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The question of the existence of universal homotopy commutative and homotopy associa-
tive H-spaces (called Abelian H-spaces) is studied. Such a space T (X) would prolong a map
from X into an Abelian H-space to a unique H-map from T into X . Examples of such pairs
(X, T ) are given and conditions are discussed which limit the possible spaces X for which
such a T can exist. Contrary to published assertions, the Anick spaces are shown not to
be universal Abelian H-spaces for the corresponding Moore spaces; however conditions are
discussed which could lead to a universal property with respect to a more limited range of
targets, and a restricted universal property is proven.
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By an Abelian H-space we mean a connected CW complex with an H-space structure that is homotopy associative and
homotopy commutative. A space T provided with a map i : X → T will be called the Abelianization of X if T is an Abelian
H-space which satisfies the following universal property: for any Abelian H-space Z and any map f : X → Z there is an
H-map f̂ : T → Z , unique up to homotopy, such that f̂ i ∼ f . Given a space X , an Abelianization may or may not exist, but if
it does it is unique. Thus an Abelianization plays a role for Abelian H-spaces analogous to the James construction for group
like spaces.

The problem of constructing an Abelianization for suitable spaces has received much recent attention [1,12,14,16,17,22,
26,27]. This concept was first discussed in [12], which took up the question of whether the Anick space T2n−1(pr) is the
Abelianization of the Moore space P 2n(pr) = S2n−1 ∪ pr e2n . The Anick spaces (see [1,2]) are certain H-spaces that lie in a
fibration sequence:

Ω2 S2n+1 πn−→ S2n−1 −→ T2n−1(pr) −→ Ω S2n+1

where πn is the Cohen–Moore–Neisendorfer map of degree pr . One of our conclusions is that T2n−1(pr) is not an Abelian-
ization for P 2n(pr). This conclusion is not consistent with the results of [26], where several arguments appear to have
gaps.

In [12], a secondary EHP sequence was developed involving the spaces T2n−1(pr) and spaces T2n(pr) (T2n(pr) is the fiber
of the degree pr map on S2n+1). Some sort of universal property was needed to form the compositions necessary for the
EHP machine. T2n(pr) was shown to be the Abelianization of the Moore space P 2n+1(pr), but the properties of T2n−1(pr)

were unresolved.
The goal of this work is to study the conditions under which an Abelianization exists as well as to seek a more restricted

universal property which is appropriate for the Anick spaces.
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In particular, we prove the following:

Proposition 1.2. Suppose T is an Abelianization of X and k = Fp or Q . Then

H∗(T ;k) ∼= S
(

H∗(X;k)
)

where S(V ) is the symmetric algebra on the vector space V .

We will say that a graded Abelian group G has torsion exponent pr if each element of G of finite order has order � pr .

Proposition 2.2. Suppose T is the Abelianization of X . Then the torsion exponent of H∗(T ) is the same as the torsion exponent
of H∗(X).

The next result severely impacts the question of which spaces X allow an Abelianization.

Theorem 2.3. Suppose that H∗(X) has bounded torsion and that pth powers are trivial in H∗(X; Z/p). Then if an Abelianization T
exists for X , H2n−1(X) is free for all n.

Every known example of an Abelianization T of a space X satisfies the condition that the H-map Ω S X h−→ T extending
the inclusion i : X → T has a right homotopy inverse. We call such an Abelianization split. In Section 3 we study H-spaces
T together with a map h :Ω S X → T which is split. In this case we construct a fibration sequence:

Ω S X h−→ T −→ R π−→ S X (3.1)

where R is a co-H-space. We also introduce the “universal Whitehead product” map (see [26]) W = ∇ω

Ω S X ∗ Ω S X ω−→ S X ∨ S X ∇−→ S X

where ω is the fiber of the inclusion: S X ∨ S X → S X × S X and ∇ is the folding map. We prove:

Theorem 3.7. Suppose T is Abelian and split. Then if π factors through W , T is the Abelianization of X

Ω S X ∗ Ω S X

W

R
π

S X .

In Section 4 we survey the known examples of Abelianization and analyze them from the point of view of Section 3.
In Section 5 we return to the problem of finding a suitable universal property for the Anick spaces. We will call an H-

space Z a suitable target for T2n−1(pr) iff each map f : P 2n(pr) → Z has a unique extension to an H-map f̂ : T2n−1(pr) → Z .
To this goal we introduce a torsion condition. Recall that πm(Y ; Z/pr) � [Sm−1 ∪pr em, Y ] is the mth homotopy group with
coefficients in Z/pr [23]:

Definition 5.6. A space Y is (n, r)-subexponential if for each s � 1,

pr+s−1πnps
(
Y ; Z/pr+s) = 0.

We then conclude that a generalized Eilenberg–MacLane space is a suitable target for T2n−1(pr) iff it is (2n, r) subexpo-
nential. In fact:

Theorem 5.7.

(a) If Z is any space which is (2n, r)-subexponential, then every map f : P 2n(pr) → Ω Z extends to a map f̂ : T2n−1(pr) → Z .
(b) If Z is a (2n, r)-subexponential H-space and there is an H-map

f̂ : T2n−1
(

pr) → Z

extending f : P 2n(pr) → Z , then f̂ is unique up to homotopy.

The question of whether the Anick spaces are Abelian H-spaces is as yet unresolved. In [26] an argument for the affir-
mative was presented, but it relied on some of the same unpublished details used in the claim that the Anick spaces are
the Abelianization of the Moore space. In Section 6 we prove:
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Corollary 6.4. If T2n−1(pr) is homotopy associative and Z is a (2n, r)-subexponential double loop space, then Z is a suitable target
for T2n−1(pr).

Throughout this paper, all spaces will be connected, localized at a fixed prime p, and of finite type. I would like to thank
Jim Lin for help with Section 2, Fred Cohen, and especially Joe Neisendorfer for many helpful discussions.

1. In this section we will assume that we are given a space X with an Abelianization T . Given a graded vector space V ,
we will write S(V ) for the symmetric algebra on V . This is the free commutative algebra generated by V and is a tensor
product of polynomial algebras on a basis for V modulo the relation 2x2 = 0 when x has odd degree. If V is a co-algebra,
S(V ) is a Hopf algebra.

For later purposes we will only assume that the map i : X → T is universal for a selected list of target spaces.

Proposition 1.1. Suppose k = Fp or Q , and i : X → T is universal for the targets Ω2 S2 X and K (k,m) for all m. Then

H∗(T ;k) ∼= S
(

H∗(X;k)
)
.

Proof. Since T is Abelian, there is a map of Hopf algebras:

θ : S
(

H∗(X;k)
) → H∗(T ;k).

We first show that θ is a monomorphism. Using the universal property we construct an H-map:

γ : T → Ω2 S2 X

extending the inclusion of X in Ω2 S2 X . We claim that the composition:

S
(

H∗(X;k)
) θ−→ H∗(T ;k) −→ H∗

(
Ω2 S2 X;k

)
is a monomorphism. In the case that k = Fp , this follows from the work of Cohen [7, 3.2] where the author shows
that H∗(Ω2 S2 X;Fp) is a symmetric algebra on certain generators which include the generators of H∗(X;k). Thus θ is a
monomorphism in this case. In case k = Q , choose a basis {xi} for H∗(X; Q ) and let x̂i be a dual basis. Then the map:

Π x̂i : X → Π K
(

Q , |xi |
)

is a monomorphism in rational homology. Using the universal property for each factor, we construct an extension:

X
Π x̂i

i

Π K (Q , |xi |).

T

e

Since H∗(Π K (Q , |xi |)) is the symmetric algebra on the xi , it follows that θ is a monomorphism in this case as well.
We will show that θ is an epimorphism by showing that the dual

θ∗ : H∗(T ;k) → S ∗(H∗(X;k)
)

is a monomorphism. Choose an element ξ ∈ Hn(T ;k) in the kernel of θ∗ of least possible dimension.
Let μ : T × T → T be the H-space structure map, so

μ∗ : H∗(T ;k) → H∗(T × T ;k) ∼= H∗(T ;k) ⊗ H∗(T ;k)

defines the coalgebra structure. Then(
θ∗ ⊗ θ∗)(μ∗(ξ)

) = ∇∗(θ∗(ξ)
) = 0.

Suppose μ∗(ξ) = ξ ⊗ 1 + ∑
ξ ′

i ⊗ ξ ′′
i + 1 ⊗ ξ where ξ ′

i and ξ ′′
i have dimension less than n. We then get:(

θ∗ ⊗ θ∗)(μ∗(ξ)
) =

∑
θ∗(ξ ′

i

) ⊗ θ∗(ξ ′′
i

)
.

However θ∗ ⊗ θ∗ factors:

H∗(T ;k) ⊗ H∗(T ;k)
θ∗⊗1−−−→ S ∗ ⊗ H∗(T ;k)

1⊗θ∗−−−→ S ∗ ⊗ S ∗.
Since θ∗ is a monomorphism in dimensions less than n this composition is a monomorphism when restricted to Hi(T ;k) ⊗
H j(T ;k) with i, j < n. Since
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∑
θ∗(ξ ′

i

) ⊗ θ∗(ξ ′′
i

) = 0,

it follows that ξ is primitive. Represent ξ by an H-map

ξ : T → K (k,n).

By the universal property, we need only show that ξ i : X → K (k,n) is trivial to conclude that ξ is trivial and hence θ∗ is
a monomorphism. But i∗ factors:

H∗(T ;k)
θ∗−→ S ∗ → H∗(X;k)

since the inclusion H∗(X;k) → H∗(T ;k) factors through S(H∗(X;k)). So i∗(ξ) = 0 since θ∗(ξ) = 0. �
Consequently a much weaker universal property—for example restricting acceptable targets Z to be double loop spaces—

is sufficient to calculate the homology. As a corollary, we have

Proposition 1.2. Suppose T is the Abelianization of X and k = Fp or Q . Then

H∗(T ;k) ∼= S
(

H∗(X;k)
)
.

2. In this section we will develop some general properties of an Abelianization T of X and conclude that there are some
severe limitations on the spaces X that are available.

Recall that if Z is an H-space, a class ξ ∈ Hm(Z; G) is called primitive if the corresponding map:

ξ : Z → K (G,m)

is an H-map. This is equivalent to the equation:

μ∗(ξ) = π∗
1 (ξ) + π∗

2 (ξ)

where μ : Z × Z → Z is the H-space structure map, and πi is the ith projection. Let P H∗(Z; G) be the subgroup of primitive
cohomology classes.

Lemma 2.1. Suppose T is the Abelianization of X . Then

i∗ : P H∗(T ; G) → H∗(X; G)

is an isomorphism.

Proof. This is immediate from the universal property. �
We will say that a space has cohomology torsion exponent pr if each cohomology class of finite order has order divid-

ing pr . Since all spaces we are considering are of finite type, the cohomology torsion exponent is the same as the homology
torsion exponent.

Proposition 2.2. Suppose X has cohomology exponent pr and T is the Abelianization of X . Then T has cohomology exponent pr .

Proof. Since the inclusion X → Ω2Σ2 X extends over T , S2 X is a retract of S2T , so the exponent of X is less than the
exponent of T . Suppose X has cohomology exponent pr and ξ ∈ Hm(T ) has order pr+1. Suppose that m is the minimal
dimension in which such a class ξ can occur. We will show that prξ is primitive. This will imply that prξ = 0 by 2.1,
completing the proof. To accomplish this we examine the cohomology group Hm(T ∧ T ) using a Künneth Theorem available
for all spaces of finite type [20, 5.7.26]

H̃m(T ∧ T ) ∼=
⊕

i+ j=m

H̃i(T ) ⊗ H̃ j(T ) ⊕
⊕

i+ j=m+1

Tor
(

H̃ i(T ), H̃ j(T )
)
.

Since H̃1(T ) is free, all nonzero terms on the right involve cohomology groups of dimension less than m; hence Hm(T ∧ T )

has homology exponent at most pr . Thus μ∗(prξ) has no middle terms and prξ is primitive, completing the proof. �
The next result is particularly useful when either X is a co-H-space or all Steenrod operations are trivial in X .

Theorem 2.3. Suppose H∗(X) has bounded torsion and pth powers are trivial in H∗(X; Z/p). Then if X has an Abelianization,
H2n−1(X) is free for all n.
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Proof. Suppose T is an Abelianization of X . We first show that all pth powers are trivial in H∗(T ; Z/p). The map

P : H∗(T ; Z/p) → H∗(T ; Z/p)

defined by P (ξ) = ξ p is a map of Hopf algebras, as is its dual

P∗ : H∗(T ; Z/p) → H∗(T ; Z/p).

P∗ is determined by its action on generators, all of which are in the image of H∗(X; Z/p). Since P is trivial when applied
to X , P∗ is as well. Thus P∗ and P are trivial when applied to T .

We will suppose now that there is an element ỹ ∈ H2n−1(X) of finite order with r > 1 and r maximal. Using the exact
sequence:

· · · → Hk+1(X; Z/p)
∂−→ Hk(X)

p−→ Hk(X)
ρ−→ Hk(X; Z/p) → ·· · (2.4)

we choose x′ ∈ H2n(X; Z/p) with ∂x′ = pr−1 ỹ and let y′ = ρ(̃y). Then β(r)(x′) = y′ . Choose dual classes x̂′ and ŷ′ with
〈x′, x̂′〉 = 1 = 〈y′, ŷ′〉 and β(r) ŷ′ = x̂′ . Now extend x̂′ and ŷ′ to primitive cohomology classes x̂ and ŷ in H∗(T ; Z/p). Let
x = i∗(x′) and y = i∗(y′) so 〈x, x̂〉 = 1 = 〈y, ŷ〉. We now appeal to the theorem of Browder:

Theorem 2.5. ([4, 5.4]) Let T be an Abelian H-space and x ∈ E(r)
2n , β(r)(x) = y ∈ E(r)

2n−1 where E(∗)∗ is the Backstein spectral sequence.

Then if r > 1, β(r+1)(xp) = {xp−1 y}—the class of xp−1 y in E(r+1)
2n−1 .

Note that Browder’s theorem does not assert that {xp−1 y} �= 0. Our first task will be to determine this. Suppose that
xp−1 y = β(s)(z) for some z and s � r. Observe, by induction on k, that〈

xk y, x̂k ŷ
〉 = k!

since x̂ and ŷ are primitive. Thus

(p − 1)! = 〈
xp−1 y, x̂p−1 ŷ

〉 = 〈
β(s)(z), x̂p−1 ŷ

〉 = 〈
z, β(s)(̂xp−1 ŷ

)〉
.

But β(s) ŷ = 0 and β(s)̂x = 0 for s < r, so we must have s = r. Since β(r) ŷ = x̂, we get

(p − 1)! = 〈
z, x̂p 〉

.

Since pth powers are trivial in H∗(T ; Z/p), we conclude that no such z can exist and β(r+1)(xp) �= 0 in E(r+1)
2np−1. It follows

that there is an element of order pr+1 in H∗(T ). By 2.2 there must be an element of H∗(X) of order pr+1 contradicting the
choice of r being maximal. This completes the proof in case r > 1.

Now suppose that each element of H2n−1(X) of finite order has order p. Write:

H∗(X) = F ⊕ Te ⊕ To

where F is free with a basis {̃z1, . . . , z̃m}, Te is a sum of cyclic groups of even degree generated by {̃e1, . . . , ẽ} and To is
a sum of cyclic groups of odd degree generated by {̃y1 . . . ỹk}. Using 2.4, construct corresponding classes in H∗(X; Z/p),
z′

i , e′
2, y′

i , f ′
i and x′

i with β(si)( f ′
i ) = e′

i and β(1)(x′
i) = y′

i . Using a monomial basis, construct dual classes ẑ′
i , ê′

i , ŷ′
i , f̂ ′

i , x̂′
i in

H∗(X; Z/p) and extend these to primitive cohomology classes ẑi , êi , ŷi , f̂ i , x̂i in H∗(T ; Z/p). Write zi , ei , yi , f i and xi for
the images of z′

i , e′
i , y′

i , f ′
i , x′

i in H∗(T ; Z/p).
Suppose now that 2n = |x1| � |xi | for all i, and we relabel x1 as x. Since β(s)(xp) = 0, ∂xp is divisible by p. Since |∂xp | is

odd, this implies that ∂xp = 0 so xp = ρ(x) for some class x ∈ H2np(T ). We claim that x has infinite order. If not xp = β(s)(θ)

for some θ ∈ E(s)
2np+1. Let J ⊂ H∗(T ; Z/p) be the subalgebra generated by ei , f i , zi . Then for ξ ∈ J , β(s)(ξ) ∈ J if it is defined.

Now

E(2) = Z/p
[
xp

1 , . . . , xp
k

] ⊗ Λ
(

y1xp−1
1 , . . . , ykxp−1

k

) ⊗ E(2)( J ).

For s � 2, E(s) consists only of classes of elements listed here. For dimensional reasons, any possible θ must be of the form

θ =
∑

σi x
p
i + σ ′

i yix
p−1
i + σ

where σi , σ ′
i and σ are elements of J . Furthermore, |xi | = 2n for each i that can occur in this expression. Now |σi | = 1 and

|σ ′
i | = 2. Suppose then that β(i)(θ) = 0 for all i < s; then we have

β(s)(θ) =
∑

σ ′β(s)(yix
p−1) + β(s)(σ )
i i
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which is in the ideal generated by J . Since xp is not in this ideal, we conclude that β(s)(θ) �= xp for any s or θ and x has
infinite order.

Now let H∗(T ) = F ⊕ T where F is free and T is a torsion group. We claim that F = S Z (F ), the symmetric ring over Z
of F . Consider the commutative diagram:

S Z (F )
α H∗(T )

S Z (F ) ⊗ Q � S Q (F ) � H∗(T ; Q ).

Since the left and bottom homomorphisms are monomorphisms, α is too and S Z (F ) ⊂ F . However the rank of S Z (F ) is the
same as the rank of S Q (F ) � H∗(T ; Q ) = F ⊗ Q , so S Z (F ) and F have the same rank. Consequently F = S Z (F ) and x ∈ F
must be of the form:

x = f (z1, . . . , zm)

for some polynomial f . Apply ρ to this equation to get

xp
1 = f (z1, . . . , zm)

where zi = pzi . This is a contradiction since f (a1 . . . zm) �= 0, but xp
1 = P (x1) = 0. �

Note: We have few examples of spaces which allow an Abelianization, and 2.2 and 2.3 suggest that the possibilities are
limited. We suggest here one method of finding Abelianization. This comes from the observation that if X and X ∪ en both
have an Abelianization, there is a fibration

T (X) → T
(

X ∪θ en) → T
(

Sn).
This is particularly useful if n is odd and p > 3. In this case T (Sn) = Sn and T (X ∪ e∗) can be constructed from clutching
data:

Sn−1 × T (X) → T (X)

obtained from the map θ : S2n−1 → X and the H-space structure on T (X).

3. In this section we assume that T is an H-space with a fixed structure map μ : T × T → T , and we are given a map
i : X → T . We do not assume that T is the Abelianization of X . We do, however, assume that both X and T are (n − 1)-
connected for n � 1 and that i∗ :πn(X,∗) → πn(T , e) is a nonzero isomorphism. This is a necessary condition if T were the
Abelianization of X by 2.1.

Recall the Hopf quasi fibration [8]:

T → T ∗ T → ST

where the inclusion T → T ∗ T is null homotopic. We construct an induced fibration sequence:

Ω ST
μ

T T ∗ T ST

Ω S X

Ω Si

h
T R

π

j

S X,

Si (3.1)

where the connecting map μ is a left homotopy inverse to the inclusion T → Ω ST . Note also that if T is homotopy
associative, μ is an H-map (see [25], [15, Proposition A.3]) and consequently h is an H-map as well.

Definition 3.2. We will say that T is split if the map h :Ω S X → T has a right homotopy inverse.

Recall that an (n − 1) connected space X is called atomic if πn(X) is a nontrivial cyclic group and any self map inducing
an isomorphism in πn is a homotopy equivalence.
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Proposition 3.3. Suppose T and S X are atomic.1 Then the following are equivalent:

(a) T is split;
(b) the inclusion Si : S X → ST has a left homotopy inverse;
(c) given a map f : X → Z where Z is an H-space, there is an extension f̂ : T → Z ; i.e., f̂ i ∼ f .

Note: We are not asserting that f̂ is an H-map in (c) or that it is unique.

Proof. (a) ⇒ (b). Let g : T → Ω S X be a right homotopy inverse for h. Suppose that X is (n − 1)-connected and πn(X) �= 0.
Then g and h induce inverse isomorphisms in πn = Hn . Thus the adjoint of g

g̃ : ST → S X

induces an isomorphism of Hn+1. Consequently the composition:

S X Si−→ ST
g̃−→ S X

induces an isomorphism in Hn+1. Since S X is atomic, e = g̃(Si) is an equivalence. Then e−1 g̃ is a left homotopy inverse
to Si.

(b) ⇒ (c). Let g̃ : ST → S X be a left homotopy inverse to Si. Let f̃ be the composition:

T
g−→ Ω S X

f∞−−→ Z

where g is the adjoint of g̃ and f∞ is an extension of f given by a choice of association in the James construction. Then
f̃ i ∼ f .

(c) ⇒ (a). Using (c), construct a map g : T → Ω S X such that gi is the inclusion of X in Ω S X . From the naturality of the
inclusion into the loops on the suspension, we get a homotopy commutative diagram:

X
i

i

T
g

Ω S X

Ωsi

h
T .

T Ω ST

μ

Consequently hgi ∼ i. Since i∗ · πn(X,∗) → πn(T , e) is an isomorphism it follows that

(hg)∗ :πn(T ) → πn(T )

is an isomorphism as well. Since T is atomic, hg is an equivalence and g(hg)−1 is a right homotopy inverse for h and hence
defines a splitting. �
Remark 3.4. In the case that T is the Abelianization of X , it is easy to see that if T is atomic, X is atomic; for any map
f : X → X induces an H-map f̂ : T → T . If f induces an isomorphism in πn(X), then f̂ will induce an isomorphism in πn(T ).
Hence f̂ is an H-equivalence. Since P H∗(T ; Z/p) ∼= H∗(X; Z/p), it follows that f induces isomorphisms in cohomology and
hence it is an equivalence.

Proposition 3.5. If T is split, R ∨ ST � S X � T and hence R is a co-H-space.

Proof. Each fibration:

F → E → S K

is given by a clutching construction (see [11, 1b]) and there is a natural homotopy equivalence:

E/F � S K � F .

Applying this we see that

R/T � S X � T .

Since T is split, the map T → R is null homotopic, so R/T � R ∨ ST . �
Proposition 3.6. Suppose T is split and Z is an H-space. Then two H-maps f0, f1 : T → Z are homotopic iff f0i ∼ f1i : X → Z .

1 Being atomic implies that πn(T ) ∼= πn+1(S X) is cyclic.
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Proof. Let ak : Jk(X) × T → J (X) × T → Ω S X × T → T be the restriction of the action map from the lower fibration in 3.1
and θ = a1 : X × T → T . Comparing the action maps for the two fibrations in 3.1 gives θ(x, t) = μ(i(x), t). Now by [15, A3]
we have:

ak(x1, . . . , xk, t) = θ
(
x1,ak−1(x2, . . . , xk, t)

)
.

Define hk : Jk(X) → T by hk(x1, . . . , xk) = ak(x1, . . . , xk,∗). Then we have

hk(x1 . . . xk) = θ
(
x1,hk−1(x2, . . . , xk)

) = μ
(
i(x1),hk−1(x2, . . . , xk)

)
.

Thus we have homotopy commutative diagrams with i = 0 or 1:

X × Jk−1(X)
i×hk−1

a

T × T
fi× f i

μ

Z × Z

Jk(X)
hk

T
fi

Z .

Suppose f0i ∼ f1i and f0hk−1 ∼ f1hk−1. Since the top rows are homotopic for i = 0,1, we see that f0hka ∼ f1hka. Since
S(a) has a right homotopy inverse and Z is an H-space, we conclude that f0hk ∼ f1hk . However these homotopies may not
be compatible. This is similar to a phantom map situation where the filtration is not by skeletons or compact subsets but
by the James filtration. This can be handled by the same methods (see [9]). Define

V =
∞∨

k=0

Jk(X)

and construct a cofibration sequence:

V → J (X) → C(X) → S V → S J (X).

The map S V → S J (X) has a right homotopy inverse, so the map S J (X) → SC(X) is null homotopic. Now the difference

S( f0h) − S( f1h) : S J (X) → S Z

is null homotopic when restricted to S V since f0hk ∼ f1hk for all k. Thus it factors over SC(X) and is consequently inessen-
tial. Thus S( f0h) ∼ S( f1h). Since Z is an H-space f0h ∼ f1h :Ω S X → T → Z . Since T is split, we have f0 ∼ f1. �

We see that if T is split extensions exist and if we have an extension which is an H-map, it is unique. The hard part is
to construct extensions which are H-maps. The next result addresses this issue.

Recall [26], the universal Whitehead product W , which is the composition:

Ω S X ∗ Ω S X ω−→ S X ∨ S X ∇−→ S X

where ω is the fiber of the inclusion of S X ∨ S X in S X × S X and ∇ is the folding map.

Theorem 3.7. Suppose T is Abelian and split. Then if π factors through W , T is the Abelianization of X

Ω S X ∗ Ω S X

W

R
π

S X .

Proof. Suppose Z is Abelian and f : X → Z . Extend f to an H-map f∞ :Ω S X → Z . Now consider the diagram:

Ω(S X ∨ S X)
Ω∇

Ω j

Ω S X
f∞

Z

Ω(S X × S X) ∼= Ω S X × Ω S X
f∞× f∞ Z × Z .

(3.8)

Both components Ω(S X × S X) → Z in the bottom row are H-maps. The composition of the bottom row and the right
vertical arrow is the sum of these two H-maps. Since Z is Abelian, this composition is an H-map. Thus all maps in this
diagram are H-maps. Thus to check that it is homotopy commutative, it suffices to check the restriction to X ∨ X , where
both sides are f ∇ . From this we conclude that ( f∞)ΩW ∼ ∗, since ΩW = (Ω∇)(Ωω) and (Ω j)(Ωω) ∼ ∗. The hypothesis
that π factors though W implies that f∞Ωπ ∼ ∗.
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The remainder of the proof follows [12, Part I, Lemma 3.5]. Let g : T → Ω S X be a right homotopy inverse to h. Since
T is homotopy associative, h is an H-map, so h(1 − gh) ∼ ∗. This implies that there is a map s :Ω S X → Ω R such that
(Ωπ)s ∼ 1 − gh. Consequently

f∞ − f∞gh ∼ f∞(1 − gh) ∼ f∞(Ωπ)s ∼ ∗.

So f∞ ∼ f∞ gh. Let f̂ = f∞ g : T → Z . Let i′ : X → Ω S X be the inclusion. Let ı̂ : X → Ω ST be the adjoint of Si. Then by 3.1,
hi′ ∼ μ̂ı ∼ i. Consequently f̂ i = f∞ gi ∼ f∞ ghi′ ∼ f∞i′ ∼ f so f̂ is an extension of f . To see that f̂ is an H-map, consider
the diagram:

Ω S X × Ω S X
h×h

T × T
f̂ × f̂

Z × Z

Ω S X
h

T
f̂

Z

where the verticle maps are the H-space structure maps. The left hand square and the rectangle commute up to homotopy.
Since h × h has a right homotopy inverse, the right hand square does as well so f̂ is an H-map. To see that f̂ is unique,
suppose f̂ ′ : T → Z is another H-map extending f . Then f̂ ′h :Ω S X → Z is an H-map excluding f , so f̂ ′h ∼ f̂ h. Since h has
a right homotopy inverse, f̂ ′ ∼ f̂ . �
Corollary 3.9. Suppose T is Abelian and π factors through W . Then there is a homotopy commutative diagram:

R
α

π

Ω S X ∗ Ω S X

W

β
R

π

S X

with βα a homotopy equivalence.

Proof. By 3.7, π factors through W . To see that W factors through π , consider the diagram (3.8) with T in place of Z and
h in place of f∞ . It follows that h(ΩW ) ∼ ∗. So ΩW factors through Ωπ . Since Ω S X ∗ Ω S X is a co-H-space, W factors
through π . Thus we have constructed α and β . It remains to show that βα is an equivalence. Looping the diagram, we get:

Ω R
Ωα

Ωπ

Ω(Ω S X ∗ Ω S X)

ΩW

Ωβ
Ω R.

Ωπ

Ω S X

Since Ωπ induces a monomorphism in mod p homology (Ωβ)(Ωα) does as well. Since ΩR is of finite type, this implies
that (Ωβ)(Ωα) induces an isomorphism in mod p homology. Likewise (Ωβ)(Ωα) induces an isomorphism in rational
homology, so it is an equivalence and βα is an equivalence. �
Remark 3.10. When T is the Abelianization of X , the algebraic structure can be described as follows: Let L be the free
Lie algebra on H∗(X;k) and U (L) its universal enveloping algebra. Then H∗(Ω S X;k) ∼= U (L) and H∗(T ;k) = U (L/[L, L]).
[L, L] ⊂ L is the free Lie algebra on the desuspension of H̃∗(R;k) and H∗(ΩR;k) = U ([L, L]).

Remark 3.11. Since H∗(Ω S X;k) → H∗(T ;k) is the standard map from a tensor algebra to its Abelianization in the case
that T is the Abelianization of X , H∗(ΩR;k) is the universal enveloping algebra U ([L, L]) where L is the Lie algebra given
by H∗(Ω S X;k). Thus the image of the map

H∗(R;k) → H∗(Ω S X;k)

is [L, L] where L is H∗(Ω S X;k) considered as a Lie algebra L.

4. In this section we will briefly review the known examples of spaces X with an Abelianization T . These occur in
various places in the literature. They are all split and we will examine them in terms of the fibration sequence 3.1.

(a) X = S2n , T = Ω S2n+1, R = ∗. T is Abelian iff p > 2.
(b) X = S2n+1 = T , R = S4n+3, π = [i, i] : S4n+3 → S2n+2. T is Abelian iff p > 3.
(c) X = P 2n+1(pr), T = T2n(pr) = S2n+1{pr}—the fiber of the degree pr map pr : S2n+1 → S2n+1. The structure map is

given by:
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π : R =
∨
k�1

S2nk+2 X
∨

adk−1(u)
([v,v])−−−−−−−−−−→ P 2n+2(pr)

where v : P 2n+1(pr) → P 2n+1(pr) is the identity map and

u = βr v : P 2n(pr) → P 2n+1(pr).
This splitting first appeared in [6, 1.1]. T is Abelian if p > 3 [21]. (See also [14].)

(d) X = S2m ∪θ e2n+1, T = the fiber of Sθ : S2n+1 → S2m+1. This is an immediate generalization of (c), however the proof
of the splitting is quite different [14] and simpler. The structure map is given by:

π : R =
∨
k�0

S2mk+2n+2 X
∨

ad(k)(u)
([v,v])−−−−−−−−−−→ S X

where u and v are defined similarly to (c) and the corresponding Whitehead products with coefficients in X are in the
sense of [13]. The proof that T is Abelian for p > 3 is due to Grbic [17].

(e) X = S2n−1 ∪ωn e2np−2—2np − 2 skeleton of Ω2 S2n+1. T = Ω J p−1(S2n), where J p−1(S2n) is the (p − 1)st filtration of
the James construction J (S2n)

J p−1
(

S2n) = S2n ∪ e4n ∪ · · · ∪ e2n(p−1),

R =
∨
k�0

S(2np−2)k+4n−1 ∨
∨
k�0

S(2np−2)(k+1)+2n π−→ S X

is given by ad(k)(v)([u, u]) ∨ ad(k+1)(v)(u). Here by [u, u] we mean the composition:

S4n−1 [i,i]−−→ S2n −→ S X

and by [v, φ], for φ : Sm → S X , we mean the unique map (up to homotopy in the homotopy commutative square):

S2np−2+m
[v,φ]

S X

Sm X
ω

Sm ∨ S X .

φ∨1

This result appears in a number of places [12,14,19].
(f) X = S2n+1 ∪ωn e2np−2 ∪pi e2n−1—the 2np −1 skeleton of Ω2 S2n+1. In this case T is the Selick space F2 (see [24]) given

by the pull back:

F2 Ω2 S2n+1

H

S2np−1 Ω2 S2np+1.

This is the most complicated example and has been thoroughly worked out by Grbic [16].
(g) We might try to generalize this to other spaces in the nested sequence:

Ω J p−1
(

S2n) ⊂ F2 ⊂ Ω J p2−1

(
S2n) ⊂ F3 ⊂ · · · .

However none of these spaces beyond F2 is the Abelianization of some space X . This is because in each case there is an
indecomposable homology class x2 ∈ H2np2−2(T ; Z/p) such that (P 1)∗(x2) ∈ H(2np−2)p(T ; Z/p) is decomposable. Thus x2

must lie in the image of i∗ : H∗(X; Z/p) → H∗(T ; Z/p) modulo decomposables, while (P 1)∗(x2) does not lie in the image
of i∗ .

(h) Let X be a p-local C W complex with  cells, each of which has odd dimension such that  < p − 2. Then X has an
Abelianization [27]. These spaces were first discussed in [5].

5. The origin of the study of Abelianization arose from an attempt to understand the mapping properties of the Anick
spaces T2n−1(pr) [12]. Recall that the space T2n(pr) is the Abelianization of the Moore space P 2n+1(pr). It is clear from 2.2,
2.3, or 5.2 (below) that T2n−1(pr) is not the Abelianization of any subspace. Nevertheless, the considerations of [12] suggest
that it should have some universal mapping property.

Definition 5.1. Let M(n, r) be the category of H-spaces Z such that there is a 1–1 correspondence between [P 2n(pr), Z ] and
the set of homotopy classes of H-maps from T2n−1(pr) to Z .
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We seek to understand this category. Examining the proofs of 2.2 and 2.3 suggests that we first inquire as to which
Eilenberg–MacLane spaces belong to M(n, r). We consider K (G,k) where G is a finitely generated Abelian group. The homo-
topy classes of H-maps from T2n−1(pr) to K (G,k) are in 1–1 correspondence with P Hk(T2n−1(pr); G). It suffices to consider
the cases G = Z(p) and G = Z/pr .

Theorem 5.2. The primitive cohomology classes in T2n−1(pr) are given by:

(a) P Hk(T2n−1(pr)) =
{

Z/p if k = 2nps, s � 0,

0 otherwise.

(b) P Hk(T2n−1(pr); Z/pt) =
⎧⎨
⎩

Z/p if k = 2nps and t � r + s,

Z/p if k = 2nps − 1 and t � r + s,

0 otherwise.

Proof. (a) Hk(T2n−1(pr)) �= 0 iff k = 2ni and the projection map:

T2n−1
(

pr) → Ω S2n+1

is onto in cohomology. Let ek ∈ H2nk(Ω S2n+1) be the dual of the kth power of some chosen (and fixed) generator in
H2n(Ω S2n+1). Then the diagonal map is given by:

μ∗(ek) =
∑

i+ j=k

ei ⊗ e j.

Let vk be the image of ek in H2nk(T2n−1(pr)). The order of vk is pν(k)+r where ν(k) is the number of powers of p in k.
Suppose now that αk is an integer such that αk vk is primitive. If k = ps with (p, ) = 1 and  > 1, μ∗(vk) contains the
term v ps ⊗ v ps(−1) which has the same order as vk . So αk vk cannot be a nonzero primitive in this case. However the
middle terms of μ∗(v ps ) all have orders pr+v(i) where 0 < i < ps . These orders all divide pr+s−1 and include pr+s−1 when
i = ps−1. Thus pr+s−1 v ps generates the primitives and has order p.

(b) Since H2nk(T2n−1; Z/pt) ∼= H2nk(T2n−1) ⊗ Z/pt , P H2nk(T2n−1; Z/pt) is only nonzero when the primitive in
H2nk(T2n−1) is not divisible by pt . Since H2nps

(T2n−1) has order pr+s , this implies that t � r + s.
From the exact sequence:

0 → H2nk−1(T2n−1; Z/pt) δ−→ H2nk(T2n−1)
pt−→ H2nk(T2n−1)

we see that if θ ∈ H2nk−1(T2n−1; Z/pt) is primitive, δ(θ) is as well, so if θ is nonzero. k = ps and δ(θ) = pr+s−1 v ps up to a
unit. In case t � r + s, v ps is also in the image of δ; write v ps = δ(γ ) so θ = pr+s−1γ since δ is a monomorphism. In this
case the image of θ under the homomorphism:

μ∗ − π∗
1 − π∗

2 : H2nps−1(T2n−1; Z/pt) → H2nps−1(T2n−1 × T2n−1; Z/pt)
must be zero since μ∗ − π∗

1 − π∗
2 factors through H2nps−1(T2n−1 ∧ T2n−1; Z/pt) and all the elements of this group have

order dividing pr+s−1. So in case t � r + s, θ is primitive. Suppose on the other hand that d = r + s − t > 0. We will show
that there are no primitives in H2nps−1(T2n−1; Z/pt). To see this note that Z/pt is an injective Z/pt module. Consequently

Hm(
W ; Z/pt) ∼= Hom

(
Hm

(
W ; Z/pt), Z/pt).

It follows that there is a nonzero primitive class θ in H2nps−1(T2n−1; Z/pt) iff there is a class in H2nps−1(T2n−1; Z/pt) which
is not in the image of the homorphism:

μ∗ − π1∗ − π2∗ : H2nps−1
(
T2n−1 × T2n−1; Z/pt) → H2nps−1

(
T2n−1; Z/pt).

A calculation with the homology Serres spectral sequence for the fibration:

S2n−1 → T2n−1 → Ω S2n+1

with Z/pt coefficients shows that there is a subalgebra

Z/pt[v ′;2npt−r] ⊗
∧(

u′;2npt−r − 1
)

of H∗(T2n−1; Z/pt). Since H2nps−1(T ; Z/pt) has only one generator, it must be (v ′)pd−1u′ up to a unit. This is in the image
of μ∗ − π1∗ − π2∗ iff d > 0, so P H2nps−1(T2n−1; Z/pt) = 0 when d > 0. �
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Corollary 5.3. Suppose E is a generalized Eilenberg–MacLane space. Then E ∈ M(n, r) iff ∀s > 0 we have:

(a) pr+s−1π2nps (E) = 0;
(b) the torsion subgroup of π2nps−1(E) has exponent at most pr+s−1 .

Proof. Since there are H-maps:

K (Gk,k)
αk−→ E

βk−→ K (Gk,k)

with βkαk ∼ 1, E ∈ M(n, r) iff K (Gk,k) ∈ M(n, r) for each k. This is trivial if k � 2n. Thus for k > 2n this is equivalent to the
statement that there are no nontrivial H-maps from T2n−1(pr) to K (Gk,k). It suffices to check this in the cases Gk = Z(p)

and Gk = Z/pt . We apply 5.2. There is a nontrivial H-map from T2n−1(pr) to K (Z(p),k) iff k = 2nps with s � 1 so this
condition is equivalent to the statement that π2nps (E) is a torsion group for each s � 1. There are no nontrivial H-maps
from T2n−1(pr) to K (Z/pt ,k) iff t < r + s whenever k = 2nps or 2nps − 1 with s � 1. �

The problem with targets that are Eilenberg–MacLane spaces is consequently not one of existence but of uniqueness. The
next result shows that these conditions affect uniqueness in a more general context.

Theorem 5.4. Suppose f̂1, f̂2 : T2n−1(pr) → Z are two H-maps extending f : P 2n(pr) → Z , where Z is an Abelian H-space. Suppose
also that for each s � 1:

(a) pr+s−1π2nps (Z) = 0;
(b) the torsion subgroup of π2nps−1(Z) has exponent at most pr+s−1

then f1 ∼ f2 .

Proof. Let g = f̂1 − f̂2. Since Z is Abelian, g is an H-map. Let Z [m] be the mth Postnikov section of Z and let

πm : Z → Z [m]

be the projection. We will show by induction on n that πm g ∼ ∗. This is clearly true when m � 2n. Consider the fibration
sequence:

K
(
πm+1(Z),m + 1

) ∂−→ Z [m+1] ρm−→ Z [m] km−→ K
(
πm+1(Z),m + 2

)
.

Assuming that πm g ∼ ∗ we can factor πm+1 g through K (πm+1(Z),m + 1). Choose any map γ : T2n−1(pr) → K (πm+1(Z),

m + 1) with ∂γ ∼ πm+1 g . We claim that γ is an H-map. Let

�(γ ) : T2n−1
(

pr) ∧ T2n−1
(

pr) → K
(
πm+1(Z),m + 1

)
be the H-deviation. According to [28, 5.1 and 5.3], the H-space structure on Z induces an H-space structure on Z [m] for each
m such that the maps πm : Z → Z [m] and ρm : Z [m] → Z [m] are H-maps. Consequently ∂γ ∼ πm+1 g is an H-map. Since ∂ is
an H-map as well, ∂�(γ ) ∼ �(∂γ ) ∼ ∗. Thus �(γ ) factors through Ωkm:

T2n−1
(

pr) ∧ T2n−1
(

pr) ε−→ Ω Z [m] Ωkm−−−→ K
(
πm+1(Z),m + 1

)
.

The map ε is adjoint to the composition:

ST2n−1
(

pr) ∧ T2n−1
(

pr) → Z [m] km−→ K
(
πm+2(Z),m + 2

)
.

By [18, 4.5], ST2n−1(pr) ∧ T2n−1(pr) is a one point union of Moore spaces up to homotopy. However for each Moore space
P  and map ϕ : P  → Z [m] we have kmϕ ∼ ∗; this follows since any nontrivial map ϕ : P  → Z [m] could only occur when
 � m + 1. Consequently γ is an H-map. Applying 5.3 we see that γ ∼ ∗ so πm+1 g ∼ ∗. Since Hk(T2n−1(pr)) is finite for
each k, there are no phantom maps (see [9] or [10]). Thus g ∼ ∗. �

The conditions (a) and (b) in 5.3 and 5.4 will clearly play a role in the eventual understanding of the mapping properties
of T2n−1. We note the following.

Lemma 5.5. Suppose Y is of finite type and b > 0. Then paπm(Y ; Z/a +b) = 0 iff paπm(Y ) = 0 and the torsion in πm−1(Y ) has order
at most pa.
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Proof. Consider the ladder of long exact sequences:

πm(Y )

(A)

pa+b

pa

πm(Y )

(B)pa

πm(Y ; Z/pa+b)

pa

πm−1(Y )
pa+b

pa

πm−1(Y )

pa

πm(Y )
pa+b

πm(Y ) πm(Y ; Z/pa+b) πm−1(Y )
pa+b

πm−1(Y ).

Assume first that paπm(Y ; Z/pa+b) = 0. Then from square (B) we see that paπm(Y ) ⊂ pa+bπm(Y ). Since b > 0, this implies
that the elements of paπm(Y ) are divisible by arbitrarily high powers of p. Since Y is of finite types, we conclude that
paπm(Y ) = 0. Suppose there is an element ξ ∈ πm−1(Y ) of order pn where n > a. Then

pa+b(pn−a−1ξ
) = pn+b−1ξ = 0

so pn−a−1ξ is in the image of πm(Y ; Z/pa+b). Since paπm(Y ; Z/pa+b) = 0, it follows that pn−1ξ = pa(pn−a−1ξ) = 0.
Conversely suppose that paπm(Y ) = 0 and all torsion in πm−1(Y ) has order dividing pa . Let ξ : Pm(pa+b) → Y represent

an element of πm(Y ; Z/pa+b). Consider the diagram:

Sm pa

Sm

ξ ′′

Pm(pa+b) Pm(pb) Pm(pa+b)
ξ

Y .

Sm−1
pa

Sm−1

ξ ′

Let ξ ′ be the restriction of ξ to Sm−1. Since pa+bξ ′ = 0, ξ ′ has finite order. By hypothesis paξ ′′ = 0 so an extension ξ ′′ : Sm →
Y exists. By hypothesis paξ ′′ = 0 so the middle horizontal composition is null homotopic. This composition is paξ . �
Definition 5.6. A space Y is (n, r)-subexponential if for each s � 1

pr+s−1πnps
(
Y ; Z/pr+s) = 0.

With this definition in hand, we have:

Theorem 5.7.

(a) If Z is any space which is (2n, r)-subexponential, then every map f : P 2n(pr) → Ω Z extends to a map f̂ : T2n−1(pr) → Z .
(b) If Z is a (2n, r)-subexponential H-space and there is an H-map

f̂ : T2n−1
(

pr) → Z

extending f : P 2n(pr) → Z , then f̂ is unique up to homotopy.

Proof. Part (a) follows directly from [1, 4.7]. Part (b) follows from 5.4 and 5.5. �
6. In this section we will discuss some of the possible options for a universality property for T2n−1(pr). We begin

with the observation that ST2n−1(pr) �� P 2n+1(pr). In fact, there is a space G2n(pr) which is a retract of ST2n−1(pr) and
P 2n+1(pr) ⊂ G2n(pr) ⊂ ST2n−1(pr). G2n(pr) contains cells of dimension 2npi and 2npi + 1 for each i � 0 and no other cells
in positive dimensions [18, 4.4c]. In particular, there is no map φ : T2n−1(pr) → Ω P 2n+1(pr) which induces an isomorphism
in π2n−1. In terms of 5.7(a) this is correlated to the fact that [6]:

prπ2np−1
(
Ω P 2n+1(pr); Z/pr+1) �= 0.

We might ask for an H-map:

T2n−1
(

pr) → Ω2 P 2n+2(pr)
inducing an isomorphism in π2n−1. There clearly is a map since SG2n(pr) splits as a one point union of Moore spaces [18,
4.5].
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Proposition 6.1. There is a unique H-map f̂ : T2n−1(pt) → Ω2 P 2n+2(pr) extending the inclusion of P 2n(pr) iff the suspension map:

T2n−1
(

pr) E−→ ΩT2n
(

pr)
is an H-map.

Proof. If E is an H-map, we compose E with the loops on the map

g : T2n
(

pr) → Ω P 2n+2(pr)
(example 4c) to obtain

T2n−1
(

pr) → ΩT2n
(

pr) Ω g−−→ Ω2 P 2n+2(pr).
Conversely, since T2n(pr) is a retract of Ω P 2n+2(pr) we see that we can construct an H-map

T2n−1
(

pr) −→ Ω2 P 2n+2(pr) Ωh−−→ ΩT2n
(

pr).
In fact, there is only one possible H-map T2n−1(pr) → ΩT2n(pr) and only one possible H-map T2n−1(pr) → Ω2 P 2n+2(pr)

extending respectively the inclusions of P 2n(pr) by 5.7(b). �
Proposition 6.2. Suppose T2n−1(pr) is homotopy associative. Then the suspension map

E : T2n−1
(

pr) → ΩT2n
(

pr)
is an H-map.

Note: In [26, 1.2], the author states that T2n−1(pr) is homotopy associative for p � 5. Unfortunately, the argument given
relies on some of the same assertions that appear in the universality argument and more details are needed to justify this
claim.

Proof. The inclusion f : G2n → ST2n−1 yields the homotopy commutative diagram of fibrations (as in 3.1)

Ω ST2n−1
∂ T2n−1 T2n−1 ∗ T2n−1 ST2n−1

ΩG2n
h T2n−1 R G2n.

(See also [18, 4.4].) Since T2n−1 is homotopy associative,

∂ :Ω ST2n−1 → T2n−1

is an H-map; now h :ΩG2n → T2n−1 is the composition:

ΩG2n
Ω f−−→ Ω ST2n−1

∂−→ T2n−1

so h is also an H-map. Also from [18, 4.4] we have a homotopy commutative diagram of fibration sequences:

ΩG2n
h T2n−1

E

R G2n

ΩGm
Ωϕ

ΩT2n E Gm
ϕ

T2n.

From this we see that Eh ∼ Ωϕ is an H-map. Now consider the diagram:

ΩG2n × ΩG2n
h×h T2n−1 × T2n−1

E×E
ΩT2n × ΩT2n

ΩG2n
h T2n−1

E
ΩT2n.

Since Eh is an H-map, the rectangle commutes up to homotopy. Since h is an H-map, the left square does as well. But then
since h × h has a right homotopy universe, the right hand square does and E is an H-map. �
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Proposition 6.3. Suppose Z is a double loop space and Z is (2n, r)-exponential. Then each map f : P 2n(pr) → Z has a unique exten-
sion to an H-map f̂ : T2n−1(pr) → Z iff E : T2n−1(pr) → ΩT2n(pr) is an H-map.

Proof. Suppose E is an H-map and f : P 2n(pr) → Z . Since Z is a double loop space, we can extend f to an H-map:

f :Ω2 P 2n+2(pr) → Z .

Since T2n(pr) is a retract of Ω P 2n+2(pr), we can form f̂ as the composition:

T2n−1
(

pr) E−→ ΩT2n
(

pr) Ω i−→ Ω2 P 2n+2(pr) f−→ Z .

By 5.4, f̂ is unique.
Conversely, if extensions always exist when the target is an (n, r)-subexponential double loop space, we can construct

an H-map:

T2n−1
(

pr) → Ω2 P 2n+2(pr)
since prπ2np−1(Ω

3 P 2n+2(pr); Z/pr+1) = 0. Now compose this map with the loops on the map Ω P 2n+2(pr) → T2n(pr). �
Corollary 6.4. If T2n−1(pr) is homotopy associative and Z is a double loop space which is (2n, r)-subexponential, then each map
f : Pm(pr) → Z extends uniquely to an H-map f̂ : T2n−1(pr) → Z .

This is a desirable universal property. However, it is not sufficient for the program in [12]. For that purpose we would
need to know that Tm(pr) is an acceptable target for any m.

We propose the following strengthening of 5.6.

Definition 6.5. A space Z is strongly (n, r)-subexponential if pr+kπi(Z) = 0 for all i � npk+1 and k � 0.

Conjecture 6.6. P 2n(pr)
i−→ T2n−1(pr) is universal for targets which are strongly (2n, r)-subexponential Abelian H-spaces.

Proposition 6.7. T2n−1(pr) is strongly (2n, r)-subexponential.

Proof. Consider the fibration sequence:

Wn → T2n−1
(

pr) → ΩT2n
(

pr)
from [1,12,18]. By the results of Cohen, Moore and Neisendorfer [6], pπi(Wn) = 0. Neisendorfer has proven that

prπi
(
T2n

(
pr)) = 0

(see [21]), so we conclude that

pr+1πi
(
T2n−1

(
pr)) = 0.

Thus it suffices to show that

prπi
(
T2n−1

(
pr)) = 0 for i � 2np.

For i � 2np, πi(Wn) = 0 except when i = 2np − 3 and (in case p = 3) i = 2np. We will examine these groups. According to
[1,18], T2n−1 is a retract of ΩG2n . The 2np + 1 skeleton of G2n is:

P 2n+1(pr) ∪ C P 2np(
pr+1).

Now π2np−3(T2n−1(pr)) ⊂ π2np−2(G2n) ∼= π2np−2(P 2n+1(pr)). This group has order at most pr . Likewise π2np(T2n−1(pr)) is
contained in π2np+1(G2n) which is a quotient of π2np+1(P 2n+2(pr)). This group also has exponent pr . �

If Conjecture 6.6 holds, we could show that pr · π∗(T2n−1(pr)) = 0 and consequently each map f : Pm+1(pr) → Ti has a
unique extension to an H-map f̂ : Tm(pr) → Ti . This is sufficient for the purposes of [12].

It is interesting to note that this condition is precisely the conclusion of a theorem of Barratt [3].

Theorem 6.8 (Barratt). Suppose S X is n-connected and has characteristic pr . Then S X is strongly (n, r)-subexponential.

This invites the question of whether other n-connected suspensions of characteristic pr support a map to an Abelian
H-space which is universal for targets that are strongly (n, r)-subexponential H-spaces. Proposition 1.1 suggests that if so,
these Abelian H-spaces would have homology which is a symmetric algebra.
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