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1. Introduction 

Let X,X*,X, ,... be i.i.d. random variables, whose distribution function F is 

continuous. Much attention has been devoted to the sequences of sample maxima, 

record times, interrecord times and record values, which are defined as follows: 

The sample maxima are 

Y,=max{X,,X, ,..., Xn}, nzl. 

The record times are L( 1) = 1 and, recursively, 

L(n) = min{k: X, > XL(_ij}, n 3 2. 

The interrecord times are A (1) = L( 1) = 1 and 

A(n)=L(n)-L(n-l), n32. 

The record values are 

XL(n) > n>l. 
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The present paper is devoted to the study of the sequence of record times and 

the associated counting process {p(n), n 5 1) defined by 

p(n) = # records in [l, n] = max{k: L(k)< n}. 

The term counting process is inspired from renewal theory. 

We first collect some asymptotic properties of p(n). 

Theorem 1. (i) p(n)/log n +a.s. 1 as n + ~0. 

(ii) The sequence {(p( n)/log n)‘, n 2 3) is uniformly integrable and for all r > 0, 

E(p(n)/log n)r+ 1 as n+a. 

(iii) (~(n)-logn)/~-+dN(O,l) as n+oo. 

(iv) The sequence {l(p(n) -log n)/el’, n ~3) is uniformly integrable, 

and 

E 
p(n) -log n k 

Jrogn > 
-+O fork=l,3,5 ,.... 

(v) lim sup(lim inf) 
An) -log n 

J2 log n log log log n 
=+1 (-1) a.s. 0 

n-m n+oo 

The odd numbered conclusions are proved in the pioneering paper RCnyi (1962). 

The starting point is that if we set, for k > 1, 

Ik = 
I 

1 if Xk is a record, 

0 otherwise, 

then {I,, k 2 l} are independent random variables, such that P(Ik = 1) = 

1 - P( 1, = 0) = k-’ and 

p(n)= t Ik, nal 
k=l 

(1.1) 

(see also Resnick, 1987, Section 4.1). 

The conclusions follow from classical limit theorems for sums of independent, 

uniformly bounded random variables (note that II, - l/ kl S 1). More precisely, (i) 

follows from the Kolmogorov three-series theorem and Kronecker’s lemma, see e.g. 

Petrov (1975, Chapter IX), (iii) follows from Lyapounov’s condition or by checking 

the appropriate moment generating function and (v) follows from Kolmogorov’s 

law of the iterated logarithm, see e.g. Petrov (1975, Chapter X). Moreover, the 

convergence of the moment generating function of p(n), normalized as in (i) and 

(iii), also implies uniform integrability of the normalized sequences of the counting 

process and, hence, the convergence of moments as described in the even numbered 

conclusions. These, latter, facts do not seem to have been mentioned explicitly before. 

The corresponding result for the sequence of record times is as follows. 



A. Gui I Record times 137 

Theorem 2. (i) (log L(n))/n -+a.s. 1 as n + M. 

(ii) The sequence {((log L(n))/n)‘, n 2 1) is uniformly integrable and 

E(log f,(n))‘_ 1 

as n+co for all r>O. 

(iii) (log L(n) - n)/&+d N(0, 1) as n + 00. 

(iv) The sequence {I(log L(n) - n)/hl’, n > 1) is uniformly integrable, 

Ixlr e_“*‘* dx for all r > 0 

and 

E logL(n)-n ’ 

VG > 
+O fork=l,3,5 ,.... 

(v) lim sup(lim inf) 
log L(n)-n 

J2n log log n 
=+1 (-1) a.s. 0 

n+cC **cc 

Again, (i), (iii) and (v) are due to RCnyi (1962); the conclusions follows from 

their counterparts in Theorem 1 and inversion, see formula (2.5) below. The results 

(ii) and (iv), which do not seem to have been mentioned explicitly before, follow 

from Williams’ representation, which is presented in Section 3. 

A limit theorem states that convergence holds. Given a limit theorem, a natural 

question is: “What is the rate of convergence?” The aim of this paper is to provide 

answers to this question with respect to Theorem l(i), (iii), (v) and Theorem 2(i), 

(ii), (v). The classical reference for remainder term estimates in the ordinary central 

limit theorem is Esseen (1945). Some references for results corresponding to the 

other two limit laws for random walks are Baum, Katz and Read (1962), Baum and 

Katz (1965), Davis (1968a, b), Slivka (1969), Gut (1978, 1980) and Russo (1988). 

2. Remainder term estimates in the central limit theorems 

Theorem 3. For k 2 2 we have 

Remark 1. Because of degeneracy the case k = 1 is excluded. 

Theorem 4. We have 
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For the proofs we need the following estimates for the standard normal distribution 

function. 

Lemma 1. (a) @(-x)Sx-2forx>0. 

(b) I@(x) - Q(y)1 

2 1 1 c-. 
e& (1 - &Y;“~)~‘~ ’ JI; 

for all x, y > 0 such that (x - yl s 19~y~‘~, y > y,,> t3:> 0. 

Proof. (a) and (b) are standard, (c) is Englund (1982, Lemma 2.9). 

The proof of (d) follows the lines of Englund (1980, p. 1112). Let x = y + 6 * Y~‘~, 

with 101 G &,. Then 

x-y x-y 
J;r-T =lely1’41(l+ey--1’4)--1’q 

G gP( 1 - f&y, -l/4) -312 < &;( 1 _ ~oy;Wy3/2e 

Taylor expansion and computations like in Englund (1980), formulas (2.26)-(2.28) 

yield (0<6<1), 

l@(Y)-@(y)l 
s & - $O’( 1 - 0oy~1’4)-3’2 exp { -;&j2( 1+,( &))‘) 

1 1 e2 1 

S z ’ 2 . (1 - &YO~‘~)~‘* * e . f * O’fi/( 1 + &Y;“~) ’ 

and the conclusion follows. 0 

Now, recall the representation (1.1) of p(k), and set 

mk = b(k), sfj = Var p(k), a:=,$ EIIj-l/j13, 
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-yk logk and that l~y,~y,~...~~~~~=0.577...=Euler’s 

constant. The following relations are easily verified: 

k 1 
T?t,=,;l~=logk+~,‘=lOgk+y+O(l) as k+cq (2.1) 

k 1 &q-; 1-L 
j=I J ( > j 

=log k+y-&*-to(l) as k+co, (2.2) 

log k>s+log k+y-&*>log k-1.07, (2.3) 

~-(~~~(l-~))-“2=s;‘. 
Sk 

(2.4) 

Proof of Theorem 3. We first observe that it suffices to consider k-values such that 

1.9/w< 1, i.e. k2 [e3.61] + 1 = 37, since otherwise the bound is trivial. 

Now, 

By the Berry-Esseen theorem (see Esseen, 1945; and, for the constant, Van Beek, 

1972, p. 196), (2.4) and (2.3) we obtain 

P, s 0.7975 $0.7975s;’ =s 
0.7975 &!!L 

Sk Jlog k - 1.07 J&$’ 

Next, by Lemma l(c) and (2.3) we have 

P,s1.25)$&-I( =1.25k;-s 

S 1.25 
1.07 

Jlogk-1.07+- 

1.34 0.73 
G 

Jlog k-1.07+~~~’ 

Finally, (recall that yki) Lemma l(b) implies that 
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Before proving Theorem 4 we briefly describe the method of inversion, which 

has been much exploited in renewal theory; in fact, our proof below is modelled 

after Englund (1980). The important relation connecting the record time process 

and the counting process is 

{L(n)zk}={p(k)sn}. (2.5) 

The idea is that given a limit theorem for one of the processes the corresponding 

limit theorem for the other process follows from (2.5) by letting k and n tend to 

infinity jointly in a suitable manner. 

Proof of Theorem 4. It is sufficient to consider n-values such that 4.3/G< 1, that 

is n 5 19. 

We connect k and n through the relation log k - n = en3j4 and consider the three 

cases e 3 eo, 0 s -O. and 101~ &,, where, as it turns out later, a suitable choice of 

e0 will be &, = 0.74. 

Thus, we first assume that log k - n = en 3’4 0 2 &. Then, by Tjebyshev’s inequality , 

and (2.3), 

P(L(n)sk)=P(F(k)Sn)=P(p(k)-rnksn-mk) 

s P(b4k) - mki ~m,-n)ey~p(k)-m,(=40gk-n) 

Var cL(k) s2k log k 1 1 -- 
s (log k_ n)z=~c~= @JJi+ @,3/d 

4$+&&k 
Moreover, by Lemma l(a), 

Qi 

(2.6) 

(2.7) 

The case log k - n = 8n3’4, 8 S -O. , is treated (almost) the same way. We have 

l-P(L(n)zk)=P(L(n)<k)=P(p(k)>n)=P(p(k)~n+l) 

Var p(k) log k 

c(n+l-mk)2c(n+l- - k-yk)’ 

s (n-log k)2 logk -(-&+&J& 

and (since 8 now is negative) that 

(2.8) 

(2.9) 
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Finally, suppose that llog k - nl G Bon 3’4 It follows from (2.5), Theorem 3 and . 

Lemma l(d) (with y0 = a) that 

IP(L(n)>k)-@(“--$k)j 

= lP(p(k)e+@(n~k)I 

&EL+ 2 1 1 .- 
JiG$ eJT;; (1-0,/?i9)‘/’ J;; 

The upper bound thus obtained is 

1 1.9 2 1 1 max { $+_- O,m’m+e& -. I - 
0 (l- 0,/$%)3’2 fi’ 

(2.10) 

(2.11) 

Numerical calculations for different values of B0 show that for 8,,= 0.74 both 

estimates involved are slightly smaller than 4.3, which finishes the proof. 17 

Lars Holst has drawn my attention to the fact that p(k) is more closely approxi- 

mated by the Po( mk)-distribution than by the appropriate normal distribution. More 

precisely, let V, E Po(m,). By the Stein-Chen method one then has 

and this rate is of the correct order of magnitude; see Barbour and Hall (1984). 

This is interesting for the following reason. Namely, (2.12) shows that the dis- 

crepancy between y(k) and the Po( mk)-distribution, in terms of variational distance, 

is of the order of magnitude (log k)-‘. Now, by the ordinary Berry-Esseen theorem, 

the discrepancy between the Po(rnk)-distribution and the normal distribution is of 

order of magnitude (log k)p”2. The Poisson approximation of the counting process 

thus is better than the normal approximation; another way to express the situation 

is that the main contribution in the remainder term estimate in Theorem 3 stems 

from the normal approximation of the Poisson distribution. 

However, in view of (1.1) this is not surprising. Namely, p(k) can be interpreted 

(for k large) as a collection of independent, rare, events, which is precisely what 

characterizes the Poisson process. Let us also recall that the point process of record 

times is asymptotically Poisson (see Resnick, 1987, p. 170). 
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3. Williams’ representation 

As a preliminary to the next section we now describe a representation due to Williams 

(1973), see also Resnick (1987, p. 194), after which we show how the even numbered 

conclusions in Theorem 2 follow and how the representation can be used to extend 

Theorem 2(v) to provide all limit points of the normalized sequence of record times. 

Recall that L(1) = 1. It is easy to see that 

1 
P(L(2)=I,)=P(X, )...) X,2-l<x~<X,2)=~*- 

12 I, - 1 

and, similarly, for arbitrary n, that 

P(L(k)=I,,k=2,...,n)= 
1 

I,(1,-1)(1,-,-l). . .(I,-1)’ 

(3.1) 

(3.2) 

from which it follows that {L(n), n 2 1) is a time-homogeneous Markov chain with 

transition probabilities 

p,=P(L(n)=jlL(n-l)=i)=~ . 
j(J-l)’ J'i 

(and pii = 0 for j G i). 

Williams’ representation is the following explicit construction of a sequence of 

random variables with the same properties: Let {Z,, k 2 l} be i.i.d. exp( I)-distributed 

random variables, set A, = 1 and 

A, =[A,_1 exp{Z,}J+l, nS2. (3.4) 

Then {A,,, n 3 1) is a time-homogeneous Markov chain and 

P(A, = jlA,_, = i) = P(j - 1 =S i exp{Z,} <j) =1 ’ 

j(j-1)’ J’z’ 

which shows that {A,, n 2 1) is a representation of the sequence of record times. 

We thus can (and will) write L(1) = 1 and 

L(n)=[L(n-l)exp{Z,)]+l, nz=2. (3.5) 

It now follows from (3.5) that L( k - 1) exp{Z,} < L(k) c L( k - 1) exp{Zk} + 1 and 

thus, since L(n) 2 n, that 

exp{Zk] < 
L(k) 1 

----G exp{Zk}+----- 
1 

L(k - 1) L(k-1) 
S exp{Z,} + - 

k-l’ 
(3.6) 

By taking logarithms and noting that log L(n) = Cz=, log( L( k)/ L( k - 1)) we obtain 

(after some computations) 

t Z,<logL(n)S i Z,+log(n-l)+y,_,. 
k=2 k=2 

(3.7) 
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However, r,, =I:=, 2, has a I(n - 1, I)-distribution, whose asymptotics are well 

known and this, together with (3.7) can now be used to derive asymptotics for L(n). 

As a first example, consider Theorem 2(ii) and (iv) (as promised at the end of 

Section 1). Since {r,,, n 2 2}, normalized as there, is uniformly integrable (for general 

sums of i.i.d. random variables see e.g. Gut, 1988, Section 1.4) it follows from (3.7) 

that the same is true for {log L(n), n 2 1). These facts also imply that the moments 

converge as desired. 

A second example is provided by the following result. Let C({x,}) denote the 

cluster set of the sequence {x,}. 

Theorem 5. 

c 
logL(n)-n ((J 2n log log n 

,n3ee’ 
I> 

= [-1, l] a.&% 

Proof. Set, for n 3 2, 

r*= CL&-n 
n 

J2n log log n ’ 

with {Z,, k 2 l} as before. Then 

C({Tz, n 233)) = [-1, l] a.s. 

(see De Acosta, 1983, for a nice proof). This, together with (3.7) and Lemma 111.11.1 

of Gut (1988) proves the conclusion. 0 

4. Convergence rates in the LLN and LIL for record times 

One way to study the rate of convergence in, say, Theorem 2(i) is to study 

the convergence/divergence of C a,P(llog L(n) - nl > En), where E > 0 and a, is 

some numerical sequence, typically n raised to some power. Another way is to 

investigate last exit times and the number of boundary crossings; for Theorem 2(i) 

this corresponds to studying T(E) = sup{n: llog L(n) - n I> en} and N(E) = 

Card{n: llog L(n) - nl > En} (with sup 0 = 0 and Card 0 = 0). Note that we always 

have N(E) s T(E) and that the a.s. finiteness of T(E) for all E > 0 is equivalent to 

Theorem 2(i). 

In this section we present results related to the sequence of record times on the 

convergence/divergence of sums of the above kind and provide conditions for 

existence/nonexistence of moments for the last exit times and the number of 

boundary crossings. In the following section corresponding results are given for the 

counting process. Some results on moments of the number of boundary crossings 

as defined in Theorems 7-9 below have also been obtained by Nayak (1984). 
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Theorem 6. (i)(a) For all E 7 0 there exists to, 0 < to < 1, such that for t < to we have 

1, = _, e’“P(llog L(n) - nJ > n.5) < cc. 

In particular, there exist A> 0 and p < 1 such that 

P(llogL(n)-nl>ns)<Ap”, n=l,2 ,... . 

Furthermore: 

(ii) Let T,(a)=sup{n:(logL(n)-n(>ne}. ForalIE>O, t<t,wehave 

E exp{TL(c)}<a. 

(iii) Let NL( E) = Card{ n: [log L(n) - nl> ne}. For all E > 0, t < to we have 

E exp{NL(a)}<cc. 

Proof. (i) It follows from Williams’ representation (and (3.7)) that 

jlog L(n)-nJSjJr,-(n-l)J+logn+l, 

whereI’,ET(n-l,l).Now,forO<t<l,wehave 

(4.1) 

E e’lrn+,-‘d = J O” e+nl __!I_ x n-1 
T(n) 

eCx dx 
0 

J 
n cc 

= e”“-“’ 1 -Xn-’ 

r(n) 
eex dx + 

J 
e+-n) 1 

mx 
n--l eKX dx 

0 n 

Ge’“*(l +t))“+eP*“~(l -t))“. 

By Markov’s inequality we thus obtain 

P(IL+, - nl> ns) S (e’(‘-‘)(l + t)-‘)” + (eC’(l+&)(l - t)-‘)“. (4.2) 

A simple investigation shows that e ‘(l--E)( 1 + t)-’ < 1 for all t > 0 when E 2 1 and for 

t<E(l--E)-* when c<l and that e-r(l+E)(l-t)-‘<l for t<c(l--E)-‘. This, 

together with the fact that log n + 1 = o(n) as n + 00, completes the proof of (i)(a). 

Relation (i)(b) follows from (i)(a) and the fact that 

~~~“l~~ne’“P(llogL(k)-kl>ks)~(l-e~’)-’C,. (4.3) 

(ii) First recall that, by Theorem 2(i), we have P( TL(&) < 00) = 1 for all E > 0. 

The conclusion follows from the observation that 

(4.4) 

partial summation and (i)(b) (cf. Gut, 1980, Section 8). 
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(iii) Immediate, since NL( E) s TL( E). q 

Remark 2. It further follows from (i)(a) and arguments like those of Gut (1980) 

and Williams’ representation that C, e’“P(max,,.llog L(k) - k( > ne) < 00 for all 

E>O and t<some t 0, to> 0. A similar remark applies to the results below. 

A related result concerning the law of the iterated logarithm is next. The proofs 

of (i), (ii) and (iii) follow from the corresponding results for random walks and 

(3.7). The proofs of (i) and (iv) are inspired by Davis (1968a) and Slivka (1969). 

Theorem 7. (i) For all r > 0 and E > 0 we have 

x3= F n’-’ P(llogL(n)-n(>.5Jnloglogn)=+co. 
n=3 

(ii) For E > a, r 3 1, we have 

(iii) For E > 2 we have 

(iv) If E s 6 then C, = +m and $ E G 2 then C, and 

(v) Let TL(e)=sup{n:llogL(n)-n(>eJnloglogn}. 

E(TL(~))r=+~ for all e>O and r>O, 

E(log TL(~))r<~ for E>-, r>O, 

E(log 7’L(~))r=+~ fore<-, r>O, 

Eloglog TL(&)<cc for &?<&<2. 

x6 diverge. 

Then 

(vi) Let NL(&) = Card{n: llog L(n) - I n > eJn log log n}. All conclusions in (v) 

remain valid with T=(E) replaced by NL(e). 

Proof. (i) By Theorem 4 we have 

IP(logL(n)-nSeJnloglogn)-@(-e&@Gj%)I~4.3/fi. (4.5) 
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Furthermore, (see e.g. Feller, 1968, p. 175), we have, as n+cc, 

@(-E&giog%) = 1- @(&V%gi&%) 

- &-r(27r log log n)-“2(1og PI-? 

Now, 

c3a : n’-‘P(log L(n) - n > dn log log n) 
n=3 

= f n’-l 
(P(log L(n)-n> An log log n)-@(-Em)) 

II=3 

02 

+ C nr-‘@(-i5~). 

(4.6) 

(4.7) 

Since, by (4.5), C nrP1lP(log L(n) - n>dn loglog n)-@(-cm)I<co, for 

r < 4 and all E > 0 and the second sum diverges for all r > 0 and E > 0 it follows that 

C, diverges for r <: and all E > 0 and, hence, since x3 increases as r increases, for 

all r>O and E>O. 

(ii) and (iii) Let E > v’%. By (4.5) (and a similar expression for the other tail) 

and (4.6) we have 

~~~ f (logn)‘-‘(~((log~(n)-n/>~JnIogIogn) 
n=3 n 

-2(1- @(E&giogY))j 

+2 f (log n)‘-’ 
(l-@(Ev%j$gX))<oo. 

n=3 n 

For r = 2 this yields 1, < ~0. 

(iv) Suppose that E s a. The proof of the divergence of C, is similar to the 

proof of (i). We omit the details. 

Now suppose that F s 2. The divergence of C, follows from that of 1, (with r = 2). 

The divergence of 1, follows from (v) (proved below) with r = 1, the obvious 

analogue of (4.4) and partial summation. 

(v) The nonexistence of moments follows from (i). For the remainder of (v) in 

the random walk case, see Russo (1988), Theorems 1 and 2 (for r = 1 see also Gut, 

1980, Theorem 8.3). The conclusions thus hold with log L(n) - n replaced by 

I’, -(n - 1) and, hence, by Williams’ representation (and (4.1)) as desired. 

(vi) The divergence parts follow from the corresponding results for random walks, 

see Slivka (1969) and Russo (1988), respectively, and (4.1) in the usual manner. 

Note, however, that, since Lemma 1 of Slivka (1969) carries over to the present 

context, the nonexistence of moments for NL(&) is also a consequence of (i). The 

convergence parts of (vi) follow from (v), since NL(8) < TL(.5). 

The proof of the theorem thus is complete. 0 
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Remark 3. Alternative proofs of (i)-(iii) may be obtained by using the corresponding 

results for random walks together with Williams’ representation. 

5. Convergence rates in the LLN and LIL for the counting process 

Theorem 8. (i) For E > 0 we have 

(ii) Let T,(a)=sup{n: /p(n)-log nl> E log n}. Then 

E log Tp(&)<a for all E>O. 

(iii) Let N,+(~)=Card{n: Ip(n)-logn(>~logn}. Then 

ElogNP(s)<a forallE>O. 

Proof. The proof is based on exponential bounds. First, however, we recall some 

notation and estimates from Sections 1 and 2, namely 

n 

m,=Ep(n)= c k-’ and logn~m,~logn+l, (5.1) 
k=l 

n 

si=Varp(n)= C k-‘(l-k-‘) and logn+y-$r2~s~~logn. (5.2) 
k=l 

Since { Ik - k-‘, k > 1) are independent random variables with mean 0 which are 

uniformly bounded by 1, a minor modification of the proof of Gut (1980, Lemma 

2.2) yields 

P(J~(n)-m,J>x)~2exp{-tx+$2s2,(1+$t)}, O<tGl, 

which, together with (5.2), provides the exponential bound 

P(Ip(n)-m,J>x)<2exp{-tx+$(t’logn)(l++t)}, O<tsl. (5.3) 

(i) We first suppose that 0 < E < 1. An application of (5.3) with x = F log n and 

t = E now shows that 

P(IP(+m,l>&logn) < 2 exp{-+E2(1 -4s) log n} s 2nP82’4, (5.4) 

from which it follows that 

“~~lognP(l/r(n)-m,j>&logn)~2 ; %ogn.n-“2’4<C0. (5.5) 
“=3 n 

Since the sum is decreasing as E increases we conclude that the sum in (5.5) converges 

for all E > 0. In view of (5.1) it is now a trivial matter to replace m, by log n, which 

proves that C, < 00 as desired. 
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The convergence of C, follows as in the random walk case, cf. Baum and Katz 

(1965), Davis (1968a, b) and Gut (1978, 1980), together with (5.1). We omit the 

details. Note, however, that, since log $n - log n as n -+ 00, the computations are 

somewhat easier (than in Davis, 1968a, b, and Gut, 1980). 

(ii) Immediate from the fact that &COO, the relation 

(5.6) 

(cf. (4.4)) and partial summation. 

(iii) Immediate from (ii) and the fact that N,(E)< TF(c). 0 

Remark 4. C, (obviously) also converges without the factor log n. 

Remark 5. Since p(n) 2 0 it follows that only the upper tail of p(n) -log n con- 

tributes for E > 1. 

One could also investigate the sums 

p(k)-log k > 8 
log k I > 

3 

and the related moments of N,+(E) and T,(E) for r > 0, E > 0. However, we only 

have some negative results. Namely, the lower exponential bound, (5.1) and (5.2) 

yield 

P(p(n)-logn>clogn)- >P((p(n) - m,)ls, > &(I+ rl)*) 

2 exp{-ts2( 1 + v)2 log n- (1 + y)}, (5.7) 

for ~7 small, n large and y > 0, from which it follows that 

C10ZCs=+03 for ES&. (5.8) 

Moreover, by Slivka (1969, Lemma l), which carries over to the present context, 

we have 

E(T,(E))~~E(N~(E))‘=+~ for ES&. (5.9) 

A reasonable conjecture is that everything is finite for E > 6, but we have not 

been able to prove that this is the case. 

Finally, the corresponding, albeit less exhaustive, result related to the law of the 

iterated logarithm. 
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Theorem 9. (i) Let h(x) > 0 be such that h(x) = o((log x)“) for some 6,0< 6 < 1, as 

X+CO. For all e>O we have 

m 1 

“r = ,,:z, nh(n) 
- P(IP(n)-log + Edlog n log log log n) = +a. 

In particular, we have, for all E > 0 and r 2 0, that 

I,,= ; nr-’ a4n) -1% 4 > Edlog n log log log n) = +co 
n=27 

and, for all 6, O<S<l, and e>O, that 

c,, = .S, n(loi n)6 E+(n)-log nl> EJlog n log log 1% n) = +m. 

(ii) For &>a, ral, we have 

C 14 = f (loglogn)‘lP(~~(n)-logn/>~Jlognlogloglogn)<~. 
II=27 n log n 

(iii) If E s \/5; then C,, = +a. 

(iv) Let TF(&)=sup{n: (p(n)-lognj> sv’log n log log log n}, let h(x) be de$ned 

as in (i) and set 

I 

X 
H(x) = 

1 
- dy. 
yh(y) 

Then 

EH(T,(&))=+co foralle>O. 

In particular, E(T,(E))~=+~ for all r>O, F>O and E(log T,(.z))‘=+~ for all 

r > 0, E > 0. 

Moreover, 

E(loglog T&(E))~=+w for &da, rsl. 

Proof. (i) Let log, n denote max{log log log n, 1). A trivial modification of (5.7) 

shows that 

P&(n) -log n > EJlog n log, n) 

3 exp{-iE2( 1 + 7)’ log, n. (1 + y)}, (5.10) 

for 77 small, n large and y > 0, which proves (i). 

(ii) We follow the proof of Theorem 7(ii) and (iii) with Theorem 3 playing the 

role of Theorem 4 there. Thus, 

II+(n) -log n > EJlog n log, n) - @(-eJlog,n)l =s 1.9/e, (5.11) 

and similarly for the other tail. Moreover (cf. (4.6)), 

CP(-cJlog,n) = 1- @(.sJlog,n) - C’(2m log, n))“2(log log n)-e2’2 

(5.12) 

as n + ~0. The conclusion follows. 
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Alternatively one can apply (5.3) with x = sdlog n log, n and t = Edlog, n/log n 

and (5.2). Namely, let n be so large that 0 < t < 277 < 1. Then 

(5.13) 

By inserting this into the expression for C,, and noting that n may be chosen 

arbitrarily small it follows that C,, < cc as claimed. 

(iii) The proof of the first part of Theorem 7(iv) is modified by replacing the use 

of (4.5), (4.6) and Theorem 4 there by (5.10), (5.11) and Theorem 3 here. As in the 

convergence part, one can, alternatively, use the lower exponential bound (5.10). 

(iv) Use (i), (iii), the obvious modification of (5.6) and partial summation. 0 

Remark 6. Unfortunately we have no positive result concerning the integrability of 

some function of T*(E). See, however, Russo (1988, Theorem 2) for the random 

walk case. 

We noted in the beginning of this section that the a.s. finiteness of Tr,(&), as 

defined in Theorem 6, for all E > 0 was equivalent to the strong law of large numbers 

for the record times. A similar statement can be made for the X(&)-variables defined 

in Theorems 7-9. The results on (non)integrability of r(E) provide information on, 

in some vague sense, ‘how strong’ the corresponding laws are. For example, TL( E) 

as defined in Theorem 6 possesses a moment generating function, which implies 

that TL(.s) is ‘very finite’. The other extreme is T,(E) as defined in Theorem 10. 

Although P(T,(E)<co)=~ for all s>&, we have E log T,(s)=+a for all E>O, 

which means that T,(E) is so large that even log T,(E), on the average, is extremely 

large; in fact, so large that the law of the iterated logarithm for the counting process 

‘barely’ holds. 
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