On Dynamic Switching in One-Dimensional Iterative Logic Networks*

William L. Kilmer
Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts

A sequential iterative network (SITN) is a cascade of identical finite automata such that the i th automaton receives an x_{i} input from the outside world and a y_{i} input from its left neighbor, and produces a z_{i} output to the outside world and a y_{i+1} output to its right neighbor. We prove three main theorems: (1) For every integer k there is a cell definition such that a corresponding SITN either can or cannot switch from equilibrium to a cycling condition (i.e., oscillation) following a single x_{i} change according as $n \leqq k$ or $n>k$, respectively; (2) there do not exist algorithms to tell whether a given cell definition admits of a SITN that can start from equilibrium and following a single x_{i} change either (a) switch into a cycling condition, or (b) put out a $z_{i}=1$ during a switching transient; and (3) there do not exist algorithms to tell whether a given SITN cell definition must have every switching transient following a single x_{i} change from equilibrium either (a) die out a bounded number of cells to the right of the change, or (b) extend all the way to the SITN boundary. All theorems are proved constructively on finite-state diagrams, and (2) and (3) hinge on an embedding of Minsky's Post Tag system results into such diagrams. We conclude with several iterative network equivalence demonstrations.

I. INTRODUCTION

We consider a concatenation of n identical logic cells as shown in Fig. 1. The i th cell has associated with it the following: (1) a memory state variable s_{i}, with domain of values $a_{1}, a_{2}, \cdots a_{m}$; (2) an external (i.e., outside world) input variable x_{i}, with domain $b_{1}, b_{2}, \cdots b_{p}$;

[^0]

Fig. 1. Schematic diagram of a SITN
(3) lateral input and output variables y_{i} and y_{i+1}, respectively, each with domain $c_{1}, c_{2}, \cdots c_{q}$; and (4) an external output variable z_{i}, with domain $d_{1}, d_{2}, \cdots d_{r}$. We assume that the functions $z_{i}\left(x_{i}, y_{i}, s_{i}\right)$ and $y_{i+1}\left(x_{i}, y_{i}, s_{i}\right)$ are realized with zero time delay across the cells; and that the function $s_{i}\left(x_{i}, y_{i}, s_{i}\right)$ is realized with unit time delay within the cell. At time $t=0$ the y_{1}, x_{i}, s_{i} variables are all assigned arbitrary values from their respective domains, and for all $t>0$ the values of y_{1} and all the x_{i} remain fixed. We denote such cell systems SITNs (for Sequential ITerative Networks).

An SITN is said to be in equilibrium at $t>0$ if and only if all of its y_{i}, s_{i} values remain fixed from t on. A SITN is said to be cycling at $t>0$ if and only if its over-all configuration of y_{i}, s_{i} values at t first recurs at $t+T$, for $T>1$. If a SITN is in equilibrium at $t=-1$, and at $t=0$ some y_{1} and/or x_{i} values change, the corresponding sequence of y_{i}, s_{i} value changes is called a transient just in case the SITN reaches equilibrium at some $t>0$. Otherwise the SITN enters a cycle.

The main purpose of this paper is to present some results on the problem of determining, for an arbitrary SITN cell definition, the various ways in which corresponding SITNs can switch from equilibrium to equilibrium, and equilibrium to cycle, following single x_{i} value changes. We also apply these results to non-SITN models discussed in Kilmer (1961, 1962a, b) in order to extend the present theory of switching dynamics for iterative logic networks.

II. ON THE RELATIONSHIP OF SITN SIZE TO POSSIBLE CYCLE ENTRY

In this section we give a constructive proof of Theorem 1.
Theorem 1. For every positive integer k there exists an SITN cell definition such that any corresponding n-celled SITN which is in equilibrium at $t=-1$, and which has a single x_{i} value change at $t=0$, either can or cannot possibly enter a cycle at some $t \geqq 0$ according as $n>k$ or $n \leqq k$, respectively.

Before embarking on the details of our proof, we first discuss its main idea. The plan is to design an SITN cell with two equilibrium "ground level" states, and $k-1$ "ladder" states placed in a line between the ground level states and a pair of cycling states. Then we arrange our SITN cell so that if any x_{i} value change occurs in a corresponding SITN in equilibrium, the $(i+j)$ th cell, for all $j<k$, first leaves its ground equilibrium state and successively mounts j ladder states, and then falls back to the opposite equilibrium state. Each such cell upon mounting its j ladder states carries its right neighbor

Fig. 2. Partially complete SITN memory state diagram for $x_{i}=b_{1}$ used in the proof of Theorem 1.

> ALL THE REST OF THIS
> MEMORY STATE DIAGRAM
> (i.e., ALL BUT THE c_{1} INPUT ARROW OUT OF a_{1} AND THE c_{2}
> INPUT ARROW OUT OF a_{2})
> IS THE SAME AS THAT
> FOR $x_{i}=b_{2}$

Frg. 3. SITN memory state diagram for $x_{i}=b_{2}$ used in the proof of Theorem 1
cell up with it, and then kicks the neighbor cell up one more ladder state while it returns to its own new equilibrium state. Thus, by allowing the only possible cycle entry to occur at the k th ladder state, we insure that at least $k+1$ cells are necessary in any corresponding SITN before it can enter a cycle following a single x_{i} value change from equilibrium.

We now proceed to the details of our proof. Consider the partially complete ${ }^{1}$ SITN memory state diagram for $x_{i}=b_{1}$, shown in Fig. 2. The c_{i} / c_{j} label on each arrow there indicates that if a cell with x input equal to b_{1} has the memory state value given at the tail of an arrow, and if its y input value is c_{i}, its corresponding y output value is c_{j} and its next memory state value is the one given at the head of the arrow.

Now assume an n-celled SITN in equilibrium at $t=-1$ as follows: all $x_{i}=b_{1} ; s_{i}=a_{1}$ for i odd and $s_{i}=a_{2}$ for i even; and $y_{1}=c_{1}$. That this is indeed an equilibrium is obvious from the self-returning arrows out of a_{1} and a_{2}. Now suppose that at $t=0 ; x_{1}$ changes to b_{2}. Figure 3 shows that this causes y_{2} to change immediately from c_{2} to c_{1}. Figure 2 accordingly indicates the successive SITN variable value changes listed in Fig. 4. Each square's entry in Fig. 4 contains the

[^1]

Frg. 4. Successive variable values from $t=-1$ on in the SITN used to prove Theorem 1.
column variable's value at the corresponding row time. Any column left blank above a certain row denotes that the column's topmost entry persists from that row time on. Note that the a_{j} values assumed by each s_{i} in Fig. 4 always have (maximum j) $=i$. Hence the ($k+1$)st cell is the leftmost one which can ever have its s_{i} variable take on the a_{k+1} value, and from that time on cycle around the a_{k+1}, a_{k+2} loop Since this is the only cycle admitted by Fig. 2, the figure provides the essentials of a proof of Theorem 1.

We fill in the details of our proof in Fig. 5. Figures 5 and 3 clearly indicate that the only possible equilibrium s_{i} values are a_{1} and a_{2}. Thus it is easily seen that, regardless of the sequence of x_{i} values along any corresponding SITN in equilibrium, if any single x_{i} value change is to cause the SITN to enter a cycle, it must do so essentially in accordance with Fig. 4. Hence at least $k+1$ cells are always required to the right of any single x_{i} value change if a Fig. 5 -type SITN is to enter a cycle under the conditions of Theorem 1. Q.E.D.

Fig. 5. Complete SITN memory state diagram together with Fig. 3 used in the proof of Theorem 1.

III. SOME UNSOLYABLE PROBLEMS ON CYCLE ENTRY, EQUIVALENCE, AND TRANSIENT CHARACTER

In this section we prove two unsolvability theorems, using essentially one SITN memory state diagram and Minsky's (1961) result that uni-
versal Turing machines can be represented by Post tag systems. We state both theorems before proving either.

Theorem 2. There does not exist a recursive procedure to determine of an arbitrary SITN cell definition ${ }^{2}$ whether any corresponding SITN in any arbitrary equilibrium at $t=-1$ can have a single x_{i} value change a $t=0$ cause it to:
(i) enter a cycle at some $t \geqq 0$, or
(ii) pass through a transient which causes a 1 output on some z_{i} at some $t \geqq 0$. The (ii) part of this theorem pertains to the existence of certain SITN equivalence tests (cf. Hennie, 1961).

We now consider SITNs which, if in equilibrium at $t=-1$ and subjected to single x_{i} value changes at $t=0$, admit only transient responses (i.e., no cycle entries at any $t \geqq 0$). We call such SITNs transient SITNs. Suppose a transient-SITN cell definition is such as to insure that all single x_{i} changes from equilibrium which cause any y_{i+j} changes at all for $j>1$, cause y_{j} value changes all the way to the right boundary of every corresponding SITN. We call such a cell definition boundary transient. On the other hand if a transient-SITN cell definition is such as to insure that no single x_{i} change from equilibrium can cause transients involving y_{i} value changes more than a bounded (hence calculable) number of cells to the right of the x_{i} change in any corresponding SITN, we call the cell definition bounded transient.
Theorem 3. There does not exist a recursive procedure to determine whether an arbitrary transient-SITN cell definition is:
(i) boundary transient, or
(ii) bounded transient.

Our first step in proving Theorems 2 and 3 is to define a Post tag system. Let L be a finite set of letters $l_{1}, l_{2}, \cdots l_{m}$; and let W be an associated set of words, such that for each i, W_{i} is a fixed, finite string or word of letters of L. Let P be some integer, and define the following process applied to some initially given string S of letters of L : Examine the first letter of the string S. If it is l_{i}, remove the first P letters of S, and then adjoin the word W_{i} to the right end of the remaining string. Perform the same operations, defined a production, on the string that results, and continue making productions so long as there are P or more letters left in each resulting string. If at some point there are fewer than P letters left in a resulting string, the process is said to terminate at that string. We call L, W, S, P, and the process just defined a Post tag system.

[^2]Minsky (1961), showed that the problem of determining for any given Post tag system whether the corresponding process ever terminates is recursively unsolvable.

Before embarking on the remaining details of our proof, we first discuss its main idea. Our plan is to design an SITN cell whose sequential y_{i}-input to $y_{i+\mathrm{I}}$-output transformation, for x_{i} constant, directly represents a corresponding production in a given Post tag production process. Our cell thus regards any finite length sequence presented one letter per time unit over its y_{i} line as a Post tag string viewed one letter per time unit from left to right. The cell's operation requires that it first store in memory the first letter of its y_{i} input string; then count subsequent input letters until it reaches P; then pass from y_{i} to y_{i+1} all of the remaining input sequence; and finally append the W_{i} sequence associated with the first letter it received. Since there are only finitely many finite length W_{i} strings, this only requires a finite cell. We further arrange our SITN cell so that certain x_{i} value changes occurring in corresponding SITNs in equilibrium always produce the initial string, S, of our Post tag system on a nearby y_{j} line. Thus each such x_{i} change starts a succession of y_{i} to y_{i+1} sequence transformations that directly represents the corresponding succession of productions in our Post tag system. In order to complete the proofs of Theorems 2 and 3, we augment our cell design so that the various cases of those Theorems either are or are not present according as our Post tag production process does or does not terminate.

We now proceed to the details of our SITN cell specification. We first replace the letters $l_{1}, l_{2}, \cdots l_{m}$ of our given Post tag system by the y_{i} values $c_{1}, c_{2}, \cdots, c_{m}$, respectively, and then complete the y_{i} domain by adding three special values, ϕ, ω_{1}, and ω_{2}. The latter two are interpreted as marker values, and ϕ is interpreted as the null value. Next we specify $a_{0}, a_{1}, a_{2}, a_{3}$, and a_{4} as the only possible equilibrium s_{i} values, and b_{1}, b_{2} as the x_{i} domain. Figures 6 and 7 then give the main operational part of the SITN memory state diagram that we will use to prove Theorems 2 and 3. Our notation in these figures is as follows: C denotes any y_{i} value; $\sim \omega_{1}, \sim \omega_{2}$, and $\sim \phi$ denote any y_{i} values but ω_{1}, ω_{2}, and ϕ, respectively; y_{i} values raised to the j th power denote j successive repetitions of those values; $l(T)$, for any string of letters T, denotes the number of letters in T; and $T U, T$, and U both strings, denotes the string consisting of the letters of T followed by the letters of U in order.

Fig. 6. Partially complete SITN memory state diagram for $x_{i}=b_{1}$ used in the proof of Theorems 2 and 3.

Let us now assume, in order to explain Figs. 6 and 7, that we have a corresponding SITN in equilibrium at $t=-1$ as follows: all x_{i} values are b_{1}, s_{1} is a_{0}, s_{2} is a_{1}, and all other s_{i} are a_{3}. Then suppose that at $t=0$ there is a single x_{1} value change from b_{1} to b_{2} in the first cell. This causes y_{2} to change from ϕ (i.e., null) to ω_{1}. Subsequently s_{2} passes from a_{1} down through a_{5} to a_{2}, causing y_{3} to put out the string $\omega_{2} S$ before settling down at ϕ.

Fig. 7. SITN memory state diagram for $x_{i}=b_{2}$ used in the proof of Theorems 2 and 3.

In other words, the x_{1} change causes y_{3} to put out essentially the initial string of our given Post tag system. Next we show that y_{4} accordingly puts out essentially the result of the first production in the corresponding Post tag system. To see this, we note that s_{3} is taken from a_{3} to a_{6} by $y_{3}=\omega_{2}$; from a_{6} to a_{7} by the next value of y_{3} (i.e., the first letter of S, assumed c_{i}), and from a_{7} to a_{9} by the next $P-1$ values of y_{3} (i.e., the next $P-1$ letters of S, whatever they might be). The value of y_{4} remains ϕ, or null, during all of these changes. Following them, however, the $(P+1)$ non- ϕ value of y_{3} (i.e., the P th letter of S) produces ω_{2} out at y_{4}. Then the sequence consisting of y_{3} 's $(P+2)$ non- ϕ value to its last non- ϕ value (i.e., the $(P+1)$ to the last letter of S) duplicates itself out at y_{4}. Finally, when y_{3} settles down at ϕ, s_{4} leaves a_{10} or a_{11} (whichever state it is in) and causes y_{4} to put out the string W_{i}, corresponding to the first letter of S. After that y_{4} also settles down at ϕ. Thus the first production in the Post tag system,

$$
S=\frac{c_{i} T_{1}}{P \text { letters }} T_{2} \rightarrow T_{2} W_{i}
$$

is represented by the $y_{3} \rightarrow y_{4}$ transformation across the third SITN cell, $\omega_{2} S \rightarrow \omega_{2} T_{2} W_{i}$ (preceding and succeeding ϕ values not shown).

More generally, the $y_{i} \rightarrow y_{i+1}$ transformation across the i th SITN cell can be made to represent the ($i-2$) Post tag system production as follows: For each i in the tag system alphabet of letters, $\left\{c_{i}\right\}$, we add to Fig. 6 a portion of s_{i} state diagram which is exactly the c_{i} th counterpart of the portion already there from a_{7} to a_{13}. This is primarily to enable the first c_{j} value in each incoming y_{i} sequence to direct s_{i} to a portion of over-all state diagram that ends y_{i+1} 's non- ϕ sequence with the right W_{j}. The W_{i} are produced in one of the $a_{12}-a_{13}$-type portions of augmented s_{i} state diagram, and are SITN representations of completions of corresponding tag production steps. The purpose of our wanting to add $a_{7}-a_{11}$ as well as $a_{12}-a_{13}$-type portions of s_{i} state dia-
gram to Fig. 6 is threefold: (1) The $\alpha_{T}-a_{8}$ portions are to enable the i th cell to effectively remove (i.e., replace by ϕ) the 2 nd to $P c_{j}$ values of each incoming y_{i} sequence. This begins the SITN representation of each corresponding tag production. (2) If there are ever fewer than $P c_{j}$ values, the $a_{7}-a_{8}$ portions are to allow y_{i+1} to remain fixed at ϕ. In each such case one B bundle arrow in the augmented Fig. 6 is traversed. (3) The $a_{9}-a_{11}$-type portions are to enable the i th cell to simply pass the $(p+1)$ st-to-last c_{j} values of each y_{i} sequence. Thus they represent intermediate tag production steps, preparatory to W_{j} adjoinments.

Hence if the corresponding tag system productions terminate at the

Fig. 8. Complete SITN memory state diagram together with Fig. 3 used in the proof of Theorem 3.
i th string, y_{i+2} is the leftmost SITN value that is left unchanged in the associated network transient.

We now finish our proof of Theorem 3 by filling in the indicated augmentation of Fig. 6 in Fig. 8. We leave it to the reader to check in Figs. 7 and 8 that, following any single x_{i} perturbation of a corresponding SITN at equilibrium, only one type of transient can involve y_{i+j} value changes for $j>1$, and that is the type discussed above. Note that in Fig. 8 the ω_{2} output arrows from states a_{0}, a_{1}, a_{2}, and a_{4} are to insure that every Post tag process representation that gets started in our SITN is carried through to its proper conclusion. Also, the interchange of states alluded to in Fig. 7 is so that the corresponding SITN will not necessarily have to compute to all a_{0}, a_{2}, and a_{4} "dead" states after many single x_{i} changes have occurred. Now since the problem of determining whether the tag system productions corresponding to our single transient type ever terminate is recursively unsolvable, so also is the problem of determining whether our corresponding SITN cell is bounded or boundary transient. This completes our proof of Theorem 3.

The proof of Theorem 2 follows almost trivially. We prove part (ii) by modifying the B bundle in Fig. 8 as follows: Instead of directing this bundle into a_{3}, we direct it into a new state, a_{14}, as shown in Fig. 9. Then we specify that $z_{i}=0$ for all s_{i} values except a_{14}, in which case $z_{i}=1$. Theorem 2(ii) follows immediately by noting that it is yes if

Fig. 9. Change in Fig. 8 for proving Theorem 2 ii

B BUNDLE
Fig. 10. Modification of Fig. 9 for proving Theorem 2i
and only if the transient in the proof of Theorem 3 is bounded. But this question is recursively unsolvable.

We prove Theorem 2(i) by modifying Fig. 9 as shown in Fig. 10. Then states a_{14} and a_{15} comprise the only cycle that is accessible under the conditions of Theorem 2. Hence Theorem 2(i) is yes if and only if Theorem 2(ii) is yes, which is recursively unsolvable. Q.E.D.

As a passing point, we note that by identifying the right and left boundary signals in the SITNs of Theorem 3, we can get a result much like Theorem 1, but with the inequalities reversed. Although this point has considerable interest, we will not develop it further here.

IV. APPLICATIONS TO NON-SITN MODELS

In this section we apply our results to some non-SITN models discussed in Kilmer (1961, 1962a, b). Our method is to develop a chain of equivalences from one of those models to SITNs.

First, we define the network model shown in Fig. 11. The large square boxes there represent identical combinational logic cells, each having zero switching delay, and the small rectangles represent unit delay elements. Cellular α, β, and x inputs are constant during each unit time interval, so the network operates synchronously. Each cell's α_{i} and β_{i} lateral inputs and x_{i} external input take on values ranging over finite α_{i}, β_{i}, and x_{i} domains, respectively. Correspondingly, each cell's α_{i} and β_{i} lateral outputs and z_{i} external output range over finite domains of values as determined by the truth table comprising the network's cell definition. We require only that the number of network cells be finite, and define such networks BITNs (for Bilateral ITerative Networks).

In Fig. 12 we show a reconception of Fig. 11. There the i th cell maps

Fig. 11. A BITN

Frg. 12. A reconception of Fig. 11
$\alpha_{i} \rightarrow \beta_{i-1}$ under the influence of x_{i} and a left-coupling parameter, $C^{l i}$; and also maps $\beta_{i} \rightarrow \alpha_{i+1}$ under the influence of x_{i} and a right-coupling parameter, $C^{r i}$, all with zero delay. The coupling idea is to let $C^{l i}$ be a function of β_{i} such that all those β_{i} values which exert the same influence in every $\alpha_{i} \rightarrow \beta_{i-1}$ mapping cause the same $C^{l i}$ value; and similarly for $C^{r i}$ and α_{i} values.

Figure 11 to Fig. 12 transformations are easily made 1 to 1. To illustrate, assume in Fig. 13 that the $\alpha_{i} \beta_{i} \alpha_{i+1}$ portion of the left-hand table is identical for all x_{i} values. Then β_{i} maps into α_{i+1} in the same way regardless of x_{i} 's value and whether α_{i} 's value is 0 or 2 . Therefore let $C^{r i}\left(\alpha_{i}\right)$ be R_{1} for $\alpha_{i}=0$ or 2 , and R_{2} for $\alpha_{i}=1$; and similarly for the right-hand table, assume that the $\beta_{i} \alpha_{i} \beta_{i-1}$ portion of the table is identical for all x_{i} values. Then let $C^{l i}\left(\beta_{i}\right)$ be L_{1} for $\beta_{i}=0$, and L_{2} for $\beta_{i}=1$ or 2 . Our method should be clear by now, so we omit the remaining details.

Henceforth we denote Fig. 12 renditions of BITNs, BITN*s. And if the C^{l} domain has only one element, we denote the corresponding networks R-BITN*s (for right-coupled BITN*s). Now consider the R-BITN* shown in Fig. 14. We note that each light-dashed rectangle there encloses a structure which closely approximates an SITN cell. We will show that the network in Fig. 14 is, in fact, equivalent to a SITN.

Suppose in Fig. 14 and $C^{r l}$ maps β_{1} into α_{2} at t. Then this α_{2} produces $C^{r 2}$, which maps β_{2} into α_{3} at $t+1$. This α_{3} in turn produces $C^{r 3}$, which maps β_{3} into α_{4} at $t+2$, and so forth. Thus if one knows $C^{r 1}$ at $t, t+2$, $t+4, \cdots$, and one knows β_{1} into cell 1 at t, β_{2} into cell 2 at $t+1$, \ldots, and β_{n} into cell n at $t+n-1$ for a R-BITN*, one has sufficient information to establish exactly half of its α and β values during each

x_{i}	a_{i}	β_{i}	$a_{i}+1$
0	0	0	1
0	0	1	2
0	0	2	0
0	1	0	1
0	1	1	2
0	1	2	1
0	2	0	1
0	2	1	2
0	2	2	0
1	0	0	1
	\vdots		

$x_{\mathbf{i}}$	$\beta_{\mathbf{i}}$	$\alpha_{\mathbf{i}}$	$\beta_{\mathbf{i}-\mathbf{1}}$
0	0	0	$\mathbf{1}$
0	0	1	1
0	0	2	0
0	1	0	2
0	1	1	2
0	1	2	1
0	2	0	2
0	2	1	2
0	2	2	1
1	0	0	$\mathbf{1}$
	\vdots		

Fig. 13. Outline for a Fig. 11 to Fig. 12 transformation
successive time interval. Hence the listed set of β 's and associated C^{r} 's is called the R-BITN*'s correspondence set at t. (We note that such a set is generally quite distinct from the analogous "initial condition set.")

Obviously any two independent R -BITN*s correspondence sets, say at t and $t+2 k+1$ for some integer k, respectively, are analyzed separately, yet in the exact same way, in order to determine their respective response, Each set is also analyzed independently of the unit time delay between cells. Hence the R-BITN* in Fig. 14 is equivalent to the SITN in Fig. 15 under the conditions that: ${ }^{3}$
(1) the small rectangles beneath each cell in Fig. 15 represent unit delays; and

[^3]

Fig. 14. An R-BITN*

Fig. 15. A SITN equivalent of an R-BITN*
(2) in Fig. 15, $C^{r i}$ and β_{i} into cell i at time t map into $C^{r(i+1)}$ and β_{i} out of cell i at time t, just as in Fig. 14, $C^{r i}$ and β_{i} of the correspondence set at t map into $C^{r(i+1)}$ and β_{i} of the correspondence sets at t and $t+2$, respectively.

From this discussion, we readily see Theorem 4.
Theorem 4. For each SITN result in Theorems 1, 2, and 3, there are exactly analogous results for $R-B I T N^{*} s, B I T N^{*} s$, and BITNs. We remark that Theorems 3 and 4, with more or less immediate proof modifications, give strengthened versions ${ }^{4}$ of Hennie's (1961) Theorems 10, $10.1,10.2,11,11.1$, and 15. Also since the proof of Theorem 3 embodies an SITN representation of a universal Turing machine [cf. Minsky, (1961)], the result clarifies several computing capacity problems alluded to in Hennie (1961). Finally, we claim that the present paper distributes the proof burden for Theorems 3 and 4 in such a manner as to substantially illuminate the basic nature of Hennie's previous work.
V. CONCLUSIONS

Kilmer (1961) and Winograd (1962) essentially closed out the main switching transients problems for BITNs which have either α_{i} or β_{i} lines missing. Hennie's previous work (1961) extends these results to canonical decompositions of all BITNs which have cell designs such as

[^4]to prevent any corresponding n-celled network from ever exhibiting over-all memory in the equilibrium state. ${ }^{5}$ Kilmer (1962b) discusses the unsolvable nature of steady-state cycling problems in BITNs, BITN*s, and R-BITN*s. And this paper proves the essential unsolvability of the main transients problems in general BITNs and SITNs.

In closing we note the curious duality between Theorem 1 of this paper and Theorem 2 of Kilmer (1962a). The latter states: "For every positive integer k, there exists a BITN cell definition such that every corresponding n-celled BITN is or is not over-all memoryless in the equilibrium state (and hence decomposable into Hennie's canonical form) according as n is or is not $\leqq k$." The interesting thing about this pair of Theorems is that both of their (constructive) proofs seem to require cell complexities that are directly proportional in some sense to k. For Theorem 1 this proportionality is between k and the size of the s_{j} domain; and for Theorem 2 it is between k and the number of rows in the corresponding cellular truth table definition. Thus general BITN cells seem to admit change-overs of behavioral character in their corresponding n-celled network systems at critical network sizes which are bounded above by a constant times some measure of cell complexity

Acknowledgment

The author wishes to acknowledge several stimulating discussions with Dr. Warren S. McCulloch, of the Research Laboratory of Electronics, Massachusetts Institute of Technology, concerning the work reported in this paper.
Received: January 31, 1963

References

Davis, M. (1958). "Computability and Unsolvability." MeGraw-Hill, New York. Hennie, F. (1961). "Iterative Arrays of Logical Circuits." The M.I.T. Press, Cambridge, Mass., and Wiley, New York.
Kilmer, W. (1961). Transient behavior in iterative combinational switching networks. Proc. AIEE Symp. Switching Theory and Logical Design, September, pp. 114-128.
Kilmer, W. (1962a). Iterative switching networks composed of combinational cells. IRE Trans. Electronic Computers EC-11, 123-131.
Kilmer, W. (1962b). "On Cycling Behavior in 1-Dimensional Bilateral Iterative Networks." Montana State College Electronics Research Laboratory Report, August.
Mrnsky, M. (1961). Recursive unsolvability of Post's problem 'tag's and other topics in the theory of turing machines. Ann. Math., 74, 437-455.
Winograd, S. (1962). Bounded-transient automata. Proc. AIEE Symp. Switching Theory and Logical Design, September.

[^5]
[^0]: * This research was supported by Air Foree Cambridge Research Laboratories Contract No. AF19(604)-6619, under the auspices of The Montana State College Electronics Research Laboratory, Bozeman, Montana. The author is currently at the Research Laboratory of Electronics, M.I.T., on leave from Montana State College.

[^1]: ${ }^{1}$ In the obvious sense that out of each s_{i} memory state value there should be an output arrow for each possible y_{i} value.

[^2]: ${ }^{2}$ Such as are given in Figs. 3 and 5, for example.

[^3]: ${ }^{3}$ Hennie (1961) has developed a class of equivalence results that are related to, but essentially distinct from, those derived above.

[^4]: ${ }^{4}$ Because we start from equilibrium instead of arbitrary initial conditions.

[^5]: ${ }_{5}^{5}$ That is, BITNs which have 1 to 1 , over-all equilibrium, $\left\{x_{1}, x_{2}, \cdots x_{n}\right\}$ input- $\left\{z_{1}, z_{2}, \cdots z_{n}\right\}$ output relations.

