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Increased function of neuronal L-type voltage-sensitive Ca2+ channels (L-VSCCs) is strongly linked to im-
paired memory and altered hippocampal synaptic plasticity in aged rats. However, no studies have directly
assessed L-VSCC function in any of the commonmouse models of Alzheimer's disease where neurologic deficits
are typically more robust. Here, we used cell-attached patch-clamp recording techniques to measure L-VSCC ac-
tivity in CA1 pyramidal neurons of partially dissociated hippocampal “zipper” slices prepared from 14-month-
old wild-type mice and memory-impaired APP/PS1 double knock-in mice. Surprisingly, the functional channel
density of L-VSCCs was significantly reduced in the APP/PS1 group. No differences in voltage dependency and
unitary conductance of L-VSCCs were observed. The results suggest that mechanisms for Ca2+ dysregulation
can differ substantially between animal models of normal aging and models of pathological aging.

© 2012 Elsevier B.V. All rights reserved.
1. Introduction

Central to the Ca2+ hypothesis of brain aging is the concept of
“Ca2+-as-mediator” of neurologic dysfunction associated with age
and age-related diseases, such as Alzheimer's disease (AD) [1–7]. Ex-
tensive support for the Ca2+ hypothesis comes from studies on both
normal and pathologic aging using a variety of animal models and di-
verse experimental approaches. However, whether some Ca2+ sig-
naling mechanisms contribute primarily to normal aging deficits or
are more relevant for disease symptoms remains largely unknown.
Elevated activity of L-type voltage sensitive Ca2+ channels (L-VSCCs)
in hippocampal neurons [8] has provided one of the most robust links
to altered membrane excitability, impaired synaptic function, and cog-
nitive decline in animal models of normal aging (for review see [6]).
In contrast, no studies have measured neuronal L-VSCC currents in
any of the common mouse models of AD. Here, we used the partially-
dissociated hippocampal “zipper” slice preparation and cell-attached
patch-clamp to assess L-VSCC properties in CA1 pyramidal neurons of
mid-age (14–15 months) wild-type mice and memory-deficient AD
(i.e. APP/PS1) mice. The results revealed a marked reduction in L-VSCC
activity in the APP/PS1 group, suggesting that Ca2+ dysregulation
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may be independent of L-VSCC function in some transgenic mouse
models of AD.

2. Materials and methods

2.1. Transgenic mice

Homozygous male APPNLh/NLh X PS-1P264L/P264L mice, maintained
on a CD-1/129 background, were used at 14-months-of-age. These
mice deposit humanized Aβ by 6 months, and exhibit extensive pla-
que pathology by 14 months [9]. Wild-type mice were initially
obtained from matings between APP/PS1 heterozygotes, and then
maintained as a separate line. Mice were maintained on a 12 h:12 h
light–dark cycle and had ad libitum access to rodent chow. All proce-
dures were compliant with the guidelines of the University of Kentucky
institutional animal use committee and the American Association for
Accreditation of Laboratory Animal Care.

2.2. One-way active avoidance

On each trial, mice were placed in the dark compartment of a stan-
dard two compartment active avoidance chamber. After a seven sec-
ond grace period, a 25 s 0.8 mA shock was delivered through the floor
of the dark compartment and escape time to the light compartment
was recorded. Mice were placed in a temporary holding cage for
60 s between trials. An escape time ≤7 s was considered to be an
“avoidance”. The percent of successful avoidances for each mouse
was averaged across four trials on each day (four days total), normal-
ized to day 1 performance levels for each mouse, and compared
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Fig. 1. 2xTg mice show deficits on a standard one-way active avoidance task. Line graph
shows mean±SEM percent avoidances on each training day (normalized to Day 1 per-
formance) for WT and 2xTg mice. * indicates significantly poorer performance in 2xTg
mice across all training days (pb0.05, repeated measures ANOVA).

Table 1
Electrode and cell parameter values expressed as mean+SEM. No group differences
were observed.

Number of
patches

Number
of mice

Electrode
resistance (MΩ)

Seal
resistance
(GΩ)

Maximal
activation voltage
(mV)

WT 19 7 5.71+0.23 22+2.57 6.67+1.98
2xTg 16 6 5.58+0.16 28.67+4.84 6.88+1.5
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across training days and genotype using repeated measures ANOVA
(pb0.05).

2.3. Cell-attached patch clamp recording in hippocampal zipper slices

Preparation of partially dissociated “zipper” slices from mice was
carried out as described by earlier studies on adult guinea pigs [10]
and aged rats [8,11,12]. Mice were decapitated after CO2 asphyxia-
tion, and brains placed briefly in ice-cold oxygenated (95%O2/
5%CO2) artificial cerebral spinal fluid (ACSF) containing (in mM):
114 NaCl, 2.5 KCl, 2 MgCl2, 30 NaHCO3, 10 Glucose, and 0.1 CaCl2
(pH 7.4). Coronal slices (300 μm) were made in ice-cold ACSF using
a Vibratome® as described [13] and transferred to prewarmed
(32 °C), oxygenated ACSF containing 2 mM CaCl2 and 0.7 mg/ml pro-
nase for 30 min. Slices were washed twice in ACSF followed by an ad-
ditional 15 min in ACSF containing 0.5 mg/ml thermolysin. After two
more washes in ACSF, slices were bathed for 1–4 h in enzyme-free,
ACSF with 2 mM CaCl2. To expose CA1 pyramidal neurons for patch
clamp recordings, slices were nicked at CA1 stratum pyramidale near
the border of the subiculum using a scalpel blade, then transferred
to a 2 mL analyzing cup containing ~1 mL of Ca2+-free ACSF and
gently shaken by hand until clear dissociation was observed along
CA1 stratum pyramidale.

Glass recording pipettes (5.6±0.14 MΩ) were coated with Syl-
gard® and fire-polished immediately before use. External recording
solution contained (in mM): 140 K+-gluconate, 3 MgCl2, 10 glucose,
10 EGTA, and 10 HEPES, pH=7.35, osmolarity=300 mOsm. Pipette
solution contained (in mM): 20 BaCl2, 90 choline Cl, 10 TEA Cl, and
10 HEPES, 0.0005 Bay K 8644 (L-VSCC activator), pH=7.35, osmolari-
ty=290 mOsm. Junction potentials were nulled in the bath and tip re-
sistances determined prior to obtaining a giga-ohm seal from cleanly
exposed CA1 neurons. I/V curveswere constructed by successively step-
ping (150 ms) the membrane voltage (Vm) in 10 mV increments from
holding (−70 mV) to+40 mV. Current amplitudes (i) of clearly resolv-
able L-VSCC openingswere alsomeasured at different Vm levels (i.e.−70
to+10 mV; one sec duration steps) to assess slope conductance (in pS)
of L-VSCCs. The Vm was then stepped from −70 to the maximal acti-
vating voltage (0 or +10 mV) a total of 90 times (10 s interstep in-
terval) to find the maximal instantaneous current (Imax, see below)
and to generate an average ensemble current for each patch. Cur-
rents were leak-subtracted off-line using hyperpolarizing pulses,
identical in duration and opposite in polarity. Average current densi-
ty (pA/μm2) was derived by dividing the average ensemble current
by the patch area (a=12.6(1/R+0.018), where ‘a’ is the patch area
and ‘R’ is the pipette resistance [14]. The method of maximum in-
stantaneous openings was used to estimate the total number of
channels in a patch (N) by dividing Imax by the single channel aver-
age amplitude (i.e. N= Imax/i) as described [8,15]. This value was
then divided by patch area to estimate channel density (N/μm2).
All recordings were obtained at room temperature, filtered at
2 kHz, and digitized at 5 kHz using an Axoclamp 1D patch-clamp am-
plifier and Clampex software. All VSCC properties were measured
offline using Clampfit software and compared between genotypes
using unpaired, two-tailed Student's T tests (pb0.05).

3. Results

3.1. 2xTg mice show impairments on a one-way active avoidance task

At 14 months, 10 male WT and 7 male 2xTg mice were trained
across four days on a standard one-way active avoidance task (4 trials/
day, see Materials and methods). Optimal performance on this task re-
quires a functionally intact hippocampus [16]. As shown in Fig. 1, the
percent of trials in whichmice exhibited a successful avoidancewas cal-
culated on each day and normalized to day 1 performance.WT and 2xTg
animals showed nearly identical performance levels on day 1. While
both groups exhibited a higher percentage of avoidances with each suc-
cessive training day (pb0.001), 2xTgmicewere generally outperformed
by theirWT counterparts (pb0.05). Thus, likemany other AD transgenic
models, the APP/PS1 double knock-in mice used here exhibit a measur-
able cognitive deficit.
3.2. Neuronal L-VSCC currents are reduced in 2xTg mice

Hippocampal zipper slices were prepared from 13 of the behavioral-
ly characterized mice shown in Fig. 1 (WT, n=7; Tg, n=6). On-cell
patch clamp analysis of L-VSCC currents from CA1 pyramidal neurons
were made as described previously by our labs [8,11,12]. Thirty-five
patches were recorded across both groups (WT, n=19; 2xTg, n=16).
No differences in pipette tip resistance, seal resistance, or the maximal
activating voltage (i.e. the membrane potential associated with maxi-
mal L-VSCC activity) were observed (Table 1). For all L-VSCC properties
measured, values were averaged across patches within eachmouse and
used for statistical comparisons (i.e. n=# of mice/group). Representa-
tive L-VSCC ensemble currents during step depolarizations from −70
to +10mV in patches taken from a WT and 2xTg mouse are shown in
Fig. 2A, and the average±SEM ensemble peak current density (pA/
μm2) is shown in Fig. 2B. The results revealed a significant reduction
in maximal L-VSCC current density in the 2xTg group (pb0.05). No
change in L-VSCC voltage dependency was observed. Analysis of single
channel properties indicated similar unitary L-VSCC current (i) ampli-
tudes across Vm levels for both groups (Fig. 2C) and no differences in
slope conductance were found. Using the method of maximal instanta-
neous openings to estimate the total number of channels (N) per patch
[8,15], we observed a greater than two-fold reduction in L-VSCC chan-
nel density (N/μm2) for the 2xTg group. These results suggest that
lower L-VSCC activity in 2xTg mice is largely due to a reduction in the
number of functional channels in the plasma membrane.



Fig. 2. CA1 neuronal L-VSCC activity is reduced in 2xTg mice. A, Representative L-VSCC current traces (top 3 waveforms), and the average ensemble current (lowest trace) generated
from90-step depolarizations inmultichannel cell-attached patches fromWTand 2xTgmice.Maximal L-VSCC activitywas elicited by stepping the patchmembrane from−70 to+10mV
for 150 ms. Scale bars: 20 pA/50 ms. B, mean±SEM peak ensemble current density (pA/μm2) in each genotype group. C, mean±SEM unitary L-VSCC current amplitudes (i in pA) mea-
sured at differentmembrane potentials (Vm inmV). No genotype differences in slope conductancewere observed. D,mean±SEM functional channel density in cell-attached patches from
each genotype. *significant reduction relative to WT mice (pb0.05, two-tailed unpaired T tests).
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4. Discussion

L-VSCC activity is potentiated during aging [8,11] and plays a sig-
nificant role in age-related alterations in synaptic function [17,18],
membrane excitability [19], and cognition [20,21]. There are several
lines of evidence to suggest that L-VSCCs may also contribute to the
pathophysiology of AD. Postmortem AD brain is associated with in-
creased radiolabel binding to L-VSCCs [22], and L-VSCC activity in
cell cultures is elevated following delivery of pathogenic Aβ peptides
[23–30]. However, the present study is the first to directly assess neu-
ronal L-VSCC activity in a mouse model of AD. The mid-aged double
knock-in Tg mice used here exhibit high brain tissue levels of both
soluble and insoluble Aβ [9], as well as significant cognitive impair-
ment (Fig. 1). It was therefore somewhat surprising to observe a re-
duction, rather than an increase, in neuronal L-VSCC currents in Tg
mice (Fig. 2).

The mechanistic basis for reduced L-VSCC activity is not presently
known, but it seems unlikely that 2xTg mice simply lack sensitivity to
age-dependent mechanisms implicated in gain-of-function. The cyclic
AMP dependent protein kinase (PKA) and the protein phosphatase
calcineurin have each been proposed to augment L-VSCC activity dur-
ing aging [11,31,32]. While evidence for impaired activation of PKA
and/or PKA dependent processes has been reported in AD mice and/
or cell cultures treated with Aβ [33,34], calcineurin activity and sig-
naling are upregulated in the same or similar models [35–38]. More-
over, previous work by Stutzmann and colleagues on single and triple
Tg models of AD revealed an age-dependent increase in the post-
burst afterhyperpolarization, a Ca2+ dependent event requiring L-
VSCC activation [39].

The findings of the present study may be more closely associated
with functional changes inherent to the PS1 mutation. PS1 is a resi-
dent protein of the endoplasmic reticulum (ER) and is functionally
coupled to key ER Ca2+ release channels (e.g. IP3 receptors and rya-
nodine receptors) that are also juxtaposed to L-VSCCs. Indeed, it is
well established that L-VSCCs operate in series with ER channels to
mediate Ca2+-induced Ca2+ release (CICR) in neurons [40]. During
aging, in which Ca2+ dysregulation is relatively mild, elevations in
L-VSCC activity are clearly able to co-exist with elevations in CICR

image of Fig.�2
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[41–43]. However, abnormal gating properties and expression levels
of ER Ca2+ channels associated with PS1 mutations [44] may drive
Ca2+ levels high enough to ultimately deliver negative feedback
onto L-VSCCs, as shown previously for NMDA receptors [45]. Clearly,
it will be important to conduct extensive investigations on singly
transgenic mice (mice that express the human APP mutation, but
lack mutant PS1, and vice versa) at multiple age points to determine
the relative contributions of PS1 and aging to L-VSCC regulation. Fur-
ther work on single knock-in mice may also offer increased relevancy
to AD, since humans rarely if ever co-express APP and PS1 mutations.

In summary, the present study revealed a significant reduction in
neuronal L-VSCC activity in a double knock-in mouse model of AD.
These results were unexpected based on extensive evidence of en-
hanced L-VSCC activity in animal models of aging and cell culture
models of amyloid toxicity. Our findings, together with previous
work, suggest that the directional regulation of L-VSCC activity during
AD depends on a complex interaction between aging, circulating Aβ
levels, the presence of PS1 variants, and the degree of existing Ca2+

dysregulation, among other factors. Clearly, additional work on
other Tg mousemodels as well as human AD brain tissue will be neces-
sary to fully determine the role of L-VSCCs in the pathophysiology of AD.
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