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The genes encoding for the large (rbcL) and small (rbeS) subunits of ribulose-1,5-bisphosphate carboxylase (RuBisCQO) were cloned from the obligate

autotroph Thiobacillus ferrooxidans. a bacterium involved in the bioleaching of minerals. Nucleotide sequence analysis of the cloned DNA showed

that the two coding regions are separated by a 30-bp intergenic region, the smallest described for the RuBisCO genes. The rbocL and rbeS genes

encode polypeptides of 473 and 118 amino acids. respectively. Comparison of the nucleotide and amino acid sequences with those of the genes

for rbeL and rbeS found in other species demonstrated that the T. ferrooxidans genes have the closest degree of identity with those of Chromatium

vingsum and of Alvinoconcha hessleri endosymbiont. Both T. ferrooxidans enzyme subunits contain all the conserved amino acids that are known
to participate in the catalytic process or in holoenzynie assembly.

CO, fixation; Nucleotide sequence: Amino acid sequence; Thiobacillus ferrooxidans

I. INTRODUCTION

Thiobacillus ferrooxidans is an acidophilic, chemolitho-
trophic, Gram-negative bacterium that participates in
bacterial leaching of minerals [1]. It is an obligate auto-
troph fixing atmospheric CO, via the Calvin cycle [2].
The key enzyme of this pathway, ribulose bisphosphate
carboxylase-oxygenase (RuBisCO) from T. ferrooxi-
dans has been isolated and characterized in our labora-
tory [3]. The enzyme has a native M, of 570 000 and is
composed of M, 54 000 and M, 15 500 subunits, corre-
sponding to a type I enzyme with its characteristic hexa-
decameric structure, LS. The enzyme has apparent K
values for CO, and for ribulose bisphosphate of 28 uM
and 80 uM. respectively, and it can be inhibited by
6-phosphogluconate. It was estimated that RuBisCO
accounts for 2-5% of the total protein present in a
whole extract, and its specific activity increases when
the percentage of the CO, is raised in the air bubbling
through the culture [3].

RubisCO is present in a wide range of autotrophic
organisms, from prokaryotes to higher plants. The LsS;
structure for the holoenzyme is found in the majority of
the bacteria, algac and higher plants studied. A less
common form of RuBisCO which contains only large
subunits, corresponding to the type Il enzyme, is found
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in some purple non-sulfur photosynthetic bacteria such
as Rhodospirillum rubrum {4). Rhodobacter sphaeroides
and Rhodobacter capsulatus synthesize both type I and
type II RuBisCO [5.6].

Some of the genes encoding for the large subunit of
this enzyme in different organisms have been se-
quenced, showing a high degree of sequence similarity
[7-13]. However, a great heterogeneity in nucleotide
sequences has been found in genes encoding for the
small subunit [8,12-135].

The growth of 7. ferrooxidans, an economically im-
portant microorganism, appears to be regulated by its
capacity to fix CO,. For this reason, the study of the
RuBisCO genes and the regulation of their expression
has special biotechnological interest. Recently, Kusano
et al. reported the cloning and expression of T.. ferrooxi-
dans RuBisCQ in E. coli, confirming the hexadecameric
form of the enzyme [16]. This group, however, did not
publish the sequence of the genes which they cloned. In
this communication we present the cloning and sequen-
cing of T. ferrooxidans rbcL and rbcS genes,

2. MATERIALS AND METHODS
2.

. Bacterial strains and phages

E. coli IM105, maintained in minimal medium supplemented with
glucose was used as a recipicnt for recombinant M13 DNA. E. coli
C600 transformed with recombinant plasmids was grown in Luria
broth supplemented with 100 ug of ampicillin per ml of culture.

T. ferrooxidans strain ATCC 19859 was grown in Mackintosh me-
dium [17]. All recombinant DNAs were constructed according to
standard methods {18].
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2.2. Chromosomal DNA library

A T. ferroxidans strain ATCC 19859 gene library was constructed
by total digestion of chromosomal DNA with BamHI and ligation of
the resulting fragments to pBR322 previously linearized by digestion
with BamHI and dephosphorylated by treatment with calf intestine
alkalinc phosphatase [18].

2.3. Screening of the DNA library

The nearly complete rbcl gene from A. nidulans, cloned in pCS75!
plasmid (kindly provided by Dr F.R. Tabita [19]), was labelled with
[a-**PJdATP by nick translation as described {18] and was used as a
probe to screen the 7. ferrooxidans gene library by the method de-
scribed by Hanahan et al. [20].

10x10* recombinant colonies were screened by the colony hybridi-
zation method [20], and several colonies from the first screening were
purified through secondary and tertiary screening.

Hybridizations were performed overnight at 42°C in a solution
containing 5xSSPE (50 mM sodium phosphate, 5 mM EDTA, 0.9 M
NaCl), I xBFP (0.02% BSA, 0.02% Ficoll, 0.02% PVP), 20% forma-
mide, 0.5% SDS and 25 ug per ml of heat-denatured salmon sperm
DNA.

Filters were washed four times at 42°C in 4xSSPE and then twice
at 52°C for 15 min, before exposing to autoradiographic films at
=70°C for 2-3 days.

2.4. DNA sequencing .

Appropiate restriction fragments from recombinant plasmids were
subcloned intc M13mp18 or MI3mpl9 vectors, according to the in-
structions from the manufacturer (Bethesda Research Laboratories).
Nucleotide sequences were determined using the dideoxy chain termi-
nation method [21]. Sequencing reactions were carried out using the
Sequenase Kit supplied by USB Corp. [¢-**S|[dATP (Amersham) was
used as the radiolabelled nucleotide. Synthetic oligonucleotides were
used as primers.

3. RESULTS AND DISCUSSION

3.1. Screening of T. ferrooxidans chromosomal DNA
library

The isolation and identification of the genes coding
for RuBisCO was carried out using a T. ferrooxiduns
gene library and the rbcL gene from A. nidulans. Appro-
ximately 10* colonies were screened and 20 positive clo-
nes were obtained, Eight of these clones were purified
by secondary and tertiary screening. DNA was prepa-
red from three purified clones, digested with different
restriction enzymes, blotted into nitrocellulose membra-
nes and hybridized to the labeled rbcl gene from A.
nidulans.

The restriction map of one recombinant plasmid,
pRB-1, is presented in Fig. 1. Similar analysis of the
other recombinants showed that the three purified clo-
nes were identical. The 3.3 kbp EcoRI-BamHI fragment
was subcloned in pBR322 (pRB-2) and some restriction
sites were identified, DNA sequencing was performed
on fragments derived from both recombinant plasmids,
the sequencing strategy being summarized in the lower
part of Fig. 1.

3.2. Nucleotide sequences of rbeL and rbeS genes
The complete rbcL and rbeS genes from T. ferrooxi-
dans were present in the DNA fragment cloned in pRB-
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Fig. 1. Physical maps and the strategy for sequence analysis of the 7.
Sferrooxidans rbcL and rbcS genes. A physical map of the 6.6-kbp
BamHI fragment (pRB-1) and of the 3.3-kbp EcoRI1-BamHI fragment
(pRB-2) are shown. The arrows indicate the extent and direction of
sequences determined and the solid bars show the regions encoding
rbcL and rbcS. The direction of transcription, and some restriction
sites are presented. A, Aval; All, Avall; B, BamAlI; E, EcoRI; H,
HindllY; K, Kpnl, P, PstI and S, Sall.

1 and its entire nucleotide sequence as well as the dedu-
ced amino acid sequences are shown in Fig. 2. The 2209
bp sequence predicts two consecutive open reading fra-
mes. The large and small subunit sequences are 1422
and 357 nucleotides long, respectively, leaving an inter-
genic region of 30 bp, the smallest described for proka-
ryotic RuBisCO genes. In prokaryotes the two subunit
genes are co-transcribed, while in higher plants the large
subunit is encoded by chloroplast DNA and the small
subunit is nuclear encoded [22].

The rbcL gene encodes for a protein of 473 amino
acid residues while rbcS encodes for a polypeptide of
118 amino acid residues, with calculated molecular
weights of 52.7 and 13.6 kDa, respectively.

Possible rbcL and rbcS ribosome-binding sequences
at positions -12 to -7 and 1442 to 1446, respectively,
were detected (underlined in Fig. 2), but no consensus
sequences for transcription promoters were found in the
cloned fragment.

Two potential stem-loop sequences were found adja-
cent to the 3'end of rbcS (arrows in Fig. 2), the last one
being followed by the sequence TTTT (dotted line in
Fig. 2), which could represent a rho-independent tran-
scriptional termination signal.

3.3. Comparison of nucleotide and amino acid sequences

Table I shows the results of nucleotide and amino
acid sequence comparisons of the RuBisCO genes from
T. ferrooxidans with those of other bacteria such as C.
vinosum [8], A. hessleri endosymbiont [12], A. nidulans
[7,14], 4. eutrophus [13] and R. rubrum [10]. rbcL and
rbeS nucleotide sequences from T. ferrooxidans exhibit
the highest similarity with C. vinosum and A. hessleri
endosymbiont sequences.

Predicted rbcL and rbeS gene products from T. ferro-
oxidans also showed the highest percentage of similarity
at amino acid level with C vinosum and A. hessleri
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Fig. 2. DNA sequences of T. ferrooxidans rbcL and rbeS and deduced amino acid sequences of the large and small subunits of RuBisCO. The first
reading frame (1-1422) corresponds to rbcL, and the following one (1453-1809) to rbeS (see text for details).

endosymbiont gene products. An even higher degree of
similarity may be obtained when comparisons are made
on the basis of functional groups of the amino acids (see
TableI). It is interesting to note that the highest percen-
tage of similarity both at nucleotide and deduced amino
acid levels of rbcL and rbcS genes from T. ferrooxidans
is observed with metabolically related bacteria, since C.

vinosum and A. hessleri endosymbionts are also sulfur
oxidizing autotrophic bacteria. In contrast, a lower per-
centage of similarity both at nucleotide and amino acid
levels was found for genes and gene products from two
purple non-sulfur bacteria, A. eutrophus and R. rubrum
(see Table I). It may be recalled that the R. rubrum
crizyme has a type II structure [4].
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Fig. 3. Comparison of amino acid sequences of the RbcL (A) and RbcS (B) proteins from T. ferrooxidans (T.f), Chromatium vinosum (C.v).
Alvinoconcha hessleri endoxymbiont (A.h), Anacystis nidulans (A.n), Alcaligenes eutrophus (A.€) and Rhodospirillum rubrum (R.r). Only residues
that differ from 7. ferrooxidans sequence are presented in the one letter code for the amino acids. Residue numbers refer to the 7. ferrooxidans
sequence. Deletions are indicated by dots. Conserved regions containing amino acid residues participating in catalysis (O)and in assembly of the

holoenzyme (***) are indicated.

3.4. Comparison of the deduced RbcL amino acid se- large subunit of RuBisCO from several bacteria, as re-
quence of T. ferrooxidans with the sequences found ported by Tabita et al. [23], were compared with those
in other organisms from T. ferroxidans (see Fig. 3A). Glu*®, a highly con-

Several highly conserved regions became evident by served residue involved in catalysis [22] defines a conser-
the alignment of amino acid sequences of different bac- ved region from Ala* to Thr®. Lys'”' and Lys'” belong
terial RuBisCO large subunits (Fig. 3). They include to a second conserved region starting at Thr'%, The Lys
amino acid residues which participate both in the active residues have been implicated at the active site of
site and in the assembly of the holoenzyme. RuBisCO by affinity labeling [22]. The conserved Asp'®

The amino acids participating in the active site of the associated to a CO, binding site and Lys'** identified as
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Table I
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and other prokaryotes. The percent similarity is calculated for amino

acids and nucleotides at identical positions in the sequences being
compared (aligned as shown in Fig. 3).

rbcl rbeS
Amino acids Amino acids

Specics Nucleo- Nucleo- -

tides Identical Related* tides Identical Related
C. vinosum 82.0 90.0 94,7 72.0 720 81.3
A. hessleri 81.3 875 93.0 72.3 71.2 82,2
(endosymbiont)
A. nidulans 70.8 73.1 86.2 58.6 36.9 55.8
A. eutrophus 646 550 72.1 54.0 22.0 31.3
R. rubrum 54.4 19.7 29.4

*Residues belonging to the same functional group are considered

related. These groups are: neutral, slightly hydrophobic: P, A, G, S,

T: hydrophilic, acid amine: E, D, Q, N; hydrophilic basic: H, R, K.

hydrophobic: L, 1, V, M: hydrophobic aromatic: F, Y. W; cross-link
forming: C.

the site of carbamylation during activation of the en-
zyme [24], correspond to another conserved region. An-
other constant region starting at Gly*®' includes His®"',
a highly conserved residue also involved in CO, binding
[22]. The region that includes Lys™ was also highly
conserved. Affinity-labeling experiments have shown
that this residue participates in the active site [25]. Con-
served regions starting at positions 100, 214, 235 and
248 corresponded with assembly domains of the large
subunit of RuBisCO from several other bacteria [22].

(Fig. 3B).

3.5. Comparison of the deduced RbcS amino acid se-
guence of T. ferrooxidans and other organisms

Fig. 3B shows the alignment of amino acid sequences
of several bacterial small subunits of RuBisCO. With
the »beS there is higher divergence than that observed
among the large subunits, especially at the amino and
carboxy termini. Three highly conserved regions con-
taining amino acid residues related with the oligomer
assembly: Glu®, Ser®, Leu®. Tyr®, Trp®, Pro® and
Tyr® [26.27)], are shown in Fig. 3B. As expected, the
conserved sequence of 16 amino acids that have been
proposed to constitute a domain required to facilitate
assembly of the holoenzyme from higher plants [15], is
absent in 7. ferrooxidans.

Experiments to study the regulation of the expression
of rbcL and rbeS genes in T. ferrooxidans are now in
progress.
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