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Abstract Mounting research evidence demonstrates a significant negative impact of circadian disruption
on human health. Shift work, chronic jet lag and sleep disturbances are associated with increased
incidence of metabolic syndrome, and consequently result in obesity, type 2 diabetes and dyslipidemia.
Here, these associations are reviewed with respect to liver metabolism and disease.
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1. Introduction

Circadian rhythms (Latin, circa: “approximate”; dies: “day”) refer
to physiological processes that occur with a repeating period of
approximately 24 h and ensure that internal physiology is syn-
chronized with the external environment. Circadian rhythms are
ubiquitously present in prokaryotes, fungi, algae, plants and
mammals. Temporal organization within an organism is critical
for maintenance of homeostasis as well as adaptation to changing
environmental conditions. In mammals, this organization is
generated and maintained endogenously by the biological clock,
the suprachiasmatic nucleus (SCN), a heterogeneous paired cluster
of about 20,000 neurons located in the hypothalamus of the brain.
Circadian rhythms are defined by three basic properties: 1) they
exist endogenously under constant conditions in the absence of
resetting cues (for instance, in constant darkness) and oscillate
with a period of approximately 24 h, 2) they are temperature-
compensated, such that the period of the rhythm remains stable
over a physiological range of temperatures, and 3) they are capable
of entrainment, or synchronization, by external cues, such that
timing of rhythms can be adjusted to match the external environ-
ment in a manor favorable to the organism1,2. These properties
result in endogenous stable rhythms that maintain basic
homeostasis and also ensure adaptable physiological responses to
the changing environmental photoperiod.

By way of the retinohypothalamic tract that connects the eye to
the SCN3,4, daily light/dark cues (i.e., the rotation of the earth
every 24 h) are the main entraining agents, or Zeitgebers (German:
“time giver”) that synchronize the clock to the external environ-
ment. However, non-photic cues such as social interaction, food,
or exercise can also serve as Zeitgebers that change or reset the
timing of the clock5. These Zeitgebers provide input to the SCN,
which then processes the information and, through complex
neurological pathways, ultimately influences behavioral, hormo-
nal, and biochemical outputs that synchronize peripheral tissues to
central timing (Fig. 1A).

At the molecular level, in both brain and peripheral tissues,
clock outputs are generated in a cell-autonomous manner by the
transcriptional translational feedback loop (TTFL) consisting of
clock genes whose protein products oscillate to induce or suppress
transcription of other clock genes, resulting in both positive and
Figure 1 (A) Environmental signals perceived via the retinohypothalam
(SCN) are the most prominent clock resetting agents. The SCN integrates
circadian regulation of locomotor activity, food intake, body temperatur
Diagram depicting the transcriptional translational feedback loop (TTFL) t
tissue types. Clock proteins CLOCK and BMAL1 heterodimerize to induc
bind to E-box elements in the BMAL1 promoter to inhibit PER/CRY transc
REV-ERBα and RORα positively and negatively regulate CLOCK/BMAL
in the BMAL1 promoter. This feedback loop takes approximately 24 h to c
that produces rhythmic outputs of neural and hormonal signals and gene t
negative feedback loops6. Briefly, protein products of the core
clock genes Clock (circadian locomotor output cycles kaput) and
Bmal1 (brain and muscle ARNT-like 1) heterodimerize, translo-
cate to the nucleus, and bind to E-box promoter sequences of
target core clock genes Per1 and 2 (Period) and Cry1 and 2
(Cryptochrome) to initiate transcription. PER and CRY proteins
translocate to the nucleus and interact with CLOCK/BMAL1 to
inhibit their own transcription. The PER/CRY complex is even-
tually tagged for degradation via phosphorylation by casein kinase,
which releases CLOCK/BMAL1 from suppression; this feedback
loop takes approximately 24 h to complete. An additional regu-
latory loop exists whereby the nuclear receptors retinoid-related
orphan receptor α (RORα) and REV-ERBα compete for the ROR
response element (RORE) binding site in the Bmal1 promoter to
activate or repress its transcription, respectively7 (Fig. 1B). The
TTFL exists in almost all mammalian cells, including heart, liver,
pancreas, muscle and white adipose tissue, in whole tissue, tissue
explants and even persists in cell culture, and represents a
mechanism by which peripheral tissue physiology can be entrained
to central timing originating from the SCN.

Central-to-peripheral synchronization provides a means for
organs and tissues to function with maximal efficiency (for
instance, in preventing metabolic futile cycles during feeding
and fasting). It is thought that desynchronization of this timing,
due to shift work, chronic jet lag, or mental health disorders that
affect sleep quality and timing such as depression and schizo-
phrenia, can contribute to the development of disease conditions.
Circadian disruption has been significantly linked to increased
incidence of cardiovascular events, gastrointestinal diseases, and
metabolic syndrome, and in 2007 the International Agency for
Research on Cancer designated shift work as a Class 2A probable
human carcinogen8–19. Within the liver, approximately 10% of the
transcriptome is rhythmically expressed, including genes involved
in regulation of glucose, lipid and nutrient homeostasis, and bile
acid synthesis and metabolism. Recently, a genome-wide analysis
in mouse liver revealed several thousand CLOCK protein binding
sites, most of which exhibited day-night variations in CLOCK
occupancy, suggesting extensive and wide-reaching metabolic
regulatory functions for CLOCK and other clock components20.
Basic and clinical research continues to provide mounting evi-
dence for a critical link between circadian homeostasis and human
ic tract (RHT) by the biological clock, the suprachiasmatic nucleus
photic and nonphotic signals to produce rhythmic outputs resulting in
e, hormonal release, and peripheral and xenobiotic metabolism. (B)
hat composes the molecular biological clock in almost all mammalian
e transcription of PER and CRY genes. PER1/2 and CRY1/2 proteins
ription via negative feedback. Additional regulatory clock components
transcription, respectively, through binding to ROR-response elements
omplete and is the molecular basis for the mammalian biological clock
ranscripts.
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health; here, we review these connections with respect to liver
metabolism and metabolic disease.
2. Rhythms in liver metabolism

2.1. Bile acids

Circadian regulation plays a large role in liver metabolism, as
glucose, bile acids, lipids and cholesterol are all subject to timed
circadian control. Bile acids are amphipathic molecules that
mediate absorption of dietary fats, nutrients and vitamins. Bile
acids are synthesized from cholesterol exclusively in the liver by
the rate-limiting enzyme cholesterol 7α-hydroxylase (CYP7A1)
and are stored in the gallbladder until they are released postpran-
dially. Synthesis of bile acids accounts for the majority of
cholesterol catabolism in humans and the process is tightly
regulated (by nutrient availability, nuclear receptors, and negative
feedback from bile acids themselves) to control cholesterol and
lipid homeostasis21. Bile acids are also under circadian regulation
to synchronize with periods of feeding and fasting, and CYP7A1
exhibits a well-documented rhythm of mRNA expression in
rodents (peaking early in the dark phase when nocturnal animals
become active) and enzyme activity in human serum (measured as the
bile acid intermediate 7α-hydroxy-4-choleston-3-one, or C4)22–24.
Likewise, cholesterol synthesis exhibits a rhythm in rodents that is
synchronized with the timing of food-intake25, while in humans, the
rhythms of cholesterol and bile acid synthesis are out of phase26. Strict
regulation of hepatic metabolism through circadian-regulated hepato-
biliary pathways plays an important role in maintaining maximally
efficient nutrient use and storage.

As mentioned above, bile acid metabolism is in part regulated
by nuclear and membrane receptors. Farnesoid-X receptor (FXR)
and liver receptor homolog 1 (LRH) play a role in regulating
Cyp7a1 gene expression, while pregnane-X receptor, vitamin D
receptor and the G protein-coupled bile acid receptor GPBAR1
(TGR5) are receptors of which bile acids are ligands. FXR
modulates the negative feedback mechanism of bile acid-
mediated suppression of CYP7A1 activity by induction of the
negative co-repressor small heterodimer partner (SHP). When bile
acids are increased in the liver, they activate FXR, which recruits
SHP to block LRH-mediated induction of Cyp7a1 gene transcrip-
tion, thus preventing de novo induction of bile acid synthesis. We
have previously shown that Cyp7a1 transcription is induced by
food, glucose and insulin likely through acetylation of the Cyp7a1
promoter, while fasting dampens and refeeding induces CYP7A1
expression, respectively27. Per1/2 double knockout mice have
elevated serum and liver bile acids and elevated serum hepatic
enzymes levels, indicative of liver damage28. Due to the critical
role of bile acids in maintaining glucose and cholesterol home-
ostasis, disrupted circadian regulation of bile acid gene regulation
or homeostasis may contribute to the hyperlipidemic and/or
gastrointestinal phenotypes observed in shift workers.

Recently it was reported that the clock gene Rev-erbα regulates
Cyp7a1 gene expression in a positive fashion, possibly by binding
to the Shp promoter to prevent transcription and resulting in de-
repression of CYP7A1 by SHP in a time-dependent manner29.
REV-ERBα may also represent a link between metabolism and
peripheral rhythms, as heme, a cofactor for several proteins
involved in cellular metabolism, was identified as the natural
ligand for REV-ERBα30. Rev-erbα transcription is positively
regulated through RORα-binding to the RevDR2 direct repeat
site, and transcription is inhibited when REV-ERBα itself binds to
the same site in its own gene promoter31,32. Heme binding to
REV-ERBα suppresses gluconeogenic gene expression in the
liver33, while Rev-erbα/β double knockout mice have increased
serum glucose and triglycerides compared to wild type, as well as
fragmented locomotor activity and reduced circadian period34.
Administration of synthetic REV-ERBα ligands to obese mice
resulted in weight loss, reduced lipogenic gene expression and
improved glucose and lipid regulation35. Taken together, this
evidence may point to a new important role for REV-ERBα as a
critical circadian mediator of not just bile acids, but also lipid and
glucose metabolism in the liver.
2.2. Glucose

Maintenance of glucose tolerance is critical for physiological
function of nearly all cell types, and brain and red blood cells
nearly exclusively use glucose as fuel. As mentioned, almost all
mammalian cell types contain a functional molecular clock,
including liver, muscle, and adipose tissue. Within the liver,
glucose uptake, gluconeogenesis and glycogenolysis represent
the main pathways by which nutrient homeostasis is maintained
over daily periods of feeding and fasting. Glucagon and insulin,
synthesized in and released from pancreatic α and β cells,
respectively, regulate these pathways, and daily plasma rhythms
in these hormones have been identified in rodents and humans36,37.
Impairment of this regulation, particularly insulin, can lead to type
2 diabetes and insulin resistance, which further results in hyper-
glycemia and mismanaged glucose utilization.

Plasma glucose exhibits a circadian rhythm in concentration,
with peak levels occurring near the onset of activity in rodents and
humans. The SCN appears to play a role in this phenomenon, as
SCN-lesioned rats failed to produce glucose concentration rhythms
in response to either ad libitum or scheduled feeding38. Likewise,
glucose tolerance also exhibits a circadian rhythm and follows the
pattern of plasma glucose concentration, and is likely driven by a
24-h-rhythm in insulin sensitivity, which is also absent in SCN-
lesioned rats39. Several mouse knockout models also demonstrated
a significant role of the SCN in maintenance of glucose
homeostasis–Clock mutant mice are hyperphagic, obese, and
hyperglycemic40. Also, it was recently shown that insulin can
regulate liver Clock gene expression via the transcription factor
forkhead box O3 (FOXO3), suggesting close interactions between
the peripheral clock and the critical homeostatic actions of
insulin41. Likewise, Bmal1 null mice have hypoinsulinemia and
glucose intolerance, as well as abnormal locomotor and feeding
behaviors42. Recently, one study demonstrated glucose intolerance
in pancreas-specific Bmal1 knockout mice, which have normal
insulin content but impaired release due to the lack of a functional
pancreatic clock43, suggesting that circadian control of insulin may
be the driving factor in maintaining glucose homeostasis through-
out periods of feeding and fasting.

Liver-specific Bmal1 knockout mice have disrupted circadian
function within hepatocytes, but normal locomotor activity and
normal central and peripheral clock function within the SCN and
muscle tissue, respectively. These mice have reduced GLUT2
(glucose transporter 2) expression in the liver and subsequently,
fasting hypoglycemia, reduced liver glycogen and increased
glucose clearance44. These results seem paradoxical, as whole-
body Bmal1 null mice present with hyperglycemia and weight
gain. However, this may simply indicate that liver-specific
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impairment of the circadian clock results in glucose-related defects
that may be masked in whole-body Bmal1 knockout mice, which
have additional impairments in activity, feeding behaviors and
insulin secretion.

In normal humans, blood glucose and insulin levels in response
to an oral glucose load vary over 24 h, with lower glucose
response and higher insulin levels occurring in the morning,
regardless of fasting duration, resulting in increased glucose
tolerance in the morning compared to evening45,46. The specu-
lative causes of this variation include decreased nighttime glucose
utilization, low late-day insulin secretion, and neurohormonal
control of cortisol and other regulatory hormones47. In contrast,
obese patients with type 2 diabetes were shown to have an inverted
rhythm of glucose tolerance and insulin sensitivity, with increased
sensitivity in the evening and night compared to morning37. An
additional consequence of type 2 diabetes is known as the “dawn
phenomenon”, whereby normal early morning release of counter-
regulatory hormones (for instance, cortisol, growth hormone and
epinephrine that function to oppose insulin and mobilize glucose)
may cause increased blood glucose levels just before waking48,49.
The inverted rhythm of insulin sensitivity in these patients may be
the cause of the elevated fasting blood glucose levels observed in
the dawn phenomenon. Further study of the detrimental effects of
glucose and insulin intolerance on normal functional peripheral
rhythms will be necessary to provide better treatments for type 2
diabetes.
2.3. Lipids

The circadian clock plays a role in regulation of plasma and tissue
lipids, including triglycerides, cholesterol and free fatty acids.
Triglycerides, ingested from meals, are transported to the liver
where they are either stored or utilized. During periods of fasting,
adipose tissue is lipolysed to produce free fatty acids, which are
also transported to the liver. It has been shown that high fat diets
can affect peripheral clock function and suppress gene expression
in mice50.

Feeding signals are important regulators of energy balance,
peripheral circadian rhythms and feeding behavior. Imbalance
caused by excess nutrients, circadian disruption, or both can lead
to a feed-forward cycle by which excess fat disturbs peripheral
rhythms of metabolic activity, which can lead to further imbal-
anced energy stores. Leptin is a circulating hormone primarily
secreted by white adipose tissue that displays a circadian rhythm,
and has been dubbed the “satiety hormone”. Leptin acts on several
physiological levels by regulating sensation of hunger and meta-
bolic energy use by binding to its receptor in the arcuate nucleus
(ARC) in the hypothalamus, as well as receptors in the liver and
other organs. Binding of leptin to its receptor signals a cellular
cascade that ultimately promotes energy expenditure; decreased
leptin signaling indicates an energy shortage and promotes food
intake51. Circulating leptin displays a circadian rhythm in con-
tent52, independent of feeding time but dependent on the SCN.
Obesity was associated with an overall increase in circulating
leptin in humans (presumably due to increased fat mass), though
the amplitude between nighttime peak and daytime nadir was
significantly reduced compared to healthy controls53.

In addition to the effects on motivation to seek food (leptin-
receptor signaling inhibited hedonic-based dopaminergic firing in
reward areas of the brain in rodents54, while knockdown of leptin
receptor signaling in dopamine-containing neurons of the ventral
tegmental area resulted in increased locomotor activity, food-
seeking behavior, and increased food intake in rodents55), leptin
induces the JAK/STAT pathway that ultimately results in phos-
phorylated STAT3-mediated induction of transcription56. Studies
suggest leptin mainly acts within the central nervous system,
though this JAK/STAT effect is present in peripheral tissues. In
pancreatic islets, leptin dose-dependently inhibited insulin secre-
tion and mRNA transcript levels57,58, while perfusion of leptin into
livers of obese rats with a leptin-resistant phenotype led to
decreased lipid-lowering effects, possibly via impaired activation
of phosphoinositide 3-kinase59.

Several studies have utilized leptin- and/or leptin receptor-
deficient rodents in attempts to determine the pathways involved in
hormonal energy regulation. Mice with a leptin gene mutation (ob/
ob mice) do not receive signals to the brain that indicate they have
eaten enough, and as a result they are hyperphagic with hypergly-
cemia and hyperinsulinemia60. When compared to wild type mice,
ob/ob mice also have intact SCN clock gene expression but
abnormal peripheral clock gene expression, and these abnormal-
ities were present prior to the onset of the metabolic phenotype61.
It has also been shown that acetylation levels, indicative of
transcriptional activation, of clock gene promoters were reduced
in ob/ob mice62, which may partially contribute to the obese
phenotype via disturbed clock function.
2.4. Epigenetic and posttranslational regulation of rhythms

Epigenetic regulatory mechanisms, including DNA methylation
and histone modifications, participate heavily in the regulation of
hepatic circadian rhythms63,64. It was demonstrated that the
methylation status of core clock genes was associated with obesity
and other symptoms of metabolic syndrome, while type 2 diabetic
patients exhibited hypermethylation of Per2 and subsequent
decreased gene expression in pancreatic islets65,66. CLOCK
protein itself is a histone acetyltransferase that catalyzes the
acetylation of both histone proteins and BMAL, which provides
an implication for a possible role of the clock in the regulation of
epigenetics67,68. In addition, histone deacetylase 3 (HDAC 3), with
REV-ERBα, was shown to be a key mediator of circadian lipid
metabolism while deletion of HDAC3 led to hepatic steatosis69.
Sirtuin1 (SIRT1), a mammalian histone deacetylase that requires
nicotinamide adenine dinucleotide (NADþ) as a cofactor, acts as a
cellular energy status sensor that responds to changing NADþ/
NADH ratios. The HDAC activity of SIRT1 is regulated in a
circadian manner. SIRT1 interacts with both CLOCK and BMAL1
proteins at the promoters of clock-controlled genes, may contribute
to the rhythmic regulation of histone lysine acetylation in mouse
liver70, and has been implicated as a regulatory link connecting the
clock to cellular metabolism and energy use.

Proteomic and bioinformatic analyses, including analysis of
posttranslational modifications of rhythmic proteins such as
acetylation and methylation, represent extremely useful tools for
the study of physiological rhythms. Like the rhythmic hepatic
transcriptome, mass spectrometry-based analysis of the mouse
liver proteome indicates that up to 20% of all hepatic proteins are
subject to rhythmic control71. As mentioned earlier, a key
regulatory step in the generation of endogenous rhythms is PER
protein phosphorylation by casein kinase, which ultimately results
in PER degradation. Mutation in the casein kinase binding site of
the human PER2 protein or in casein kinase itself results in
hypophosphorylation of PER2 which is thought to be the
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molecular basis of familial advanced sleep-phase syndrome
(FASPS)72. FASPS is characterized by shortened and advanced
endogenous circadian period, such that individuals exhibit extreme
morning characteristics and have approximately 4–5 h advance-
ment in sleep, body temperature and hormonal rhythms. Recent
studies in mass spectrometry comprehensively identified phos-
phorylation sites in mPER2, and the results indicate that the
dynamic cellular environment that influences protein stability and
phosphorylation status plays a significant role in the generation
and maintenance of rhythms at the molecular level73.

The circadian clock has also been implicated in the modulation
of mitochondrial function via reversible protein acetylation. Lysine
acetylation sites of proteins in mouse liver were analyzed over
24 h in Clock mutant mice and wild type littermates, and while a
proportionately small number of sites remained oscillatory in
Clock mutants (possibly due to a food entrainable oscillator,
discussed in Section 3.2), it was shown that a significant number
of proteins involved in metabolic pathways were rhythmically
acetylated which were absent in Clock mutant mice. These results
were also significantly correlated to already-existing data regarding
the circadian metabolome74. Taken together, these data provide
new insight into the critical regulatory interactions between
peripheral clocks and modifications in post-transcription and
post-translation that may direct cellular timing and possibly link
clocks to cellular metabolism.
3. Circadian disruption and metabolic syndrome

3.1. Shift work

Millions of people work at night or work a rotating shift, employed
as police, fire, and emergency medical technician (EMT) workers,
doctors and nurses, truck drivers and pilots, just to name a few.
They represent a significant portion of the population who are
required to function at a time when humans have evolved to sleep,
and are required to sleep when the SCN is promoting wakefulness.
Also, technological advances have allowed for increased produc-
tivity in a 24 h society, which includes increased exposure to light
at night, a relatively new phenomenon that may have adverse
effects on human health75. In addition to fatigue-related safety
issues, shift work has been associated with increased risk of breast
cancer16,17,76, possibly linked to clock gene polymorphisms77 or
suppression in melatonin production and signaling (which is
normally increased at night) caused by light at night78. Cardio-
vascular disorders13,79 and metabolic syndrome and obesity80,81

have also been significantly linked to shift work and long-term
exposure to light at night.

Within the context of metabolic disease, circadian disruption,
sleep deprivation, and shift work are linked to hyperphagia,
hyperinsulinemia, weight gain, and hypertriglyceridemia. In
diabetes-prone hypoxia inducing protein (HIP) transgenic rats, a
rotating light schedule resulted in accelerated development of type
2 diabetes and increased pancreatic β-cell apoptosis82. Wild type
mice exposed to constant bright or dim light had increased body
weight, reduced glucose tolerance, and ate more food during the
daytime compared to controls housed under a normal light/dark
schedule83. In a rodent model of shift work, mice forced to engage
in daytime activity (by means of a slowly rotating activity wheel)
for 5 weeks had decreased glucose tolerance, inverted clock gene
expression and altered hepatic gene expression, and increased
microvesicular steatosis84. In another model, 2 weeks of sleep
restriction in mice, simulating shift work, resulted in suppression
of core clock mRNA rhythms that preceded metabolic
disruption85.

Several studies demonstrate that sleep restriction in healthy
humans results in altered circulating levels of leptin86–88, and it is
thought that loss of neurohormonal control of appetite and energy
balance could be a contributing factor to the weight gain (though
only partially due to overeating) associated with circadian disrup-
tion and shift work89. Night shift workers also have significantly
decreased melatonin levels90 and elevated cortisol levels91, which
have been shown to increase92 and suppress93 leptin, respectively.
These complex hormonal pathways normally serve to finely
regulate metabolism, and perturbation by even short-term shift
work can lead to metabolic disarray and conflicting physiological
signals. Finally, one study demonstrated that shifting the time of
sleep (to simulate shift work) in a group of healthy volunteers
resulted in increased inflammation and insulin insensitivity com-
pared to the control group with normal bedtimes, despite both
groups having slept the same numbers of hours94. These results
highlight importance of studying the effects of disrupted rhythms
on metabolism that may occur independently of sleep loss itself,
possibly mediated through interactions of circulating hormones.
3.2. Restricted feeding

Related to shift work, studies involving timed food intake or
restricted feeding have proven a valuable mechanism to determine
how biological and cellular pathways in the periphery are
regulated by the central clock95. Restricted feeding involves
limiting the time or duration of food availability, or both, while
controlling for caloric intake. Limiting feeding to the daytime in
nocturnal animals effectively uncouples peripheral activity from
what is dictated by the central clock and results in food
anticipatory activity (FAA), which includes increased locomotor
activity before the presentation of food as well as increased body
temperature96. Induction of FAA is independent of the SCN and
may be driven by a separate, yet still unidentified, food entrainable
oscillator (FEO). Several neuronal clusters, or nuclei, may act as
feeding centers in the brain, including the ARC, paraventricular
nucleus, and dorsomedial hypothalamus, that participate in relay-
ing signals to initiate eating behavior. Conflicting and inconclusive
studies have yet to define a separate FEO, which may in fact
represent multiple peripheral oscillators that all participate in
generating FAA97.

When mice have access to a high fat diet only during the active
dark phase, they are protected against diet-induced obesity and
liver damage, and have reduced circulating leptin levels98. In
addition, these mice have increased Cyp7a1 gene expression
compared to controls whose expression profile was blunted by
ad libitum high fat-feeding. Coupled with increased liver bile acids
and decreased serum cholesterol, this is indicative of a shift toward
cholesterol clearance. Conversely, restricting food to daylight
hours in mice resulted in a phase-reversal of CYP7A1 expression
and significantly elevated aspartate transaminase and alanine
transaminase levels99. Several other studies have demonstrated
the negative effects of daytime-restricted feeding in nocturnal
rodents, including increased body weight and elevated and
reversed circadian patterns of plasma leptin and ghrelin84,100,101.
In addition, when caloric intake is not restricted, mice fed only
during the inactive phase will consume more calories per day
compared to night-fed controls102. Circadian regulation of leptin
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may play a role in mediating these effects, as ob/ob mice fed
during the daytime only become more obese compared to controls
when supplemented with rhythmic leptin administration, while
daytime-fed mice receiving continuous administration of leptin via
osmotic pump did not differ from control mice103.

However, several studies have also demonstrated neutral or
even beneficial effects of time-restricted feeding in animals. A
study by Sherman et al.104 demonstrated that long-term daytime
restricted feeding of a high fat diet attenuated the normally
disruptive effects of diet-induced obesity on the clock, including
reducing body weight, cholesterol levels and markers of inflam-
mation, and improving insulin sensitivity. The mechanism by
which this occurs is unknown, though it was speculated that even
though caloric intake was matched in ad libitum-fed controls, mice
undergoing 4 h daytime restricted feeding were under fasting
conditions for the remaining 20 h of each day, resulting in
induction of fatty acid oxidation and catabolic pathways. In a
separate study, it was shown that 8 h of daytime restricted feeding
in Cry1/2 double knockout mice resulted in the rescue of circadian
expression of several hundred genes that were previously arrhyth-
mic, though this represented only a small subset of the total genes
whose rhythmic expression was lost in the knockout phenotype105.
In addition, a lipidomic analysis revealed that hepatic triglyceride
levels still oscillated in Per1/2 double knockout mice, albeit with
different phases of peak content, and that nighttime-restricted
feeding reduced hepatic triglyceride content only in wild type
mice106.

Much of the conflicting results likely stems from alterations in
methods and animal models, though restricted feeding studies still
represent a valuable tool that can be used to tease apart the effects
of the endogenous clock versus the effects of food itself. Studies in
humans are much less numerous and also give some conflicting
results; the effects on body weight remain inconclusive, though the
general consensus is that restricted feeding may provide some
benefit toward reducing plasma lipids, improving insulin sensitiv-
ity and other metabolic risk factors107.
4. Chronopharmacology

In addition to the physiological effects of rhythms on hepatic
metabolism, circadian rhythms must also be considered when
developing drug plans or therapeutic interventions for disease
treatment. Chronopharmacology is a branch of chronotherapy that
applies the principles of circadian rhythms to determine the best
timing of drug administration, which can affect the absorption,
distribution, metabolism, and excretion of administered xenobio-
tics. Physiological influences such as gastric pH, hepatic and renal
blood flow, serum hormone levels and liver enzyme activity
exhibit circadian rhythms and can impact drug efficacy in a
time-dependent manner. Chronopharmacology is currently utilized
in the treatment of hypertension, asthma, and cancer, among other
disorders. As an example, low-density lipoprotein (LDL) cholesterol-
lowering statins, which inhibit the activity of HMG-CoA reductase,
traditionally have been prescribed to be taken in the evening. The
justification for this timing stems from the half-life of most statins
being relatively short, coupled with the timing of peak cholesterol
synthesis, which occurs in early morning108,109. Awareness of rhythmic
changes in efficacy, absorption or transport of a drug allows for
improved drug development and decreased side effects.

Xenobiotic metabolism and detoxification are performed by
three classes of hepatic proteins–Phase I drug oxidation proteins,
to which many cytochrome P450 enzymes (CYPs) belong, are
typically enzymes involved in oxidation, reduction, and hydrolyz-
ing reactions. An extensive list of CYPs displays a circadian
rhythm of activity, including those involved in xenobiotic meta-
bolism110,111, and it has been shown that the molecular clock may
control the basal circadian regulation of these CYPs via rhythmic
expression of the PAR subfamily of bZIP transcription factors
DBP (D-site binding protein), TEF (thyrotroph embryonic factor)
and HLF (hepatic leukemia factor). When challenged with
pentobarbital, triple knockout mice lacking these three transcrip-
tion factors failed to demonstrate the increased nighttime clearance
rate in the manner seen in wild type controls, and extensive
transcriptome analysis concluded that PAR bZIP proteins con-
tribute to circadian regulation of detoxification enzymes through
direct transcriptional regulation and also indirectly via constitutive
androstane receptor (CAR)112.

Phase II drug conjugation enzymes participate in drug conjuga-
tion and include sulfotransferase, methyltransferase, and glu-
tathione-S-transferase. Phase III drug transporters passively or
actively uptake or efflux xenobiotics in intestine, liver and other
tissues. It has been shown that Phase I, II and III proteins exhibit
rhythmic patterns of expression in mice, suggesting that transport
and metabolism of nutrients and xenobiotics must be coordinated
for maximal response113,114. Interestingly, studies indicate invol-
vement of RORα in the regulation of Phase I and Phase II
enzymes, including several CYP enzymes and the sulfotransferase
SULT2A1115,116. Further study of the chronopharmacokinetics of drug
detoxification enzymes will lead to more specialized treatments that
produce less harmful side effects via lower dosages, in part by taking
advantage of the timing of maximal efficiency of these proteins.

Chronotherapy and chronopharmacology are currently utilized
in cancer treatments, aiming to minimize toxic side effects while
maintaining effective treatment. In addition to targeting the tumor
cell cycle at times that are advantageous for preventing cell
proliferation, timing the administration of anti-cancer drugs can
reduce the occurrence of negative side effects. Levi et al.117

demonstrated in colorectal cancer patients that nighttime admin-
istration of the anti-cancer drug 5-fluorouracil was more effective
than constant-rate infusion of the same drug, with significant
reduction in the percentage of patients hospitalized for toxicity
coupled with a significant increase in the percentage of patients
responding with a 450% reduction in tumor size. This may be
due to the fact that the toxicity of 5-fluorouracil was found to be
dependent on the activity of dihydropyrimidine dehydrogenase,
which is expressed at peak levels during the night118. Further
studies (and perhaps a push for personalized medicine) are
necessary to ensure a balance in drug dosage and timing that is
both maximally effective against disease targets while minimally
affecting healthy cells. The continued study of liver chronophar-
macology will likely play a significant role in the development of
more effective drug treatments.
5. Conclusions

Circadian rhythms provide a relatively new perspective on hepatic
function and metabolism, particularly with respect to disrupted
rhythms and shift work. Circadian rhythms evolved in almost all
living organisms, are present in nearly all mammalian tissues and,
within the liver, serve to synchronize glucose, lipid, bile acid and
xenobiotic metabolic timing (Fig. 2). However, our understanding
of the homeostatic control exerted by the circadian system, in the



Figure 2 The suprachiasmatic nucleus (SCN) generates endogenous
biological rhythms, ensuring that internal physiology is synchronized
with the external environment. Under normal conditions, rhythms in
glucose and insulin, bile acids, lipids and drug enzymes contribute to
homeostatic control of liver physiology. Under conditions of circadian
disruption, including shift work, perturbations in these physiological
rhythms result in desynchronized timing between SCN and the
periphery and are associated with diabetes, obesity, and other
symptoms of metabolic syndrome.
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liver and elsewhere in the body, is only partially realized. Even
less understood is how disrupted timing leads to disease conditions
in humans. Conflicting studies abound and mechanisms remain
unknown, but the overarching evidence that circadian homeostasis
is critical to human health, and conversely, that circadian disrup-
tion negatively affects health, cannot be ignored. Further studies
that uncover the physiological means by which rhythms contribute
to homeostatic health will lead to improved disease treatment and
prevention. Chronopharmacology, chronotherapy and proteomic
analyses represent unique and largely unexplored resources in the
treatment and prevention of human diseases. In turn, treating
human disease under the additional context of circadian timing
will likely shed new informational light on the circadian regulation
of peripheral mechanistic pathways of metabolism.
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