2B2� 1Al,o2 �
1
Al2�

� 3B3� 1Al,o3 �
1
Al3��

� mF�mF � 1�am
2mFnp�XpAl�

mF�1

(9)

The term in square brackets on the righthand side of Eq. 9
represents the reduction in the lipid expansion modulus.
This arises because the expansion induced by the polymer
brush shifts the lipid assembly to a lower point on its �-A
isotherm, at which KA is smaller. The second term on the
right of Eq. 9 represents the direct elastic response of the
polymer brush. This tends to increase the expansion mod-
ulus.
The results of direct numerical calculations, according to

Eqs. 5 and 9, are given for PEG lipids in Fig. 3. The virial

coefficients used are those obtained for dioleoyl phosphati-
dylcholine monolayers in the fluid regime at the oil-water
interface (Marsh, 1996a). From this it is seen that the
decrease in the lipid expansion modulus dominates over the
elasticity contributed directly by the polymer brush. The
result is a net decrease in KA under all conditions for which
the lipid equation of state is adequately represented by the
dioleoyl phosphatidylcholine �-A isotherms. The magni-
tude of the decrease is, however, relatively small. The
maximum extent of the ordinate in Fig. 3 corresponds to
KA � KAo � �15 mN m�1 (at 293 K with Al,o � 0.65 nm2)
for a bilayer, or
8% of the expansion modulus for the bare
lipid membrane. There is a high degree of compensation
between the change in expansion modulus of the lipid and
the direct contribution of the polymer brush. It is seen
immediately from Eqs. 9 and 2 that the latter is positive and
(mF � 1) times the lateral pressure in the brush. Reference
to Fig. 1 shows that this direct contribution from the poly-
mer brush can reach values that approach those of bare lipid
membranes. The latter has a value of KAo � 180 mN m�1 for
a bilayer in the present calculations, which would require
�p
brush � 49–54 mN m�1 for a contribution equal to this

from the polymer brush.
The situation depicted in Fig. 3 is likely to be reasonably

representative of fluid lipid bilayer membranes, and possi-
bly of membranes containing up to 30 mol % cholesterol.
For the latter, the values of the lipid KAo are not changed
appreciably relative to fluid membranes without cholesterol
(Needham and Nunn, 1990). At high cholesterol contents,
KAo is increased considerably, however, by a factor of six at
saturation (Needham and Nunn, 1990). In these cases, as-

FIGURE 3 Dependence of the change, KA � KAo , in isothermal area
expansion modulus on mole fraction, Xp, of polymer lipid. Values are
calculated from Eq. 9 for a lipid monolayer by using the numerical
solutions of Eq. 5 that are given in Fig. 2. Solid lines are predictions from
scaling theory and dashed lines are those from mean-field theory. At 293
K, the factor scaling the ordinate is kBT/Al,o � 6.2 mN m�1 with Al,o �
0.65 nm2.
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suming a constant KA (�KAo ) for the lipid is a reasonable
approximation. Equation 3 for the membrane tension is then
replaced by �lat � KAo (Al � Al,o)/Al,o � �p

brush, where the
lateral expansion induced by the polymer is given by the
condition �lat � 0. Using this expression for the tension, the
change in expansion modulus by the polymer is found to be
positive and given by:

KA � KAo

kBT
� mF�mF � 2�am

2mFnp�XpAl�
mF�1

(10)

This is greater, by a factor of (mF � 2)/(mF � 1), than the
direct contribution to KA from the polymer brush because of
the expansion (Al � Al,o) of the lipid area by the brush at
constant KA (cf. Eq. 8). Nevertheless, the overall increase in
KA by the polymer is not large compared with the high
intrinsic values of KAo (
1200 mN m�1 or more) that are
characteristic of lipid membranes with saturating contents
of cholesterol (see, e.g., Lasic and Needham, 1995). For
polymer lipid contents corresponding to the extreme ordi-
nate in Fig. 3, Eq. 10 predicts that KA � KAo � 220–240 mN
m�1 for a bilayer, i.e., 20% of the intrinsic KAo (with Al,o �
0.45 nm2 and T � 293 K). Not until a mole fraction Xp �
0.75–0.8 of the polymer lipid with np � 114 is the increase
in KA predicted to reach the intrinsic value of membranes
with high cholesterol.
Again, an approximate expression can be derived that

corresponds to short polymer lipids and/or low polymer-
lipid contents. Expanding Eq. 9 to first order in 	A, and
making use of Eq. 5, gives the following approximate
solution:

KA � KAo � �
kBT
Al,o�2�1� mF�

B2
Al,o

� 3�2� mF�
B3
Al,o2

� mF�	A
Al,o

(11)

This predicts that the change in expansion modulus scales
with the polymer lipid parameters in the same way as does
the area expansion, 	A/Al,o, but with the opposite sign.
From Eq. 6 to lowest order, this represents a direct depen-
dence on the degree of polymerization, np, and an Xpm�1

dependence on polymer lipid content. This agrees with the
scaling results obtained by Hristova and Needham (1994).
The latter authors assumed that KA � KAo was negative,
which as seen above corresponds to the reduction in lipid
KA dominating. Strictly speaking, however, their calculation
refers to the direct elastic response of the polymer brush,
and should be given by Eq. 10. The latter has a very simple
relation to the area expansion induced by the polymer brush
that is given by KA � KAo � (mF � 2)KAo (	A/Al,o). This
result is exact to within the degree of approximation inher-
ent in Eq. 10.

Curvature elasticity

The elastic parameters that govern the free energy of bend-
ing the membrane, Fcurv, are the mean curvature modulus,
kc, the Gaussian curvature modulus, k�c, and the spontaneous
curvature, co (Helfrich, 1973):

Fcurv�c1,c2� � 1
2 kc�c1 � c2 � 2co�2 � k�cc1c2 (12)

where c1 and c2 (�1/R1, 1/R2) are the principal curvatures at
a given point. All three curvature elasticity parameters are
related to integrals over the lateral pressure distribution,
��tot(z) � dz, transverse to the membrane. The total lateral
pressure is given by �tot � �lipid � �p

brush, where the lipid
and polymer contributions are given by Eqs. 4 and 2,
respectively. The required lateral pressure density is then
defined by ��tot � ��tot/�z. In terms of these definitions, the
curvature elastic parameters are given by (Szleifer et al.,
1990; Milner and Witten, 1988):

kc � � �z����z�
�c �c�0 � dz (13)

k�c � � �z2���z� � dz (14)

2kcco � �z���z� � dz (15)

where z is in the direction of the membrane normal, c
(�1/R) is the total mean curvature of the membrane, and the
integration extends over the entire width of the membrane.
It is evident from Eqs. 13–15 that the contributions of the
lipids and the polymer brush to the bending elastic param-
eters of the membrane are additive. They correspond to
integrations over the bilayer and polymer brush regions,
respectively. The mean curvature modulus, kc, depends on
the stress distribution in the bent membrane, whereas the
Gaussian curvature modulus, k�c, and the spontaneous bend-
ing moment, kcco, depend only on that of the planar unbent
membrane. Simple models for the stress distribution are
considered in the following subsections. As regards the lipid
curvature elastic moduli, these are justified in so far as they
are referred back ultimately to an experimental equation of
state, or equivalently to an experimental area expansion
modulus. For the lipid spontaneous curvature, however, this
is not the case, and detailed consideration of the stress
profile (see, e.g., Szleifer et al., 1990; Cantor, 1999) is
necessary. However, in this latter case emphasis is placed
primarily on the polymer contribution to spontaneous cur-
vature.

Mean curvature elastic modulus

We consider first the mean curvature elastic modulus, kc, for
the outer monolayer of the membrane. This is the bending
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modulus that is normally measured experimentally. For a
bilayer membrane, by symmetry it has twice the value for a
monolayer. The evaluation of kc requires explicit allowance
for the membrane curvature, as given in Eq. 13. To do this,
Al in Eqs. 2 and 4 must be replaced by its z-dependent value,
Al(z), and the total lateral pressure becomes �tot(z) �
�lipid(z) � �p

brush(z). The area per lipid molecule at a
distance z from the lipid surface is given from simple
cylindrical geometry appropriate to mean curvature by

Al�z� � Al�1� zc� (16)

where Al is the area at the lipid surface (strictly speaking the
neutral surface). The sign of z is taken as positive in the
direction of the polymer brush. In the case of non-zero
Gaussian curvature, an extra term Alz2c1c2 is added to Eq.
16, but that does not concern us here. From Eqs. 2, 4, and
16, the required derivative of the lateral stress (see Eq. 13)
is:

���tot�z�
�c �

c�0
� � kBT� 1Al � 2B2

Al2
�
3B3
Al3 �

� mF�mF � 1�kBTam
2mFnp�XpAl�

mF�1

(17)

where ��tot(z) � [��tot/�Al(z)][�Al(z)/�z]. It is assumed that
the only variation in lateral stress arises from the differential
expansion of the area per lipid that is caused by the curva-
ture according to Eq. 16. This approximation is in the spirit
of the approach used by De Gennes (1979, 1980) and the
conventional elastic analysis for lipid membranes. The in-
tegration in Eq. 13 is then straightforward. It has limits from
�dl to�Lp, where dl is the thickness of the lipid monolayer
and Lp is the height of the polymer brush. The latter is given
in both scaling and mean-field theories by (Daoud and De
Gennes, 1977; Hristova and Needham, 1994):

Lp � npam5/3�Xp/Al�1/3 (18)

From Eqs. 13, 17, and 18 the mean curvature elastic mod-
ulus for the monolayer is given by

kc �
kBT
2 � 1Al � 2B2

Al2
�
3B3
Al3 �dl2

�
mF�mF � 1�

2 kBTam
2mF�10/3np3�XpAl�

mF�5/3

(19)

The first term on the right of Eq. 19 is the lipid contribution
to the bending modulus and the second term is that from the
polymer brush. If it is alternatively assumed that the stress
distribution is given by ��tot(z) � �lipid/dl � �p

brush/Lp for
the lipid and polymer regions, respectively, an expression
very similar to Eq. 19 is obtained; kc is simply multiplied by
an overall factor of 2⁄3.

The contribution from the lipid in Eq. 19 is classical. It
has the general form kc 
 KALdl2, where KAL (see Eq. 8) is the
area elastic constant of the lipid (see, e.g., Evans and
Skalak, 1980; Cevc and Marsh, 1987; Bloom et al., 1991).
The value of KAL is modified from that of a bare lipid bilayer,
viz., KAo . This is because of the area expansion arising from
the lateral pressure exerted by the polymer brush, as dis-
cussed in the previous section (see Eq. 9). Correspondingly,
the lipid thickness, dl, is reduced from that of a bare lipid
bilayer, dl,o, without grafted polymer. Assuming constant
lipid volume, dl � dl,o(Al,o/Al). These two features represent
the indirect effect of the polymer brush on the bending
modulus. The lipid curvature elasticity, kco, is reduced by a
factor (KAL/KAo )(Al,o/Al)2. This contribution was neglected in
previous treatments.
From the second term on the right of Eq. 19 it is seen that

the polymer contribution to the bending modulus, kc, scales
as the third power of the degree of polymerization, i.e., as
np3, and as the mF � 5⁄3 power of the polymer lipid content.
This is in agreement with the scaling theory result obtained
by Hristova and Needham (1994) and the mean-field result
of Milner and Witten (1988). It is also expected from quite
general scaling arguments. The bending modulus is related
to the area modulus, KA, and membrane thickness, dt, ac-
cording to kc 
 KA � dt2 (see above and Evans and Skalak,
1980; Bloom et al., 1991). For the polymer contribution:
KA � KAo 
 np � Xpm�1 and dt 
 Lp 
 np � Xp1/3 (see Eqs. 11
and 18), and hence the bending modulus scales as
kc 
 np3 � Xpm�5/3.
The mean-curvature modulus predicted by Eq. 19 as a

function of polymer lipid content is given for representative
PEG lipids in Fig. 4. The calculation uses the numerical

FIGURE 4 Dependence of the mean curvature elastic modulus, kc, on
mole fraction, Xp, of polymer lipid. Values are calculated from Eq. 19 for
a lipid monolayer by using the numerical solutions of Eq. 5 that are given
in Fig. 2, together with dl,o � 1.5 nm. The degree of polymerization, np, of
the grafted polymer is indicated on the figure. Solid lines are predicted
from scaling theory and dashed lines are those from mean-field theory.
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solutions of Eq. 5 for the area per lipid molecule and a
value of dl,o � 1.5 nm for the effective elastic thickness
of a lipid molecule. At Xp � 0, this value of dl,o (together
with the virial expansion for a dioleoyl phosphatidylcho-
line monolayer) predicts a value of kco � 1 
 10�19 J for
the bare lipid monolayer at 293 K. Twice this value is
within the range of mean curvature elastic constants
measured experimentally for fluid lipid bilayer mem-
branes (see, e.g., Marsh, 1990). The rapid increase in kc
with degree of polymerization that is evident in Fig. 4
reflects the strong np3 dependence. For the short polymer
lipid with np � 8, the decrease in lipid kc slightly out-
weighs the direct contribution from the polymer brush,
producing a small net decrease in kc with increasing
polymer lipid content. The value of kc remains close to
the bare lipid value, kco, and the situation is analogous to
that for the area expansion modulus treated in the previ-
ous section. For higher degrees of polymerization this is
not the case, however. The direct contribution of the
polymer brush then dominates; kc increases with increas-
ing polymer lipid content and, for large np, the polymer
brush contribution to kc quickly becomes much larger
than the bare lipid value, kco.

Gaussian curvature elastic modulus

Calculation of the elastic modulus for saddle-splay bending,
k�c, is more straightforward than that for the mean curvature
because it depends only on the lateral stress distribution,
��tot(z) � dz, of the unbent membrane. For a constant stress
profile throughout the lipid membrane and the separate
constant profile in the polymer brush (i.e., both linearly
dependent on z), ��tot(z) is given by �lipid/dl and �p

brush/Lp,
respectively. In this case (see Eqs. 2 and 4),�pbrush and�lipid
take their z-independent values corresponding to constant
Al. From Eqs. 2, 4, 14, and 18, the Gaussian curvature
modulus is then given by:

k�c � �
kBT
3 � 1Al � B2

Al2
�
B3
Al3�dl2

�
mF
3 kBTam

2mF�10/3np3�XpAl�
mF�5/3

(20)

where again the calculation is for one monolayer of the
membrane. The value of k�c for a bilayer membrane is
twice this. The sign of k�c is negative, and the contribution
of saddle-splay bending (i.e., c1 � �c2) to the elastic free
energy is positive (see Eq. 12), just as for cylindrical
bending with positive kc (see also Milner and Witten,
1988).
It is seen from comparison of the second terms on the

right of Eqs. 19 and 20 that the direct polymer contribu-
tion to k�c scales in exactly the same way as does that to
kc. This scaling result was derived previously both for

mean-field theory (Milner and Witten, 1988), and for
scaling theory (Hristova and Needham, 1994). The lipid
contribution to k�c scales with dl2, just as does that to kc.
However, for a realistic virial expansion, k�c scales di-
rectly with the lipid lateral pressure, whereas kc scales
with the lipid area expansion modulus, KAL, as seen above.
The indirect effect of the polymer on the lipid Gaussian
modulus therefore differs from that on the mean curva-
ture modulus. The bare lipid value, k�co, is reduced by a
factor �lipid/�lipido (Al,o/Al)2 as a result of the lateral ex-
pansion induced by the polymer brush.
The dependence of the Gaussian curvature modulus, k�c,

on polymer lipid content that is predicted by Eq. 20 is given
in Fig. 5 for representative PEG lipids. Qualitatively, the
dependence on polymer length is similar to that for the
mean curvature modulus, kc (cf. Fig. 4). There are, however,
quantitative differences that arise from the different ways in
which the lipid contribution to the curvature modulus is
modified by the polymer brush. The value of the Gaussian
curvature modulus predicted for a bare lipid monolayer
from the lipid equation of state is k�co � �3
 10�20 J at 293
K. For Xp 3 1, this is decreased in magnitude by 
5%,
whereas the corresponding decrease in mean curvature
modulus is 
12–15% (cf. Fig. 4).

Spontaneous curvature

As for the Gaussian modulus, calculation of the spontaneous
curvature, co, depends only on the lateral stress distribution
of the unbent membrane (see Eq. 15). This quantity, al-
though important to the stability of bilayer membranes, has
not been addressed previously for polymer lipids. From

FIGURE 5 Dependence of the Gaussian curvature modulus, k�c, on mole
fraction, Xp, of polymer lipid. Values are calculated from Eq. 20 for a lipid
monolayer by using the numerical solutions of Eq. 5 that are given in Fig.
2, together with dl,o � 1.5 nm. The length, np, of the grafted polymer is
indicated on the figure. Solid lines are predictions from scaling theory and
dashed lines are those from mean-field theory.
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integration of Eq. 15 in exactly the same manner as for k�c,
the spontaneous curvature becomes:

co �
kBT
4kc��� 1Al � B2

Al2
�
B3
Al3�dl � mFam

2mF�5/3np2�XpAl�
mF�4/3�
(21)

where kc is the total mean curvature modulus that contains
both lipid and polymer contributions. The polymer tends to
induce positive curvature, outward from the membrane. In
this simple calculation, the sign of the lipid spontaneous
curvature opposes that of the polymer. This must not nec-
essarily be so, however, when the contributions of the lipid
headgroup and chains to the lateral stress profile are con-
sidered separately (see, e.g., Marsh, 1996a). In general, the
spontaneous curvature induced by the lipid is reduced by a
factor�lipid/�lipido (Al,o/Al), as compared to a bare lipid mem-
brane, by the action of the polymer brush.
In the case that the lipid contribution to kc still dominates,

the polymer contribution scales quadratically with the poly-
mer length, i.e., as np2, and with the mF � 4/3 power of the
polymer lipid content. This represents a strong tendency of
long polymers to induce outward curvature of the mono-
layer. When kc is dominated by the polymer contribution,
i.e., the second term on the right of Eq. 19 is greater than the
first, the spontaneous curvature contributed by the polymer
is:

cop � �2�mF � 2�am
2mFnp�XpAl�

1/3��1

(22)

The spontaneous curvature then scales inversely, rather than
directly, with the height of the polymer brush, Lp. Outward
spontaneous bending is then less favored than in the dilute
case because of the stronger dependence of kc on the poly-
mer length and density. Note, however, that it is the product
kcco2 that determines the free energy associated with the
tendency of the lamellar membrane to bend (see Eq. 12);
also, the product kcco given by Eq. 15 represents the spon-
taneous bending moment. Correspondingly, under circum-
stances where the polymer contribution (kcp) to kc dominates,
the spontaneous curvature contribution to the lipid compo-
nent is reduced by a factor (kco/kcp)(Al,o/Al).
The dependence on polymer lipid content of the direct

contribution, cop, of the polymer to the spontaneous curva-
ture of a lipid monolayer is given in Fig. 6. These values are
calculated from the final term on the righthand side of Eq.
21, together with the expression for kc that is given in Eq.
19. The latter contains both lipid and polymer contributions
to the mean curvature modulus, including modifications of
the former by the lateral pressure in the polymer brush.
Results are given for representative PEG lipids of different
polymer lengths, np. At low contents, Xp, of polymer lipid,
the longer the polymer is the more effective it is at inducing
spontaneous curvature in the lipid layer. As the content of

polymer lipid increases, however, the contribution of the
polymer brush to the mean curvature modulus, kc, comes to
dominate. The spontaneous curvature reaches a maximum
and then begins to decrease, as depicted by Eq. 22. This
effect is greater with increasing length of the polymer.
Progressively, first the polymer lipid with np � 114, then
that with np � 45, and finally that with np � 17 induces the
largest spontaneous curvature as the polymer lipid content
increases. These polymer lipid contents are larger, however,
than those at which micelle formation is induced. The mole
fraction of PEG lipid at the onset of micelle formation is
XPEGon � 0.03� 0.01, 0.07� 0.03, and 0.22� 0.07 for np �
114, 45, and 17, respectively (Belsito et al., 2000; Monte-
sano et al., 2001), which corresponds to an approximately
common threshold value in spontaneous curvature of cpo 

0.005–0.01 nm�1.
The above calculations are for a monolayer of the mem-

brane. For a bilayer membrane, the spontaneous curvature is
zero by symmetry. Nevertheless, the monolayer value of co
is important for lamellar membranes because it expresses
the spontaneous tendency of polymer lipid-containing sys-
tems to form micelles (Marsh, 1996a,b).

CONCLUSIONS

The present calculations indicate that the lateral pressure
from the brush region of polymer-grafted lipids induces an
appreciable expansion in area of fluid lipid membranes. For
very stiff membranes, such as those in the gel phase or
containing near-saturating amounts of cholesterol, the lat-
eral expansion is considerably smaller. The area expansion

FIGURE 6 Dependence of the polymer brush contribution, cop, to the
monolayer intrinsic curvature on mole fraction, Xp, of polymer lipid.
Values are calculated from the rightmost term in Eq. 21, with dl,o � 1.5 nm
and Eq. 19 for kc, by using the numerical solutions of Eq. 5 that are given
in Fig. 2. The length, np, of the grafted polymer is indicated on the figure.
Solid lines are predictions from scaling theory and dashed lines are those
from mean-field theory.
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induced in fluid membranes results in a net decrease of the
area extension elastic modulus, but this change is small. For
stiff membranes, the area extension modulus is increased
and the magnitude of the change is much greater. However,
the fractional change remains relatively modest for mem-
branes with intrinsically high values of KAo . The area ex-
pansion by the polymer brush is a determining feature in the
curvature elastic moduli, kc and k�c, only for fluid mem-
branes and short polymers. For longer polymers, the direct
contribution from the brush region quickly comes to dom-
inate the curvature moduli, and achieves values several
times greater than the intrinsic lipid curvature moduli. The
predicted contribution of the polymer brush to the sponta-
neous lipid monolayer curvature remains relatively modest
because of the opposing increase in the mean curvature
modulus. This prediction assumes that the neutral surface
remains close to the lipid polar-apolar interface, which may
not be the case at the onset of micellization, which has been
treated already in some detail in Hristova and Needham
(1995).
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