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A sequent ia l  i t e ra t ive  ne twork  (SITN) is a cascade of identical  
finite a u t o m a t a  such t h a t  the  i t h  au toma ton  receives an x~ inpu t  f rom 
the  outside world and  a y~ inpu t  from its left  neighbor ,  and  produces 
a z~ o u t p u t  to the  outside world and a y~+l o u t p u t  to i ts r ight  neighbor.  
We prove three  main  theorems : (1) For  every in teger  k there  is a cell 
definit ion such t h a t  a corresponding S ITN ei ther  can or cannot  switch 
from equi l ibr ium to a cycling condi t ion (i.e., oscillation) following a 
single x~ change according as n =< k or n > k, respect ively;  (2) there  
do not  exist a lgor i thms to tell whether  a given cell definition admi ts  
of a S I T N  t h a t  can s t a r t  f rom equi l ibr ium and following a single x~ 
change e i ther  (a) switch into a cycling condit ion,  or (b) pu t  out  a 
z~ = 1 dur ing a swi tching t r ans i en t ;  and  (3) there  do not  exist  al- 
gor i thms to tell  whe ther  a given S ITN cell definition mus t  have  every  
swi tching t r ans i en t  following a single x~ change from equi l ibr ium 
e i ther  (a) die out  a bounded  n u m b e r  of cells to the  r igh t  of the  change,  
or (b) extend all the  way to the  S ITN boundary .  All theorems are 
proved cons t ruc t ive ly  on f ini te-s tate  diagrams,  and  (2) and  (3) hinge 
on an  embedding  of Minsky ' s  Pos t  Tag  sys tem results  into  such 
diagrams.  We conclude wi th  several  i t e ra t ive  ne twork  equivalence 
demonst ra t ions .  

I. INTRODUCTION 

We consider a concatenation of n identical logic cells as shown in 

Fig. 1. The ith cell has associated with it the following: (1) a memory 

state variable si, with domain of values al, a2, -" a~ ; (2) an external 

(i.e., outside world) input variable x~, with domain bl, b2, ... bp ; 

* This research was supported by Air Force Cambridge Research Laboratorie~,~ 
Contract No. AF19(604)-6619, under the auspices of The Montana State College 
Electronics Research Laboratory, Bozeman, Montana. The author is currently 
at the Research Laboratory of Electronics, M.I.T., on leave from Montana State 
College. 
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FIG. 1. Schematic diagram of a SITN 

(3) lateral input and output  variables y~ and Y~+I, respectively, each 
with domain cl,  c2, . . .  cq ; and (4) an external output  variable z~, 
with domain dl ,  d2, • • • d~. We assume tha t  the functions z~(x~, y~,  s~) 
and y~+~(x~, y i ,  s~) are realized with zero t ime delay across the cells; 
and tha t  the function s~(x~, y~, s~) is realized with unit t ime delay 
within the cell. At t ime t = 0 the y l ,  x~, s~ variables are all assigned 
arbi t rary values from their respective domains, and for all t > 0 the 
values of y~ and all the x i remain fixed. We denote such cell systems 
S I T N s  (for Sequential ITera t ive  Networks).  

An S I T N  is said to be in equilibrium at  t > 0 if and only if all of its 
y~, s~ values remain fixed from t on. A S I T N  is said to be cycling at  
t > 0 if and only if its over-all configuration of y~, s~ values at  t first 
recurs at  t q- T, for T > 1. I f  a S I T N  is in equilibrium at  t = -- 1, and 
at  t -- 0 some y~ and/or  x~ values change, the corresponding sequence 
of y~, s~ value changes is called a transient just  in case the S I T N  reaches 
equilibrium at  some t > 0. Otherwise the S I T N  enters a cycle. 

The  main purpose of this paper  is to present some results on the prob- 
lem of determining, for an arbi t rary S I T N  cell definition, the various 
ways in which corresponding S I T N s  can switch from equilibrium to 
equilibrium, and equilibrium to cycle, following single x~ value changes. 
We also apply these results to non-SITN models discussed in Ki lmer  
(1961, 1962a, b) in order to extend the present theory of switching dy- 
namics for i terative logic networks. 

II. ON THE RELATIONSHIP OF SITN SIZE TO POSSIBLE CYCLE ENTRY 

In  this section we give a constructive proof of Theorem 1. 
T~EOR~M 1. For every positive integer t~ there exists an S I T N  cell 

definition such that any corresponding n-celled S I T N  which is in equi- 
l ibrium at t = - -1 ,  and which has a single x i  value change at t = O, 
either can or cannot possibly enter a cycle at some t >= 0 according as 
n > k or n <= k, respectively. 
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Before embarking on the details of our proof, we first discuss its 
main idea. The plan is to design an SITN cell with two equilibrium 
"ground level" states, and lc -- 1 "ladder" states placed in a line be- 
tween the ground level states and a pair of cycling states. Then we 
arrange our SITN cell so that  if any x~ value change occurs in a cor- 
responding SITN in equilibrium, the (i 3- j ) th  cell, for all j < /c, 
first leaves its ground equilibrium state and successively mounts j 
ladder states, and then falls back to the opposite equilibrium state. 
Each such cell upon mounting its j ladder states carries its right neighbor 

c 1 ORc 20Rc 30Rc4/c 1 

Cl/C 3 IFk EVE 

@ c 1 OR c 2 OR c 3 OR c4/c 2 

/ ~  c3/c 3 IF k EVEN 
c4/c 4 IF k ODD 

I c3/c3 IF k ODD " ~  
., c4/c 4 IF k EVEN c2/c 4 IF k ODD 

\ 

c4/c 4 

c3/c 3 "~ 
"~ ~2/~4 

c4/c 4 

c3/c 3 

~ ¢ /  Cl/C 3 

Cl/C2 c2/c l 

FIG. 2. Pa r t i a l ly  complete S ITN memory s ta te  d iagram for x~ = bl used in the  
proof of Theorem 1. 
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ALL THE REST OF THIS 
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INPUT ARROW OUT OF a2) 

IS THE SAME AS THAT 

FOR x i = b 2 

FIG. 3. SITN memory state diagram for xl = b2 used in the proof of Theorem 1 

cell up with it, and then kicks the neighbor cell up one more ladder 
state while it returns to its own new equilibrium state. Thus, by allow- 
ing the only possible cycle entry to occur at the kth ladder state, we 
insure that  at least k ~- 1 cells are necessary in any corresponding S I T N  
before it can enter a cycle following a single x~ value change from equi- 
librium. 

We now proceed to the details of our proof. Consider the partially 
complete 1 S I T N  memory state diagram for x~ = bl, shown in Fig. 2. 
The c~/c~ label on each arrow there indicates that  if a cell with x input 
equal to bl has the memory state value given at the tail of an arrow~ 
and if its y input value is c~, its corresponding y output  value is cj. and 
its next memory state value is the one given at the head of the arrow. 

Now assume an n-celled S I T N  in equilibrium at t = --1 as follows: 
all xi = bl;  si = al for i odd and sl = a2 for i even; and yl = c~. 
That  this is indeed an equilibrium is obvious from the self-returning 
arrows out of al and a2. Now suppose that  at t = 0; xl changes to b~. 
Figure 3 shows that  this causes y2 to change immediately from ca to 
cl.  Figure 2 accordingly indicates the successive S I T N  Variable value 
changes listed in Fig. 4. Each square's entry in Fig. 4 contains the 

i In the obvious sense that out of each si memory state value there should be 
an output arrow for each possible y~ value. 
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SiTN varTable k odd, second for k even 

FIG. 4. Successive variable values from t = --1 on in the SITN used to prove 
Theorem 1. 

column variable's value at the corresponding row time. Any column 
left blank above a certain row denotes that the column's topmost entry 
persists from that row time on. Note that the aj values assumed by 
each s~ in Fig. 4 always have (maximum j) = i. Hence the (1~ -k 1)st 
cell is the leftmost one which can ever have its s~ variable take on the 
ak+~ value, and from that time on cycle around the ak+l, ak+~ loop 
Since this is the only cycle admitted by Fig. 2, the figure provides the 
essentials of a proof of Theorem 1. 

We fill in the details of our proof in Fig. 5. Figures 5 and 3 clearly indi- 
cate that the only possible equilibrium si values are al and a2. Thus 
it is easily seen that, regardless of the sequence of x~ values along any 
corresponding SITN in equilibrium, if any single x~ value change is to 
cause the SITN to enter a cycle, it must do so essentially in accordance 
with Fig. 4. Hence at least k + 1 cells are always require d to the right 
of any single xg value change if a Fig. 5-type SITN is to enter a cycle 
under the conditions of Theorem 1. Q.E.D. 
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/ / . . . . . .  
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$'i DOMAIN: al,a2, " ' "  ak+ 2 
x i DOMAIN: (IN FIGS. 5 AND 3) : b l ,b 2. 
Yl DOMAIN : Cl,C2,c3,c 4. 

FIG. 5. Complete SITN memory state diagram together with Fig. 3 used in 
the proof of Theorem 1. 

III.  SOME UNSOLVABLE PROBLEMS ON CYCLE ENTRY, 
EQUIVALENCE, AND TRANSIENT CHARACTER 

In  this section we prove two unsolvability theorems, using essentially 
one S I T N  memory state diagram and Minsky's (1961) result that  uni- 
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versal Turing machines can be represented by Post tag systems. We 
state both theorems before proving either. 

THEOREM 2. There does not exist a recursive procedure to determine of 
an arbitrary S I T N  cell definition 2 whether any corresponding S I T N  in 
any arbitrary equilibrium at t = -- 1 can have a single xi  value change a 
t - - 0  cause it to: 

(i) enter a cycle at some t >= O, or 
(ii) pass through a transient which causes a 1 output on some zi at some 

t _>- 0. The (ii) part of this theorem pertains to the existence of certain 
SITN equivalence tests (cf. Hennie, 1961). 

We now consider SITNs which, if in equilibrium at t = - 1  and sub- 
jected to single x~ value changes at t -- 0, admit only transient responses 
(i.e., no cycle entries at any t => 0). We call such SITNs transient 
S I T N s .  Suppose a transient-SITN cell definition is such as to insure 
that  all single xi changes from equilibrium which cause any y~+j changes 
at all fo r j  > 1, cause yj value changes all the way to the right boundary 
of every corresponding SITN. We call such a cell definition boundary 
transient. On the other hand if a transient-SITN cell definition is such 
as to insure that  no single xi change from equilibrium can cause tran- 
sients involving y l value changes more than a bounded (hence calculable) 
number of cells to the right of the x~ change in any corresponding SITN, 
we call the cell definition bounded transient. 

THEOREM 3. There does not exist a recursive procedure to determine 
whether an arbitrary t rans ient -SITN cell definition is: 

(i) boundary transient, or 
(ii) bounded transient. 
Our first step in proving Theorems 2 and 3 is to define a Post tag 

system. Let L be a finite set of letters 11, l~, - . .  l~ ; and let W be an 
associated set of words, such that  for each i, W~ is a fixed, finite string 
or word of letters of L. Let P be some integer, and define the following 
process applied to some initially given string S of letters of L:  Examine 
the first letter of the string S. If it is l~, remove the first P letters of S, 
and then adjoin the word W~ to the right end of the remaining string. 
Perform the same operations, defined a production, on the string that  
results, and continue making productions so long as there are P or more 
letters left in each resulting string. If  at some point there are fewer than 
P letters left in a resulting string, the process is said to terminate at that  
string. We call L, W, S, P,  and the process just defined a Post tag system. 

2 S u c h  as a re  a i r e d  in  F igs .  3 ~nd  5, for  examp l e .  
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Minsky (196t), showed that  the problem of  determining for any given 
Post tag system whether the corresponding process ever terminates 
is recursively unsolvable. 

Before embarking  on the remaining details of our proof, we firs~ 
discuss its main idea. Our plan is to design an SITN cell whose sequen- 
tial y~-input to y~+l-output transformation, for x~ constant, directly 
represents a corresponding production in a given Post tag production 
process: Our cell thus regards any finite length sequence presented one 
letter per time unit over its y~ line as a Post tag string viewed one letter 
per time unit from left to right. The cell's operation requires that  it 
first store in memory the first letter of its y~ input string; then count 
subsequent input letters until it reaches P ;  then pass from y.~ to y~+l all 
of the remaining input sequence; and finally append the W~ sequence 
associated with the first letter it received. Since there are only finitely 
many finite length W~ strings, this only requires a finite cell, W e  further 
arrange our SITN cell so that  certain x~ value changes occurring in 
corresponding SITNs in equilibrium always produce the initial string, 
S ,  of our Post tag system on a nearby yj line. Thus each such x~. change 
starts a succession of y~ to y~+l sequence transformations that  directly 
represents the :corresponding succession of productions in our Post 
tag system. In order to complete the proofs of Theorems 2 and 3, we 
augment our cell design so that  the various cases of those Theorems 
either are or are not present according as our Post tag production proc- 
ess does or does not terminate. 

We now proceed to the details of our SITN cell specification. We first 
replace the letters ll ,  12, • • •lm of our given Post tag system by the y~ 
values cl, c2, .. • , c,~, respectively, and then complete the y~ domain 
by adding three special values, ¢, ~1, and ~2. The latter two are inter- 
preted as marker values, and ¢ is interpreted as the null value. Next we 
specify a0, a l ,  a2, a~, and a4 as the only possible equilibrium s~ values, 
and bl, b2 as the x~ domain. Figures 6 and 7 then give the main opera- 
tional part of the SITN memory state diagram that  we will use to 
prove Theorems 2 and 3. Our notation in these figures is as follows: 
C denotes any y~ value; ~-~¢o~, ~ 2 ,  and ~ ¢  denote any y~ values but 
o~, ~2, and ¢, respectively; yl values raised to the j th  power denote j 
successive repetitions of those values; l(T), for any string of letters T, 
denotes the number of letters in T; and TU, T, and U both strings, 
denotes the string consisting of the letters of T followed by the letters 
of U in order. 
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tO l /t~ 2 
~C..¢)p-1/@-1 ~z 

r+ I VALUE 
IN Yi VALUE 

FIG. 6. Par t ia l ly  complete SITN memory s ta te  diagram for x¢ = bl used in the 
proof of Theorems 2 and 3. 

Let us now assume, in order to explain Figs. 6 and 7, tha t  we have a 
corresponding S I T N  in equilibrium at  t = --1 as follows: all x~ values 
are bl ,  sl is a0, s2 is a~, and all other s; are as.  Then suppose tha t  a t  
t = 0 there is a single x~ value change from b~ to bs in the first cell. This 
causes y2 to change from ¢ (i.e., null) to oa. Subsequently s2 passes from 
al down through a5 to a~, causing y3 to put  out the string co2S before 
settling down at  ¢. 
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c / ~  
THE REST OF FIG. 7 IS THE SAME AS THE 

CORRESPONDING PART OF FIG. 6, EXCEPT 

a! IS INTERCHANGED WITH a2,. AND a 3 

IS INTERCHANGED WITH a 4.  

Fro. 7. SITN memory state diagram for x~ = b: used in the proof of Theorems 
2 and 3. 

In other words, the xl change causes y3 to put out essentially the ini- 
tial string of our given Post tag system. Next we show that  y, accord- 
ingly puts out essentially the result of the first production in the cor- 
responding Post tag system. To see this, we note that  s3 is taken from a~ 
to a6 by ya = ~2 ; from a6 to a7 by the next value of y~ (i.e., the first 
letter of S, assumed ci), and from a7 to a~ by the next P -- 1 values of 
y~ (i.e., the next P -- 1 letters of S, whatever they might be). The 
value of y, remains ¢, or null, during all of these changes. Following 
them, however, the (P -b 1) non-~ value of y~ (i.e., the P t h  letter of 
S) produces w2 out at y4. Then the sequence consisting of y~'s (P + 2) 
non-~ value to its last non-0 value (i.e., the (~P -F 1) to the last letter 
of S) duplicates itself out at y , .  Finally, when y~ settles down at 0, 
s4 leaves al0 or all (whichever state it is in) and causes y4 to put out the 
string W~, corresponding to the first letter of S. After that  y4 also settles 
down at ~. Thus the first production in the Post tag system, 

S = ' ciT1 ~ ,T2, - - -+,T2W~, ,  

P letters 

is represented by the y~ -~ y~ transformation across the third SITN cell, 
u S  --~ ~2T~W~ (preceding and succeeding ¢ values not shown). 

More generally, the y~--* y~+~ transformation across the i th  SITN 
cell can be made to represent the (i - 2) Post tag system production 
as follows: For each i in the tag system alphabet of letters, {c~}, we 
add to Fig. 6 a portion of s~ state diagram which is exactly the c~th 
counterpart of the portion already there from a7 to a~ .  This is primarily 
to enable the first cj- value in each incoming y~ sequence to direct s~ 
to a portion of over-all state diagram that  ends y~+~'s non-~ sequence 
with the right W~.. The W~. are produced in one of the a~-a~3-type 
portions of augmented s~ state diagram, and are SITN representations 
of completions of corresponding tag production steps. The purpose of 
our wanting to add av-a~ as well as a~2-a~z-type portions of s ~ state din- 
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gram to Fig. 6 is threefold: (1) The a;-as portions are to enable the ith 
cell to effectively remove (i.e., replace by 4) the 2nd t(~ Pcy values of 
each incoming y~ sequence. This begins the SITN representation of 
each corresponding tag production. (2) If there are ever fewer than 
Pcj values, the aT-as portions are to allow y~+l to remain fixed at ¢. 
In each such case one B bundle arrow in the augmented Fig. 6 is tra- 
versed. (8) The ag-ai~-type portions are to enable the ith cell to simply 
pass the (p if- 1)st-to-last cj values of each yi sequence. Thus they 
represent intermediate tag production steps, preparatory to Wj adjoin- 
ments. 

Hence if the corresponding tag system productions terminate at the 

~2 ,~~1/~ I 
I ~ 1'/~2 

~2/¢~ ~ ' ~  

. ~  c -/( -~ )/s 

~ 2 / ¢  ~ 

s. DOMAIN : FINITE NUMBERS OF a.'s. 
x i DOMAIN (IN FIGS. 7AND 8) : b1,b 2 
Yi DOMArN :c1,c2, ... c u 

ci(,.~)p-1 I~ 

8 
u 

\ 

u 2 O 

b 
~¢/OUT Yi+ ] z 

VALUE = in Yi 
VALUE O 

% 

lb. 
r~ 

b 

®c~(wi) -~/w~ ~ 

o 

_J  
B BUNDLES FOR c[ = c i 
PORTIONS NOT SHOWN 
FOR EXPOSITORY 
REASONS 

FIG. 8. Complete SITN memory state diagram together with Fig. 3 used in the 
proof of Theorem 3. 
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i th  string, y~+2 is the leftmost SITN value that  is left unchanged in the 
associated network transient. 

We now finish our proof of Theorem 3 by filling in the indicated aug- 
mentation of Fig. 6 in Fig. 8. We leave it to the reader to check in 
Figs. 7 and 8 that,  following any single x~ perturbation of a correspond- 
ing SITN at equilibrium, only one type of transient can involve y~+¢ 
value changes for j > 1, and that  is the type discussed above. Note 
that  in Fig. 8 the ~02 output arrows from states a0, a l ,  a2, and a4 are 
to insure that  every Post tag process representation that  gets started 
in our SITN is carried through to its proper conclusion. Also, the inter- 
change of states alluded to in Fig. 7 is so that  the corresponding SITN 
will not necessarily have to compute to all a0, a2, and a4 "dead" states 
after many single x~ changes have occurred. Now since the problem of 
determining whether the tag system productions corresponding to our 
single transient type ever terminate is reeursively unsolvable, so also 
is the problem of determining whether our corresponding SITN cell 
is bounded or boundary transient. This completes our proof of Theo- 
rem 3. 

The proof of Theorem 2 follows almost trivially. We prove part (ii) 
by modifying the B bundle in Fig. 8 as follows: Instead of directing this 
bundle into a3, we direct it into a new state, a14, as shown in Fig. 9. 
Then we specify that  z~ = 0 for all si values except a14, in which case 
z~ = 1. Theorem 2(ii) follows immediately by noting that  it is yes if 

¢ ~  ~ TO a 3 

B BUNDL~ / ~ b / ¢  

FIo. 9. Change in Fig. 8 for proving Theorem 2ii 

c / ~  

B BUNDLE 

FIG. 10. Modification of Fig. 9 for proving Theorem 2i 
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and only if the transient in the proof of Theorem 3 is bounded. But this 
question is recursively unsolvable. 

We prove Theorem 2(i) by modifying Fig. 9 as shown in Fig. 10. 
Then states a14 and a15 comprise the only cycle that is accessible under 
the conditions of Theorem 2. Hence Theorem 2(i) is yes if and only if 
Theorem 2(ii) is yes, which is recursively unsolvable. Q.E.D. 

As a passing point, we note that by identifying the right and left 
boundary signals in the SITNs of Theorem 3, we can get a result much 
like Theorem 1, but with the inequalities reversed. Although this 
point has considerable interest, we will not develop it further here. 

IV. A P P L I C A T I O N S  TO NON-SITN MODELS 

In this section we apply our results to some non-SITN models dis- 
cussed in Kilmer (1961, 1962a, b). Our method is to develop a chain of 
equivalences from one of those models to SITNs. 

First, we define the network model shown in Fig. 11. The large square 
boxes there represent identical combinational logic cells, each having 
zero switching delay, and the small rectangles represent unit delay 
elements. Cellular a, ~, and x inputs are constant during each unit 
time interval, so the network operates synchronously. Each cell's a~ 
and ~i lateral inputs and x~ external input take on values ranging over 
finite a~, ~i, and x~ domains, respectively. Correspondingly, each 
cell's a~ and ~ lateral outputs and z~ external output range over finite 
domains of values as determined by the truth table comprising the 
network's cell definition. We require only that the number of network 
cells be finite, and define such networks B I T N s  (for Bilateral ITerative 
Networks). 

In Fig. 12 we show a reconception of Fig. 11. There the ith cell maps 

Z! Z 2 

z ~ ~ ~ [  . . . . . .  - -  

o ~l 7 - - ' - "  ~2 
,.gl X2 X n 

FIG. 11. A B I T N  

Z n 

/ I o 



412 KILMER 

z i  = { (X i '  ~i" ISi) 

X 1 X 2 X n 

FI~. 12. A reconception of Fig. 11 

at--> ill-1 under the influence of xi and a left-coupling parameter, CZ~; 
and also maps  fit --> ai+l under the influence of xt and a right-coupling 
parameter, C ~, all with zero delay. The coupling idea is to let C "  be a 
function of fit such tha t  all those fit values which exert the same in- 
fluence in every at ~ ~i-~ mapping cause the same C z~ value; and simi- 
larly for C ~i and a i  values. 

Figure 11 to Fig. 12 transformations are easily made 1 to 1. To illus- 
trate,  assume in Fig. 13 tha t  the a~fltai+~ portion of the left-hand table 
is identical for all xt values. Then  fit maps  into at+~ in the same way 
regardless of x~'s value and whether a t ' s  value is 0 or 2. Therefore let 
C~(ai) be R1 for a t  -- 0 or 2, and R2 for ai  = 1; and similarly for the 
right-hand table, assume tha t  the /~ia~t -~  portion of the table is iden- 
tical for all xt values. Then let CZ~(~) be Li for ~t = 0, and L2 for 
fit = 1 or 2. Our method should be clear by  now, so we omit  the re- 

maining details. 
Henceforth we denote Fig. 12 renditions of BITNs ,  BITN*s.  And 

if the C z domain has only one element, we denote the corresponding 
networks R-BITN*s  (for right-coupled BITN*s) .  Now consider the 
R - B I T N *  shown in Fig. 14. We note tha t  each light-dashed rectangle 
there encloses a structure which closely approximates an S I T N  cell. 
We wilI show tha t  the network in Fig. 14 is, in fact, equivalent to a 

S ITN.  
Suppose in Fig. 14 and C ~ maps  fi~ into a~ at  t. Then this a2 produces 

C ~2, which maps  ~2 into aa at  t + 1. This a3 in turn produces C ~, which 
maps  ~3 into a~ a t  t + 2, and so forth. Thus if one knows C ~1 at  t, t + 2, 
t + 4, - . .  , and one knows ~ into cell 1 a t  t, ~2 into cell 2 at  t + 1, 
• . • , and ~ into cell n at t + n --" 1 for a R - B I T N * ,  one has sufficient 
information to establish exactly half of its a and ~ values during each 
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successive time interval. Hence the listed set of fl's and associated Cr's 
is called the R-BITN*'s  correspondence set at t. (We note that  such a 
set is generally quite distinct from the analogous "initial condition 
set.") 

Obviously any two independent R-BITN*s correspondence sets, 
say at t and t + 2k + 1 for some integer k, respectively, are analyzed 
separately, yet  in the exact same way, in order to determine their re- 
spective response~ Each set is also analyzed independently of the unit 
time delay between cells. Hence the R-BITN* in Fig. 14 is equivalent 
to the SITN in Fig. 15 under the conditions tha te  

(1) the small rectangles beneath each cell in Fig. 15 represent unit 
delays; and 

Hennie (1961) has developed a class of equivalence results tha t  are related to, 
but essentially dis t inct  from, those derived above. 
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(2) in Fig. 15, C r~ and fl~ into cell i at time t map into C r(~+l) and f3~ 
out of cell i at time t, just as in Fig. 14, C "~ and fl~ of the correspondence 
set at t map into C ~(~+1) and fl~ of the correspondence sets at t and t q- 2, 
respectively. 

From this discussion, we readily see Theorem 4. 
T~noRn~ 4. For each S I T N  result in Theorems 1, 2, and 3, there are 

exactly analogous results for R-BITN*s, BITN*s, and BITNs.  We re- 
mark that Theorems 3 and 4, with more or less immediate proof modi- 
fications, give strengthened versions 4 of Hennie's (1961)Theorems 10, 
10.1, 10.2, 11, 11.1, and 15. Also since the proof of Theorem 3 embodies 
an SITN representation of a universal Turing machine [ef. Minsky, 
(1961)], the result clarifies several computing capacity problems alluded 
to in I-Iennie (1961). Finally, we claim that the present paper distributes 
the proof burden for Theorems 3 and 4 in such a manner as to substan- 
tially illuminate the basic nature of Hennie's previous work. 

V. CONCLUSIONS 
Kilmer (1961) and Winograd (1962) essentially closed out the main 

switching transients problems for BITNs which have either a~ or f/~ 
lines missing. Hennie's previous work (1961) extends these results to 
canonical decompositions of all BITNs which have cell designs such as 

Because we start from equilibrium instead of arbitrary initial conditions. 
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to prevent  any corresponding n-celled network f rom ever~ exhibiting: 
over-all memory in the equilibrium state. 5 Kilmer (1962b) discusses 
the unsolvable nature of steady-state cycling problems in BITNs,  
BITN*s,  and R-BITN*s.  And this paper proves the essential unsolv- 
ability of the main transients problems in general B ITN s  and SITNs. 

In  closing we note the curious duality between Theorem 1 of this 
paper and Theorem 2 of Kilmer (1962a). The la t ter  s ta tes : :"For  every 
positive integer k, there exists a B I T N  cell definition sti~h that  every  
corresponding n-celled B I T N  is or is not over-Ml memoryless in the 
equilibrium state (and hence decomposable into Hennie's canoni~Mi 
form) according as n is  or is not =< k." The interesting th~ng about ~hi~: 
pair of Theorems is tha t  both of their (constructive) proofs seem to 
require cell complexities that  are directly proportional in some sense t o  
k. For  Theorem 1 this proportionality is between k and the size of the 
sj domain; and for Theorem 2 it is between k and the  number of rows 
in the corresponding cellular t ru th  table definition: Thus general B I T N  
cells seem to admit change-overs Of behavioral character in their corre- 
sponding n-celled network systems at critical network sizes which are 
bounded above by a constant times some measure of cell complexity 
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That is, BITNs which have 1 to 1, over-all equilibrium, {xl , x2, ..- xn} 
input-{zl , z2, . . .  z,} output relations. 


