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Formalizing geometry theorems in a proof assistant like Coq is challenging. As emphasized
in the literature, the non-degeneracy conditions lead to long technical proofs. In addition,
when considering higher-dimensions, the amount of incidence relations (e.g. point–line,
point–plane, line–plane) induce numerous technical lemmas. In this article, we investigate
formalizing projective plane geometry as well as projective space geometry. We mainly
focus on one of the fundamental properties of the projective space, namely Desargues
property. We formally prove that it is independent of projective plane geometry axioms
but can be derived from Pappus property in a two-dimensional setting. Regarding at
least three-dimensional projective geometry, we present an original approach based on
the notion of rank which allows to describe incidence and non-incidence relations such
as equality, collinearity and coplanarity homogeneously. This approach allows to carry
out proofs in a more systematic way and was successfully used to fairly easily formalize
Desargues theorem in Coq. This illustrates the power and efficiency of our approach (using
only ranks) to prove properties of the projective space.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

This article deals with formalizing projective geometry in the Coq proof assistant [1,7] and studies Desargues property
both in the plane and in an at least three-dimensional setting (noted � 3-dimensional). In the plane, proofs are constructed
in a traditional way using points and lines. However, in a � 3-dimensional space, we use the concept of rank to formally
prove Desargues theorem (in Coq). In the longer term, the underlying objective of the presented work consists in designing a
formal geometry prover able to handle the non-degeneracy conditions, and especially in geometric constraint solving [14,16].

We choose to focus on projective geometry which is a simple but powerful enough setting to express arbitrarily complex
problems as shown in [20]. Moreover, in 3D (or higher), proofs become much more difficult than in 2D: first, Desargues
property becomes a theorem and consequently all the projective spaces arise from a division ring; second incidence geom-
etry has to deal not only with points and lines, but also with planes or, more generally, flats; third there is a combinatorial
explosion of cases.

For projective plane geometry, we use a traditional approach dealing with points, lines and an incidence relation to
formally prove the independence of Desargues property. We then formalize Pappus property as well as hexamys in order to
prove Hessenberg theorem, which states that Pappus property entails Desargues property in projective plane geometry.
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When it comes to � 3-dimensional projective geometry, we propose to use the concept of rank. It provides a generic
way to describe incidence relations and it allows us to express non-degeneracy conditions nicely. Informally, ranks allow to
distinguish between equal/non-equal points, collinear/non-collinear points, coplanar/non-coplanar points, etc. We validate
this approach by successfully carrying out a mechanized proof (using only ranks) of Desargues theorem which is one of the
fundamental theorems of the projective space.

We mechanize the proofs using the Coq proof assistant which implements a higher order intuitionistic logic based
on type theory. In such a proof assistant, every step of reasoning is proposed by the user (in the form of a tactic) but
then checked by the system. It dramatically increases the reliability of the proofs compared to paper-and-pencil proofs. In
addition, during the development process, the ability to change the axiom system easily is very convenient. Proofs can be
automatically rechecked by the system and changes only require minor rewriting of the proofs. However, formal proofs tend
to be more technical to write, not leaving out a single piece of details.

Therefore, in our development, we had to design some efficient proof techniques to deal with points and lines in the
plane as well as with matroid and rank properties when the dimension n of the considered space is greater than 2. In
addition, we believe a full scale automation is out of scope, but many small-scale simple automated tactics make writing
formal proofs in Coq more tractable.

1.1. Related work

Proof assistants have already been used in the context of geometry. Numerous papers have emphasized the importance
of the problem of degenerate cases in formal geometry [9,13,19,24]. Brandt and Schneider studied how to handle degenerate
cases for the orientation predicates in computational geometry using three valued logic [3]. Bezem and Hendricks formalized
Hessenberg’s theorem in Coq [2]. Guilhot has formalized in Coq a proof of Desargues theorem in affine geometry [13].
Narboux has formalized in Coq the area method of Chou, Gao and Zhang [6,15,23] and applied it to obtain a proof of
Desargues theorem in affine geometry. Kusak has formalized in Mizar Desargues theorem in the Fanoian projective � 3-
dimensional space [17]. The assumption that the space is Fanoian makes the theorem more specialized than ours. We
also carried out some preliminary work on formalizing projective plane geometry in Coq [18]. Finally, the idea of proving
projective space theorems with ranks is suggested by Michelucci and Schreck in [21].

1.2. Outline of the paper

The paper is organized as follows. In Section 2, we present the axioms for projective geometry and we give an overview
of our Coq formalization. In Section 3, we explain Desargues property and why it is a fundamental property of projective
geometry. Section 4 investigates the role of Desargues property in the case of the generic 2D projective plane and its links
with Pappus property through the notion of Hexamys. Section 5 introduces ranks and the associated axiom system for
projective space geometry, which is then used to formally prove in Coq that Desargues property holds in � 3-dimensional
projective space.

2. Axiom systems of projective geometry

Projective geometry is a general setting in the hierarchy of geometries which assumes that two lines in a plane always
meet [4,8]. We first assume that we have two kinds of objects (points and lines). Planes are not basic objects in this axiom
system, but are defined within the theory. We then consider a relation (∈) between elements of these two sets.

2.1. Axiom system for projective plane geometry

The axiom system for projective plane geometry consists of very few axioms linking abstract points and lines of a plane.
Informally, these axioms capture the facts that two different points define one line and two different lines define one point.
Moreover, each line contains at least three points and there are at least two lines in the plane. Formally, we have the
following five axioms:

Line-Existence ∀A B: Point, ∃l: Line, A ∈ l ∧ B ∈ l

Point-Existence ∀l m: Line, ∃A: Point, A ∈ l ∧ A ∈ m

Uniqueness ∀A B: Point, ∀l m: Line,

A ∈ l ∧ B ∈ l ∧ A ∈ m ∧ B ∈ m ⇒ A = B ∨ l = m

Three-Points ∀l: Line, ∃A B C : Point,

A 	= B ∧ B 	= C ∧ A 	= C ∧ A ∈ l ∧ B ∈ l ∧ C ∈ l

Lower-Dimension-2 ∃l: Line, ∃m: Line, l 	= m
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Fig. 1. Pasch’s axiom.

The axiom Lower-Dimension-2 prevents a single line from being a model, i.e. it ensures we actually describe a two-
dimensional projective space.

2.2. Axiom system for projective space geometry

Several axioms remains the same when we consider a � 3-dimensional space. The required axioms for projective � 3-
dimensional space are listed below:

Line-Existence ∀A B: Point, ∃l: Line, A ∈ l ∧ B ∈ l

Pasch ∀A B C D: Point, ∀lAB lC D lAC lB D : Line,
A 	= B ∧ A 	= C ∧ A 	= D ∧ B 	= C ∧ B 	= D ∧ C 	= D ∧
A ∈ lAB ∧ B ∈ lAB ∧ C ∈ lC D ∧ D ∈ lC D ∧
A ∈ lAC ∧ C ∈ lAC ∧ B ∈ lB D ∧ D ∈ lB D ∧
(∃I: Point, I ∈ lAB ∧ I ∈ lC D) ⇒
(∃ J : Point, J ∈ lAC ∧ J ∈ lB D)

Uniqueness ∀A B: Point, ∀l m: Line,

A ∈ l ∧ B ∈ l ∧ A ∈ m ∧ B ∈ m ⇒ A = B ∨ l = m

Three-Points ∀l: Line, ∃A B C : Point,

A 	= B ∧ B 	= C ∧ A 	= C ∧ A ∈ l ∧ B ∈ l ∧ C ∈ l

Lower-Dimension-3 ∃l m: Line, ∀p: Point, p /∈ l ∨ p /∈ m

The Point-Existence axiom is replaced by Pasch axiom (Fig. 1). Indeed we need to ensure that two lines always meet
only if coplanar. Axiom Lower-Dimension-3 ensures that there exists two lines which do not meet.

2.3. Formalization in Coq

Implementing both axiom systems in the Coq proof assistant is straightforward. Fig. 2 presents the formalization of the
projective space in Coq. We denote the predicate ∈ using Incid. To enhance modularity we make use of the module
system of Coq.

The main difference between the formalization and the axiom system shown above relies on the fact that we need to be
careful about the equality relations and decidability issues. In addition, the equality on points (noted DecPoints.eq) and
lines (noted line_eq) are parameters of our theory. As the underlying logic of the Coq system is intuitionistic, we have
to state explicitly which predicates are assumed to be decidable. We assume that we have a set of points with a decidable
equality: DecPoints is a instance of a DecidableType:

Module Type DecidableType.
Parameter t : Set.
Parameter eq : t -> t -> Prop.
Axiom eq_refl : forall x : t, eq x x.
Axiom eq_sym : forall x y : t, eq x y -> eq y x.
Axiom eq_trans : forall x y z : t,

eq x y -> eq y z -> eq x z.
Parameter eq_dec : forall x y : t,

{ eq x y } + { ~ eq x y }.
End DecidableType.
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Module Type ProjectiveSpaceOrHigher (DecPoints: DecidableType).

Definition Point := DecPoints.t.
Parameter Line : Type.

Parameter line_eq : Line -> Line -> Prop.
Axiom line_eq_sym : forall l m, line_eq l m -> line_eq m l.
Axiom line_eq_trans : forall l m n,
line_eq l m -> line_eq m n -> line_eq l n.
Axiom line_eq_refl : forall l, line_eq l l.

Parameter Incid : Point -> Line -> Prop.

Axiom incid_dec : forall (A:Point)(l:Line),{Incid A l}+{~Incid A l}.

Axiom line_existence : forall A B : Point,
{l : Line | Incid A l /\ Incid B l}.

Axiom pasch : forall A B C D:Point, forall lAB lCD lAC lBD :Line,
dist4 A B C D ->
Incid A lAB/\Incid B lAB -> Incid C lCD/\Incid D lCD ->
Incid A lAC/\Incid C lAC -> Incid B lBD/\Incid D lBD ->
(exists I:Point, (Incid I lAB /\ Incid I lCD)) ->
exists J:Point, (Incid J lAC /\ Incid J lBD).

Axiom uniqueness : forall (A B :Point)(l1 l2:Line),
Incid A l1 -> Incid B l1 -> Incid A l2 -> Incid B l2 ->

DecPoints.eq A B \/ line_eq l1 l2.

Axiom three_points :
forall l:Line,exists A:Point, exists B:Point, exists C:Point,
dist3 A B C /\ Incid A l /\ Incid B l /\ Incid C l.

Axiom lower_dimension_3 : exists l:Line, exists m:Line,
forall p:Point, ~Incid p l \/ ~Incid p m.

End ProjectiveSpaceOrHigher.

Fig. 2. Projective space axiom system in Coq.

The notation {eq x y}+{~ eq x y} means that we must know constructively that either x = y or x 	= y. As expressed
by the axiom incid_dec we also assume the decidability of incidence. In Coq syntax /\, \/ and ~ stands respectively for
logic conjunction, disjunction and negation. The notation {l : Line | Incid A l /\ Incid B l} expresses that
there exists a line l going through A and B .

3. Desargues property

Desargues property is among the most fundamental properties of projective geometry, since in the projective space
Desargues property becomes a theorem. Let’s first recall Desargues statement in projective geometry. Desargues property
states that:

Let E be a projective space and A, B, C , A′ , B ′ , C ′ be points in E, if the three lines joining the corresponding vertices of triangles
ABC and A′B ′C ′ all meet in a point O , then the three intersections of pairs of corresponding sides α, β and γ lie on a line.
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If E is of dimension two, Desargues property is independent from all the projective plane geometry axioms. If E is at
least of dimension three, Desargues property is a theorem.

Even though it can be expressed, it is not provable when E is a plane. Indeed in the 2D case, some projective planes are
Desarguesian, for instance Fano’s plane, while other planes are not, for instance Moulton plane. The next section investigates
the role of Desargues property in projective planes.

4. Desargues property in the projective plane

Projective Plane Geometry as defined above is incomplete. Indeed, Desargues statement does not hold in every model.
We show on the one hand, that Desargues property is consistent with the axioms of projective geometry and, on the other
hand, that it is independent of them. First we formalize a proof that it is true in a particular model of projective plane
geometry (Fano’s plane) and then a proof that in another particular model (Moulton’s plane) it is false. This shows the
independence of Desargues theorem from the axioms of projective plane geometry, which can be regarded as the starting
point of non-Desarguesian geometry [5]. Finally we formalize the proof of Hessenberg’s theorem which demonstrates that
in every projective plane in which Pappus property holds, Desargues property holds as well.

4.1. Consistency of Desargues property with axioms for projective plane geometry

Fano’s plane is the model of projective plane geometry with the least number of points and lines: 7 each. The incidence
relation is illustrated by the figure. In the figure, points are simply represented by points, whereas lines are represented
by six segments and a circle (D E F ). One can verify that the axioms of projective plane geometry (see Section 2.1) hold as
shown in [18].

At first sight, proving Desargues property in Fano’s plane seems to be straightforward to achieve by case analysis on the
7 points and 7 lines. However, this requires handling numerous cases1 including many configurations which contradict the
hypotheses.

To formalize the property, we make use of two kinds of symmetries: a symmetry of the theory and a symmetry of the
statement.

4.1.1. Symmetry of the statement
We first study the special case desargues_from_A_specialized where the point O of Desargues configuration

corresponds to A, and the line O A corresponds to ADG , O B to C AE and O C to AB F .
The predicate on_line A B C l states that the three points A, B and C lie on the line l.

Lemma Desargues_from_A_specialized :
forall P Q R P’ Q’ R’ alpha beta gamma

lPQ lPR lQR lP’Q’ lP’R’ lQ’R’,
((on_line P Q gamma lPQ) /\ (on_line P’ Q’ gamma lP’Q’)) /\
((on_line P R beta lPR) /\ (on_line P’ R’ beta lP’R’)) /\
((on_line Q R alpha lQR) /\ (on_line Q’ R’ alpha lQ’R’)) /\
((on_line A P P’ ADG) /\
(on_line A Q Q’ CAE) /\
(on_line A R R’ ABF)) /\
~collinear A P Q /\ ~collinear A P R /\ ~collinear A Q R /\
~collinear P Q R /\ ~collinear P’ Q’ R’ /\
((P<>P’)\/(Q<>Q’)\/(R<>R’)) ->
collinear alpha beta gamma.

Then as Desargues statement is symmetric by permutation of the three lines which intersect in O , we can formalize a
proof of slightly more general lemma desargues_from_A where the point O of Desargues configuration still corresponds
to A but the three lines (lP, lQ and lR) intersecting in O are universally quantified.

Lemma Desargues_from_A :
forall P Q R P’ Q’ R’ alpha beta gamma lP lQ lR

lPQ lPR lQR lP’Q’ lP’R’ lQ’R’,
((on_line P Q gamma lPQ) /\ (on_line P’ Q’ gamma lP’Q’)) /\
((on_line P R beta lPR) /\ (on_line P’ R’ beta lP’R’)) /\
((on_line Q R alpha lQR) /\ (on_line Q’ R’ alpha lQ’R’)) /\

1 The most naïve approach would consider 77 cases and even with careful analysis it remains untractable to prove all the cases without considering
symmetries.
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Fig. 3. Fano’s plane.

Module swapf3 (M:fano_plane) : fano_plane
with [...]

Definition Point:=M.Point.

Definition A:=M.B. Definition B:=M.E.
Definition C:=M.D. Definition D:=M.F.
Definition E:=M.C. Definition F:=M.G.
Definition G:=M.A.

[...]

Definition ABF:=M.BEG. Definition BCD:=M.DEF.
Definition CAE:=M.BCD. Definition ADG:=M.ABF.
Definition BEG:=M.CAE. Definition CFG:=M.ADG.
Definition DEF:=M.CFG.

[...]

End swapf3.

Fig. 4. A functor showing an invariance property of Fano’s plane.

((on_line A P P’ lP) /\
(on_line A Q Q’ lQ) /\
(on_line A R R’ lR)) /\
~collinear A P Q /\ ~collinear A P R /\ ~collinear A Q R /\
~collinear P Q R /\ ~collinear P’ Q’ R’ /\
((P<>P’)\/(Q<>Q’)\/(R<>R’)) ->
collinear alpha beta gamma.

4.1.2. Symmetry of the theory
The theory of Fano’s plane is invariant by permutation of points. It means that, even if it is not obvious from Fig. 3,

all the points plays the same role: if (A, B, C, D, E, F , G) is a Fano’s plane then (B, C, D, F , E, G, A) is one as well. We
formalize this by building a functor from Fano’s theory to itself which permutes the points (Fig. 4). Using this functor and
desargues_from_A, we show that Desargues property holds for any choice for O among the 7 points of the plane.

4.2. Independence of Desargues property from the axioms for projective plane geometry

We now consider a particular model of projective plane geometry, namely Moulton plane and show that Desargues
property does not hold in this model.

4.2.1. Moulton plane and its projective counterpart
Moulton plane [22] is an affine plane in which lines with a negative slope are bent (i.e. the slope is doubled) when they

cross the y-axis. It can be easily extended into a projective plane.
Moulton plane is an incidence structure which consists in a set of points P , a set of lines L, and an incidence relation

between elements of P and elements of L. Points are represented by couples (x, y) ∈ R
2. Lines are represented by couples

(m,b) ∈ (R∪ ∞) ×R (where m is the slope – ∞ for vertical lines – and b the y-intercept). The incidence relation is defined
as follows:

(x, y) ∈ (m,b) ⇐⇒

⎧⎪⎨
⎪⎩

x = b if m = ∞
y = mx + b if m � 0
y = mx + b if m � 0, x � 0
y = 2mx + b if m � 0, x � 0

This incidence structure verifies the properties of an affine plane. It can be turned into a projective plane through the
following process.
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Fig. 5. Counter-example to Desargues theorem in Moulton plane.

• We extend P with points at the infinite (one direction point for each possible slope, including the vertical one); therefore
P is (R×R) ∪ (R∪ ∞).

• We extend the set L of affine lines with a new one which connects all points at the infinite; therefore L is ((R∪ ∞) ×
R) ∪ ∞.

• We finally extend the incidence relation in order to have all direction points and only them incident to the infinite line.
We also extend each affine line with a direction point (the one bearing its slope).

This construction leads to a projective plane. The whole process is formally described in Coq and we formalize in Coq (see
[18] for details) that all the axioms of projective plane geometry presented in Section 2.1 hold. Most proofs on real numbers
rely on using Gröbner basis computation in Coq [12].

4.2.2. A counter-model for Desargues property
We build a special configuration of Desargues for which the property does not hold (Fig. 5). This can be achieved in an

algebraic way using only coordinates and equations for lines. We first present it that way and then show why Desargues
property does not hold for our configuration.

Let’s consider seven points: O (−4,12), A(−8,8), B(−5,8), C(−4,6), A′(−14,2), B ′(−7,0) and C ′(−4,3). We then build
the points α(−3,4), β(6/11,38/11) and γ (−35,8) which are respectively at the intersection of (BC) and (B ′C ′), (AC) and
(A′C ′) and (AB) and (A′B ′). Then we can check using automated procedures performing symbolic computation on real
numbers (especially the Fourier tactic [7]) that there exists no line in Moulton plane which is incident to these 3 points α,
β and γ . The intuitive idea of this counter-example is to build a configuration where:

• all points except β are in the left-hand side plane and
• the lines (AC) and (A′C ′) which define β have slopes of opposite signs.

Overall Desargues property does not hold in this configuration because only some of the lines are bent. Especially, of the
two lines used to build β , one of them is a straight line (A′C ′) and the other one (AC) is bent. That is what prevents the
three points α, β and γ from being on the same line.

Proofs of these lemmas illustrate how combining automated and interactive theorem proving can be successful.

4.3. Hessenberg’s theorem: Pappus property implies Desargues property

In this section, we describe our formalization of Hessenberg’s theorem stating that Pappus axiom implies that Desargues
property holds in the projective plane. The proof we formalize use the concept of hexamys (mystic hexagrams as named by
Pascal). First, we need to state the Pappus property.
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Fig. 6. Pappus configuration.

4.3.1. Pappus property
We say that a plane enjoys Pappus property when:

Definition pappus_weak :=
forall A B C A’ B’ C’ P Q R,
Col A B C -> Col A’ B’ C’ ->
all_distinct_6 A B C A’ B’ C’ ->
is_on_proper_inter P A B’ A’ B ->
is_on_proper_inter Q B C’ B’ C ->
is_on_proper_inter R A C’ A’ C ->
Col P Q R.

The property is_on_proper_inter P A B’ A’ B means that the lines AB ′ and A′B are well defined and not
parallel and P is at the intersection. This definition of Pappus configuration assumes that the six points are distinct and
that the intersections are all well defined. This also implies that the lines AB and A′B ′ are distinct. This definition captures
a general configuration as shown in Fig. 6 without any particular case. But, in field of formal proofs, we must be careful
about degenerate cases. Fortunately in the context of projective geometry, the weak version of Pappus property as stated
above is also equivalent to this stronger version which assumes that either all the intersections are well defined or the six
points (A, B, C, A′, B ′, C ′) are distinct:

Definition pappus_strong :=
forall A B C A’ B’ C’ P Q R,
(all_distinct_6 A B C A’ B’ C’ \/
(line A B’ <> line A’ B /\ A<>B’ /\ A’<>B /\
line B C’ <> line B’ C /\ B<>C’ /\ B’<>C /\
line A C’ <> line A’ C /\ A<>C’ /\ A’<>C) ) ->
Col A B C -> Col A’ B’ C’ ->
is_on_inter P A B’ A’ B ->
is_on_inter Q B C’ B’ C ->
is_on_inter R A C’ A’ C ->
Col P Q R.

4.3.2. Mystic hexagram
We say that a hexagon is a hexamy if the three intersections of the opposite sides of the hexagon are collinear.

Definition is_hexamy A B C D E F :=
all_distinct_6 A B C D E F /\
let P:= inter (line B C) (line E F) in
let Q:= inter (line C D) (line F A) in
let R:= inter (line A B) (line D E) in

Col P Q R.

It is easy to show that every circular permutation of a hexamy is also a hexamy.

Lemma hexamy_rot_left : forall A B C D E F,
is_hexamy A B C D E F -> is_hexamy B C D E F A.
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Fig. 7. Pappus property implies hexamy property.

We say that a plane enjoys the hexamy property if every permutation of a hexamy is also a hexamy. As circular permu-
tations of hexamys are hexamys, we just need to assume that if (A, B, C, D, E, F ) is a hexamy, then (B, A, C, D, E, F ) is also
a hexamy:

Definition hexamy_prop := forall A B C D E F,
is_hexamy A B C D E F -> is_hexamy B A C D E F.

We can show that the hexamy property and Pappus property are equivalent. Fig. 7 illustrates that Pappus property
implies the hexamy property.

Lemma 1. Pappus property implies hexamy property.

Proof. Assuming Pappus property, we need to show that if (A, B, C, D, E, F ) is a hexamy so is (B, A, C, D, E, F ). Let U , V
and W be the intersections of AB and D E , AC and E F , and C D and B F respectively. We need to show that U , V and W
are collinear. Let a, b and c be the intersections of BC and E F , C D and F A, and AB and D E respectively (we have c = U ).
As (A, B, C, D, E, F ) is a hexamy, a, b and c are collinear. Let b′ be the intersection of E F and AC (we have b′ = V ). We
note a′ ≡ A and c′ ≡ C . a′ , b′ and c′ are collinear because b′ is on line AC . Using Pappus property, it holds that ab′ ∩ a′b,
ac′ ∩ a′c and bc′ ∩ b′c are collinear. We have ab′ ∩ a′b = F since a′b = A F and ab′ = E F . Similarly, we have ac′ ∩ a′c = B .
Hence the third point bc′ ∩ b′c is on B F . Hence, as bc′ = C D , we have bc′ ∩ b′c = C D ∩ B F = W . The last equality says that
W ∈ b′c but since b′ = V and c = U , the collinearity of U , V and W holds. �
Lemma 2. Hexamy property implies Pappus property.

Proof. When (A, B, C, A′, B ′, C ′) is a Pappus configuration, it is easy to show that it is also a hexamy because the intersec-
tions of AB ∩ A′B ′ and BC ∩ B ′C ′ are equal since the points A, B and C and A′ , B ′ and C ′ are collinear. Using the hexamy
property we can show that (A, B ′, C, A′, B, C ′) is also a hexamy. Hence the Pappus property holds. �
4.3.3. Hessenberg theorem
Lemma 3. Hexamy property implies Desargues property.

Proof. Recall that A′B ′C ′ is a Cevian triangle of ABC if A′ ∈ BC , B ′ ∈ AC , C ′ ∈ AB and the lines A A′ , B B ′ and CC ′ are
concurrent. We distinguish two cases, either A′B ′C ′ is a Cevian triangle of ABC or not.
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First, we assume that A′B ′C ′ is not a Cevian triangle of ABC . By hypothesis, points O , A and A′ are collinear. Similarly,
O , B and B ′ are collinear and O , C , C ′ are collinear. We want to prove that α, β and γ are collinear, where α = BC ∩ B ′C ′ ,
β = AC ∩ A′C ′ and γ = AB ∩ A′B ′ . The auxiliary points: P = A′B ′ ∩ BC , Q = AB ∩ B ′C ′ are needed. Now (A, A′, P , C, C ′, Q )

is a hexamy since its three opposite sides cut respectively in points O , B ′ and B which are collinear by hypothesis. Thus
(A, Q , C ′, A′, P , C) is a hexamy as well, the opposite sides cut respectively in α, β and γ , hence they are collinear.

Second, we assume that A′B ′C ′ is a Cevian triangle of ABC . We have to prove that α, β and γ are collinear where
α = BC ∩ B ′C ′ , β = AC ∩ A′C ′ and γ = AB ∩ A′B ′ . We introduce α1 = βγ ∩ BC and α2 = βγ ∩ B ′C ′: now we have to prove
that α1 = α2. Auxiliary intersection points are I = O B ∩ βγ , L = A′C ′ ∩ AI , N = AB ∩ LB ′ and M = AL ∩ CC ′ (it can be
shown that these points are well defined). The end of the proof implicitly assumes that L 	= A′ . If L = A′ we construct a
proof similar to this one but using a permutation of the statement, if L = B ′ we permute again the statement, it cannot be
the case that L = A′ = B ′ = C ′ .

Since L, N and B ′ are collinear, (A′, L, B ′, I, A, γ ) is a hexamy, so is (A′, A, γ , I, B ′, L), and hence O , N and β are collinear.
With the second hexamys, (C, B, A, O , I, β) which gives by permutation (C, O , β, I, A, B), we prove that α1, M and N are
collinear. A third hexamys is used to prove that α2, M and N are collinear: this is (C ′, B ′, β, O , I, L) giving (C ′, O , β, I, L, B ′).
Thus the lines MN and βγ have two points in common: α1 and α2. From the uniqueness axiom, it holds that:

• either the lines are equal but then the configuration degenerates and all points belong to the same line;
• or α1 = α2 and therefore α, β and γ are collinear. �

Corollary 1 (Hessenberg). Pappus property implies Desargues property.

Proof. Immediate using Lemmas 1 and 3. �
The formal proofs corresponding to the theorems described in this section still heavily require user-interaction and lack

automation. The amount of case distinctions required in formal proofs makes them difficult to handle.

4.4. Dealing with non-degeneracy conditions: Using tactics

In this section, we describe a tactic whose implementation is simple but which is still powerful enough to shorten the
proofs about degenerate cases. When we know that two points are equal, we can propagate this knowledge. The tactic
performs repeated applications of the uniqueness axiom. It proceeds by searching for pattern matching the hypotheses of
the two following lemmas which are easy consequences of the uniqueness axiom.

A ∈ l ∧ B ∈ l

A ∈ m ∧ B ∈ m
∧ A 	= B ⇒ l = m

A ∈ l ∧ B ∈ l

A ∈ m ∧ B ∈ m
∧ l 	= m ⇒ A = B

It is implemented using Coq tactic language as follows:

Ltac apply_unicity := match goal with
H1: ?A <> ?B,
H2: ?Incid ?A ?l, H3: ?Incid ?B ?l,
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rk{A, B} = 1 A = B
rk{A, B} = 2 A 	= B
rk{A, B, C} = 2 A, B, C are collinear

with at least two of them distinct
rk{A, B, C} � 2 A, B, C are collinear
rk{A, B, C} = 3 A, B, C are not collinear
rk{A, B, C, D} = 3 A, B, C, D are coplanar,

not all collinear
rk{A, B, C, D} = 4 A, B, C, D are not coplanar
rk{A, B, C, D, E} � 2 A, B, C, D, E are all collinear

Fig. 8. Rank statements and their geometric interpretations.

H4: ?Incid ?A ?m, H5: ?Incid ?B ?m |- _ =>
let id:= fresh in assert (id: l=m);
try apply (uniq.a1_unique A B l m H1 H2 H3 H4 H5);
subst l

| H1: ?l <> ?m,
H2: ?Incid ?A ?l, H3: ?Incid ?A ?m,
H4: ?Incid ?B ?l, H5: ?Incid ?B ?m |- _ =>
let id:= fresh in assert (id: A=B);
try apply (uniq.a2_unique l m A B H1 H2 H3 H4 H5);
subst A

end.

Ltac collapse := progress (repeat (apply_unicity;
CleanDuplicatedHyps)).

For example, if we know that A, B , C , A′ , B ′ and C ′ are all distinct and that they form a Pappus configuration and that
the line A′B is equal to the line AB ′ then our collapse tactic infers automatically that the lines AB , AB ′ , A′C , AB ′ , BC ′ ,
AC ′ , B ′C are all equal. This allows to conclude easily that Pappus theorem holds trivially in this special case (when line A′B
is equal to line AB ′).

5. Desargues property in projective space

In this section, we switch from projective plane geometry to projective space geometry. In 2D, a single fact can have
numerous representations (e.g. A ∈ BC vs. A ∈ l ∧ B ∈ l ∧ C ∈ l). In 3D and more, it is even worse because the language
contains points, lines and planes and all the associated incidence relations. In Section 2.2, we presented the standard axiom
system for projective space geometry as a reference. But to ease the formalization in Coq, we propose an alternative axiom
system based on the notion of rank. Indeed, ranks allow to deal only with points which makes proofs easier in a three-
dimensional setting because we do not handle lines and planes explicitly. This provides a homogeneous description language
independent of the dimension and will make proving Desargues property in a � 3-dimensional setting much easier.

5.1. Ranks

The concept of rank is a general notion of matroid theory. An integer function rk on E is the rank function of a matroid
if and only if the following conditions are satisfied:

R1 ∀X ⊆ E,0 � rk(X) � |X | (nonnegative and subcardinal)

R2 ∀X Y ⊆ E, X ⊆ Y ⇒ rk(X)� rk(Y ) (nondecreasing)

R3 ∀X Y ⊆ E, rk(X ∪ Y ) + rk(X ∩ Y ) � rk(X) + rk(Y ) (submodular)

In projective geometry, we can define a rank function on sets of points which verify the axioms above: a flat being a set
of points closed by the collinearity relation, the rank of a set of points X is the cardinal of a smallest set generating X
(see Fig. 8 for some examples).

Using this definition, one can show that every projective space has a matroid structure, but the converse is not true. In
the next section, we introduce additional axioms to capture 3D or higher projective geometry. We shall start by introducing
some lemmas about ranks to simplify the proofs.

5.1.1. Proof techniques using ranks
In this section we describe two proof techniques that are simple but important to simplify formal proofs.
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First, all equalities about ranks (say rk(a) = rk(b)) are usually proved in two steps: first showing that rk(a) � rk(b) and
then that rk(a) � rk(b). Consequently, when stating a lemma, it is worth being cautious about whether the actual equality
is required or if one of the two inequalities is enough to go on with the proofs. This approach allows to avoid numerous
technical lemmas when carrying out the formal proofs in Coq.

Second, in the proving process, we make often use of axiom R3. For instance, if we need to prove a statement like:

rk{A, B, C, D, I} + rk{I}� rk{A, B, I} + rk{C, D, I}
we could be tempted to instantiate axiom R3 with X := {A, B, I} and Y := {C, D, I}. But unfortunately, this statement is
not a direct consequence of axiom R3. For instance A may be equal to C and consequently {A, B, I} ∩ {C, D, I} = {A, I}.
Determining the intersection of two finite sets of points requires to distinguish cases about the equality of these points.
This leads to intricate proofs in Coq. Therefore, in the rest of this paper, we shall never consider the real set theoretical
intersection but a lower approximation of the intersection (noted �).

Definition 1 (Literal intersection). Let L1 and L2 be two sets of points. By definition L1 � L2 is the intersection of the two sets
of points considered syntactically.

Using literal intersection we can derive a more convenient version of axiom R3 which leads to fewer case distinctions:

Lemma 4 (R3-lit).

∀X Y , rk(X ∪ Y ) + rk(X � Y ) � rk(X) + rk(Y )

In Coq, it is not possible to define the literal intersection. To capture this property, we use the following lemma:

Lemma 5 (R3-alt).

∀X Y I, I ⊆ X ∩ Y ⇒ rk(X ∪ Y ) + rk(I) � rk(X) + rk(Y )

This lemma will be used heavily in the next sections.

5.1.2. A rank-based axiom system
Contrary to the axiom system shown in Section 2.2, we assume that we have only one kind of objects, namely points. To

capture the whole projective space, we need to add some new axioms to the matroid’s ones:

Rk-Singleton ∀P : Point, rk{P }� 1

Rk-Couple ∀P Q : Point, P 	= Q ⇒ rk{P , Q } � 2

Rk-Pasch ∀A B C D , rk{A, B, C, D} � 3 ⇒
∃ J , rk{A, B, J } = rk{C, D, J } = 2

Rk-Three-Points ∀A B , ∃C , rk{A, B, C} = rk{B, C} = rk{A, C} = 2

Rk-Lower-Dimension ∃A B C D , rk{A, B, C, D} � 4

The first two ones ensure that the rank function is not degenerate. Rk-Pasch is the translation of Pasch’s axiom:
rk{A, B, C, D}� 3 means these points are coplanar, thus that the two lines AB and C D intersect.

Using this axiom system we formally proved all the axioms of Section 2.2. In particular, the following lemmas Rk-
Uniqueness and Rk-Lower-Dimension are derivable and can be used to prove the Uniqueness and Lower-Dimension-3
axiom respectively:

Lemma 6 (Rk-Uniqueness).

∀A B C D M P ,

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

rk{A, B} = 2

rk{C, D} = 2

rk{A, B, M}� 2

rk{C, D, M}� 2

rk{A, B, P }� 2

rk{C, D, P }� 2

rk{A, B, C, D}� 3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⇒ rk{M, P } = 1
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Proof. Using R3-alt we have:

rk{A, B, M, P } + rk{A, B}� rk{A, B, M} + rk{A, B, P }
Hence rk{A, B, M, P } = 2, similarly we can show that rk{C, D, M, P } = 2. Moreover rk{A, B, C, D, M, P }� 3 as rk{A, B, C, D}
� 3 and {A, B, C, D} ⊆ {A, B, C, D, M, P }. Finally, using R3-alt we have:

rk{A, B, C, D, M, P } + rk{M, P }� rk{A, B, M, P } + rk{C, D, M, P }
3 + rk{M, P } � 2 + 2 �

Lemma 7 (Rk-Lower-Dimension).

∃ABC D,∀M, rk{A, B, M} 	= 2 ∨ rk{C, D, M} 	= 2

Proof. Using axiom Rk-Lower-Dimension, we obtain A, B , C and D such that rk{A, B, C, D} = 4.
Suppose that rk{A, B, M} = 2 and rk{C, D, M} = 2.
Using R3-alt we have that:

rk{A, B, C, D, M} + rk{M}� rk{A, B, M} + rk{C, D, M}
Hence rk{A, B, C, D, M}� 3, which contradicts rk{A, B, C, D} = 4. �

We can also derive a lemma which expresses concisely that for every point there exists one which is different, for every
line there exists a point not on this line and for every plane there exists a point not on this plane.

We carried out this proof using an alternative axiom system for ranks. Whereas our development is based on matroid
axioms R1, R2 and R3, one can prove that they are equivalent to the following set of axioms:

R1′ rk(∅) = 0

R2′ rk(X)� rk(X ∪ {x})� rk(X) + 1

R3′ rk(X ∪ {y}) = rk(X ∪ {z}) = rk(X) ⇒ rk(X) = rk(X ∪ {y, z})

Using this axiom system the proof is straightforward.

Lemma 8 (Construction).

∀E, rk(E) � 3 ⇒ ∃P , rk
(

E ∪ {P }) = rk(E) + 1

Proof. Consider E such that rk(E) � 3.
Using axiom Rk-Lower-Dimension we obtain A, B , C and D such that rk{A, B, C, D} = 4. Using R2′ we know that rk(E) �

rk(E ∪ {A}) � rk(E) + 1 and similarly for B , C and D . Suppose that rk(E ∪ {A}) = rk(E ∪ {B}) = rk(E ∪ {C}) = rk(E ∪ {D}) =
rk(E), then we would obtain rk(E ∪ {A, B, C, D}) = rk(E) by repeated applications of R3′ . This is in contradiction with
rk{A, B, C, D} = 4 since rk(E) � 3. Hence there exists a P such that rk(E ∪ {P }) = rk(E) + 1. �

Overall, this axiom system is convenient because: first it only deals with points and hence the theory is dimension-in-
dependent (i.e. it can be scaled to any dimension without modifying the language of the theory), second ranks allow to
summarize both positive and negative assumptions about sets of points homogeneously.

5.1.3. Implementation in Coq
The formalization in Coq of our axiom system is quite straightforward.2 To increase reusability of the proofs, we define

it as a module type of Coq’s module system (see Fig. 9). This module depends on DecPoints which defines the type of points
with a decidable equality.

On the technical side, defining our axiom system based on ranks requires a formal description of the concept of sets of
points. As our development manipulates only finite sets, we use the development FSets of Filliâtre and Letouzey [11]. Since
the provided set equality (=set) differs from standard (Leibniz) Coq equality, we have to prove that rk is a morphism with
respect to set equality:

Lemma 9. ∀X Y , X =set Y ⇒ rk(X) = rk(Y ).

2 For lack of space, some technical details are omitted here.
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Module Type RankProjectiveSpace (DecPoints:DecidableType).

Module Export FiniteSetsDefs := BuildFSets DecPoints.

Definition set_of_points := t.
Definition Point := DecPoints.t.
Parameter rk : set_of_points -> nat.
Axiom matroid1_a : forall X, rk X >= 0.
Axiom matroid1_b : forall X, rk X <= cardinal X.
Axiom matroid2: forall X Y, Subset X Y -> rk X <= rk Y.
Axiom matroid3: forall X Y,
rk(union X Y) + rk(inter X Y) <= rk X + rk Y.

Axiom rk_singleton_ge : forall P, rk (singleton P) >= 1.
Axiom rk_couple_ge : forall P Q,

~ DecPoints.eq P Q -> rk(couple P Q) >= 2.
Axiom pasch : forall A B C D, rk (quadruple A B C D) <= 3 ->
exists J, rk (triple A B J) = 2 /\ rk (triple C D J) = 2.
Axiom three_points : forall A B, exists C, rk (triple A B C) = 2 /\

rk (couple B C) = 2 /\ rk (couple A C) = 2.
Parameter P0 P1 P2 P3 : Point.
Axiom lower_dim : rk (quadruple P0 P1 P2 P3) >= 4.

End RankProjectiveSpace.

Fig. 9. Definition of projective space geometry with ranks in Coq.

Fig. 10. Desargues theorem (3D extrusion) A, B , C , A′ , B ′ , C ′ , O , α, β and γ are coplanar. If P is the sun, triangle abc then casts its shadow in A′ B ′C ′ .

Proof. By double inclusion using axiom R2. �
Using this lemma, we can then define rk as a morphism in Coq with respect to =set. This allows to easily replace a set

by an equal one when it occurs as an argument of rk.

5.2. Desargues theorem

In this section we describe the proof of Desargues theorem. The idea of the proof is classic: we first prove a version of
the theorem where the two triangles are not coplanar, we call it Desargues 3D (see Section 5.2.1) and then we deduce from
it a version where A, B , C , A′ , B ′ and C ′ lie on a same plane (Desargues 2D) as shown in Fig. 10.

As we will see in the next section, using the concept of rank the proof of the 3D version is straightforward and special
cases can be handled smoothly. In Section 5.2.2, we will show how we actually build the 2D version and conclude the proof
of the original theorem.

5.2.1. A 3D version of Desargues theorem
In this section, we prove Desargues 3D theorem.

Theorem 1 (Desargues 3D). Let’s consider two (non-degenerate) triangles ABC and abc such that they are perspective from a given
point O :
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rk{A, B, C} = rk{a,b, c} = 3

rk{a, A, O } = rk{b, B, O } = rk{c, C, O } = 2

We assume this forms a non-planar figure:

rk{A, B, C,a,b, c}� 4

and define three points α, β , γ such that:

rk{A, B, γ } = rk{a,b, γ } = 2

rk{A, C, β} = rk{a, c, β} = 2

rk{B, C,α} = rk{b, c,α} = 2

Under these assumptions, rk{α,β,γ } � 2 holds.

Lemma 10. rk{A, B, C,α} = 3.

Proof. By assumption rk{A, B, C} = 3, hence using axiom R2, rk{A, B, C,α} � 3. Moreover using R3-alt we have:

rk{A, B, C,α} + rk{B, C} � rk{A, B, C} + rk{α, B, C}
rk{A, B, C,α} + 2 � 3 + 2

Hence, we can conclude that rk{A, B, C,α} = 3. Similar proofs can be done with β and γ . �
Lemma 11. rk{A, B, C,α,β} = 3.

Proof. First, using axiom R2 and Lemma 10 we have rk{A, B, C,α,β} � 3. Second, using R3-alt we have:

rk{A, B, C,α,β} + rk{A, B, C}� rk{A, B, C,α} + rk{A, B, C, β}
rk{A, B, C,α,β} + 3 � 3 + 3

Hence, we can conclude that rk{A, B, C,α,β} = 3. �
Lemma 12. rk{A, B, C,α,β,γ } = rk{a,b, c,α,β,γ } = 3.

Proof. The proof is similar to Lemma 11. �
Lemma 13. rk{A, B, C,a,b, c,α,β,γ }� 4.

Proof. By assumption rk{A, B, C,a,b, c} � 4, hence using axiom R2, rk{A, B, C,a,b, c,α,β,γ }� 4. �
Using these lemmas we can conclude the proof:
From R3-alt we know that:

rk{A, B, C,a,b, c,α,β,γ } + rk{α,β,γ } � rk{A, B, C,α,β,γ } + rk{a,b, c,α,β,γ }
Hence, using Lemmas 12 and 13 rk{α,β,γ }� 2 holds.

5.2.2. Lifting from 2D to 3D
In this section, we prove the 2D version of Desargues using the 3D version.

5.2.2.1. Statement Most assumptions are the same as in the 3D version. Let’s consider two triangles ABC and A′B ′C ′ such
that they are perspective from a given point O :

rk{A, B, C} = rk{A′, B ′, C ′} = 3

rk{A′, A, O } = rk{B ′, B, O } = rk{C ′, C, O } = 2

We define three points α, β , γ such that:
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rk{A, B, γ } = rk{A′, B ′, γ } = 2

rk{A, C, β} = rk{A′, C ′, β} = 2

rk{B, C,α} = rk{B ′, C ′,α} = 2

Contrary to the 3D case, we assume this forms a planar figure:

rk{A, B, C, A′, B ′, C ′, O } = 3

In addition to these assumptions which are closely related to those of Desargues 3D theorem, the following non-degeneracy
conditions are required:

rk{A, B, O } = rk{A, C, O } = rk{B, C, O } = 3

rk{A, A′} = rk{B, B ′} = rk{C, C ′} = 2

Desargues theorem states that, under these assumptions, rk{α,β,γ }� 2 holds.

5.2.2.2. Informal proof We have to lift triangle A′B ′C ′ into a new triangle abc which is not coplanar with triangle ABC in
order to have a configuration of points in which Desargues 3D theorem can be applied. The construction is shown in Fig. 10.
Here are the main steps: we first construct a point P which lies outside the plane formed by A, B , C , A′ , B ′ , C ′ and O . We
know such a point P exists thanks to Lemma 8. We then build a line incident to P and O (the point from which triangles
ABC and A′B ′C ′ are perspective) and consider a third point o on this line (axiom Rk-Three-Points ensures such a point
exists and is different from both O and P ). We construct a new point a as the intersection of lines P A′ and o A. We know
these two lines intersect because of Pasch’s axiom and the fact that lines A A′ and Po intersect in O . We do the same to
construct points b and c. Applying Desargues 3D theorem to ABC and abc requires to make sure we have a non-degenerate
3D figure and that abc is a non-degenerate triangle. We also have to make sure α defined as the intersection of lines BC
and B ′C ′ is the same as the α of Desargues 3D theorem which is the intersection of BC and bc. This requirement can be
satisfied by simply proving that α is incident to bc. The same requirement applies for β and γ . Overall, we have to prove
the following statements which are requirements to apply Desargues 3D version (proofs are given below). Note that when
applying the theorem, the point o plays the role of point O .

rk{A, B, C} = rk{a,b, c} = 3

rk{A, B, C,a,b, c}� 4

rk{a,b, γ } = rk{a, c, β} = rk{b, c,α} = 2

rk{A, B, γ } = rk{A, C, β} = rk{B, C,α} = 2

Statements rk{A, B, γ } = rk{A, C, β} = rk{B, C,α} = 2 and rk{A, B, C} = 3 are assumptions of the Desargues 2D theorem,
therefore their proofs are immediate.

5.2.2.3. Preliminary lemmas We remind the reader that the points A, B , C , A′ , B ′ , C ′ and O lie in the same plane. P is a
point outside this plane. o is a third point on the line O P . The point a is defined as the intersection of lines P A′ and o A.
Points b and c are defined in a similar way. In this setting, the following lemmas hold:

Lemma 14. rk{A′, B ′, O } = rk{A′, C ′, O } = rk{B ′, C ′, O } = 3.

Lemma 15. rk{A′, B ′, O , P } = rk{A′, B ′, O ,o} = 4.

Lemma 16. rk{A, B, O ,a}� 4, rk{A, A′, C,a}� 4.

Lemma 17. rk{A, B, O ,b}� 4, rk{A, B, O , c}� 4.

Lemma 18. rk{o,a} = rk{o,b} = rk{o, c} = 2.

Lemma 19. rk{a, c, A, C, β} = rk{a, c, A′, C ′, β} = 3.

Proof.

rk{A, C,a, c} + rk{A, C, β}� rk{A, C} + rk{A, C,a, c, β}
3 + 2 � 2 + rk{A, C,a, c, β}

Hence rk{A, C,a, c, β}� 3. More as rk{A, C,a, c} = 3, we conclude that rk{A, C,a, c, β} = 3. �
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5.2.2.4. General lemmas Most proofs are fairly technical, simply using the matroid axioms of rank. However, some lemmas
can be highlighted, especially for their genericity and their pervasive use throughout the proofs. Among them, some stability
lemmas state that one of the points of a set characterizing a flat (e.g. a plane or the whole space) can be replaced by another
one belonging to this flat.

Lemma 20 (Plane representation change).

⎛
⎜⎜⎜⎝

rk{A, B, C} = 3

rk{A, B, C, M} = 3

rk{B, C, M} = 3

rk{A, B, C, P } = 4

⎞
⎟⎟⎟⎠ ⇒ rk{M, B, C, P } = 4

This lemma is heavily used to prove all possible statements expressing that P lies outside the plane formed by A, B , C ,
A′ , B ′ , C ′ , O .

Other lemmas about coplanarity and also upper bound on ranks when merging a plane and a line are convenient as
well. They could form the basis of an automation procedure when doing computer-checked formal proofs.

5.2.2.5. Proving Desargues 3D assumptions

Lemma 21. rk{A, B, C,a,b, c}� 4.

Proof. By Lemma 17, we have rk{A, B, O ,b} � 4, hence rk{A, B, C, O ,b}� 4. Using axiom R3-alt, we have:

rk{A, B, C,b} + rk{A, B, C, O }� rk{A, B, C, O ,b} + rk{A, B, C}
rk{A, B, C,b} + 3 � 4 + 3

Consequently we have rk{A, B, C,b}� 4 and applying axiom R2 twice, it leads to rk{A, B, C,a,b, c} � 4. �
Lemma 22. rk{a,b, c} = 3.

Proof. By axiom R1 we have rk{a,b, c}� 3.
Let’s prove rk{a,b, c} � 3. By axiom R3-alt, we have:

rk{a,b, c,o, A, B} + rk{o, C, c}� rk{A, B, C,o,a,b, c} + rk{o, c}
rk{a,b, c,o, A, B} + 2 � 4 + 2

Hence rk{a,b, c,o, A, B}� 4. Again, using axiom R3-alt we have:

rk{a,b, c,o, A} + rk{o, B,b} � rk{a,b, c,o, A, B} + rk{o,b}
rk{a,b, c,o, A} + 2 � 4 + 2

Hence rk{a,b, c,o, A}� 4. Applying axiom R3-alt one last time yields:

rk{a,b, c} + rk{o, A,a}� rk{a,b, c,o, A} + rk{a}
rk{a,b, c} + 2 � 4 + 1

Hence rk{a,b, c} � 3. Note that this proof relies on the facts that rk{o,b} = 2 and rk{o, c} = 2 which are proved as
Lemma 18. �
Lemma 23. rk{a,b, γ } = rk{a, c, β} = rk{b, c,α} = 2.

Proof. Using axiom R3-alt, we have:

rk{a, c, A, C, β} + rk{a, c, A′, C ′, β}� rk{a, c, A, C, A′, C ′, β} + rk{a, c, β}
We have rk{a, c, A, C, A′, C ′, β}� 4 using axiom R2 and Lemma 16. Using Lemma 19, we obtain rk{a, c, β}� 2. As rk{a, c} = 2
(because rk{a,b, c} = 3), we conclude rk{a, c, β} = 2. Proofs for α and γ are the same. �
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5.3. Formalization in Coq

Formalizing Desargues theorem in Coq is straightforward once we have the axiom system dealing with ranks and proof
techniques to handle them nicely. All the above-mentioned lemmas are easily proved and then Desargues theorem can be
stated as follows:

forall A’ B’ C’ A B C O : Point,
rk(triple A B C)=3 -> rk(triple A’ B’ C’)=3 ->
rk(triple A B O)=3 -> rk(triple A C O )=3 ->
rk(triple B C O)=3 ->
rk(triple A A’ O)=2 -> rk(triple B B’ O)=2 -> rk(triple C C’ O)=2 ->
rk(couple A A’)=2 -> rk(couple B B’)=2 -> rk(couple C C’)=2 ->
rk(triple A B gamma)=2 -> rk(triple A’ B’ gamma)=2 ->
rk(triple A C beta)=2 ->
rk(triple A’ C’ beta) =2 -> rk(triple B C alpha) =2 ->
rk(triple B’ C’ alpha) =2 ->
rk(triple alpha beta gamma) <= 2.

This proof in Coq proceeds exactly the same way as the proof presented in the previous section. It is simply a bit more
technical and requires a lot of computation to decide equality between sets which are equal but not syntactically equal.

6. Conclusions

We described axiom systems for both projective plane geometry and projective space geometry in Coq. We then formally
proved that Desargues property cannot be proved in the projective plane but it holds in Fano’s plane and Pappusian planes.
Finally we proved Desargues theorem in the � 3-dimensional projective space.

Proofs in the plane were performed in a traditional setting using points and lines. In the projective space, we proposed a
new way to express nicely incidence relations thanks to ranks. We designed an axiom system to capture projective geometry
using ranks. We also presented some proof engineering techniques that allow having proofs of reasonable size.

Overall, the proofs consist in more than 10,000 lines with about 280 lemmas and their formal proofs3 organized as
shown in the table.

2D 3D Total

Lines of Coq specs 1800 1800 3600
Lines of Coq proofs 4600 5800 10,400

Future work includes further formalization of hexamys in Coq. We expect to formalize all the properties enumerated and
proved by Pouzergues in [25]. Regarding � 3-dimensional space, we plan to study how ranks can be used to automatically
derive incidence properties. We believe that the genericity of the notation will help the automation process. Geometric
algebra can also be an alternative mean to handle projective geometry nicely [10].
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