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Abstract

The purpose of this paper is to show that in a finite dimensional metric space with Alexandrov’s curvature
bounded below, Monge’s transport problem for the quadratic cost admits a unique solution.
© 2008 Elsevier Inc. All rights reserved.
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1. Introduction

In this paper, we provide a solution to the Monge–Kantorovich problem in Alexandrov space
when the cost function is the square of the metric. We begin by explaining what Monge’s problem
is, and briefly describing Alexandrov spaces. The mass transportation problem, raised by Monge
in 1781 [14], is to move one distribution of mass onto another as efficiently as possible, where
the criterion of efficiency is to minimise a certain cost. In the original formulation, the cost was
the average distance covered by the mass. In other words, given a set X endowed with a cost
function, and given two probability measures μ0, μ1 on X as constraints, the problem is to
determine, if it exists, a minimizer of

inf
∫
X

c
(
x, s(x)

)
dμ0(x)
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among all measurable maps s sending the initial measure μ0 onto μ1 (we denote this condition
by μ1 = s�μ0).

Monge’s original problem has only been solved quite recently (Sudakov gave a proof first [20]
but later, part of his proof appeared to be incorrect, we refer to [3] for details). In the meantime,
the importance of the mass transport problem for other cost functions was recognized and much
work has been devoted to its study. One of the most interesting cases is that of the quadratic cost
(the square of the metric distance). In Euclidean space, Monge’s problem for the quadratic cost
was solved in the eighties by Brenier [6] (and Knott and Smith [17] independently) who was
motivated by fluid mechanics problems. Brenier showed the existence and the uniqueness of the
optimal map, under the hypothesis that the initial measure is absolutely continuous with respect
to the Lebesgue measure. The optimal map is the gradient of a convex function on R

n. Sub-
sequently, this result was generalised to the setting of Riemannian manifolds by McCann [13],
taking advantage of a notion of generalised convex functions (so-called c-concave functions, see
Definition 3.1 below).

A difficulty in solving Monge’s problem is that the problem may be ill-posed; a measure pre-
serving map between two distributions of mass may not exist. To avoid this problem, Kantorovich
introduced a relaxed version of Monge’s problem, which is to minimise the quantity

∫
X×X

c(x, y) dΠ(x, y)

among all plans, namely all probability measures Π whose marginals are μ0 and μ1 (in this
case, the mass is allowed to split). This problem admits solutions in very general settings (see
Section 3). A solution s of Monge’s problem for μ0 and μ1 induces a solution of Kantorovich’s
problem. More precisely, the plan defined by (Id, s)�μ0 is a solution. Classically, in the quadratic
cost case, existence and uniqueness of the optimal map follow from the converse property: any
optimal plan is actually induced by a map. In this paper, we implement this strategy for a class
of metric spaces called Alexandrov spaces.

Alexandrov spaces are the natural generalization of Riemannian manifolds whose sectional
curvature is bounded below (a precise definition is given in Section 2; we do note however that
an Alexandrov space is not necessarily a Gromov–Hausdorff limit of Riemannian manifolds). In
their seminal paper [8], Burago, Gromov, and Perelman showed that such (finite dimensional)
metric spaces possess a certain kind of “Riemannian structure.” This viewpoint was developed
further by Otsu and Shioya [15]. We use their results to extend McCann’s theorem to this setting.
Our main result is the following

Theorem 1.1. Let (X,d) be a finite dimensional Alexandrov space and μH be the corresponding
Hausdorff measure. Let μ0,μ1 be probability measures on X with compact supports such that μ0
is absolutely continuous with respect to μH .

Under these assumptions, Kantorovich’s problem 4.2 admits a solution, and any optimal plan
is supported in the graph of a Borel function F . This map F is also a minimizer of Monge’s
problem and satisfies for μ almost every x ∈ X,

F(x) = exp
(−∇φ(x)

)
,

where φ is a d2-concave function (see Definition 3.1).
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Moreover, up to modifications on negligeable sets, the map ∇φ is unique, and hence so is the
optimal map F .

Remark 1.2. Observe that in the above theorem, the lower bound on the (Alexandrov) curvature
does not appear explicitly in the statement. Consequently, our result also applies to any com-
pact Riemannian manifold and allows us to give another proof of McCann’s theorem [13]. The
original proof, relying strongly on the regularity of the Riemannian exponential map, cannot be
adapted to this case.

To put our result in perspective, we end this section by citing known results about Monge’s
problem in a singular setting (all but one for R

n, the other result is for a compact manifold).
First, Gangbo and McCann [10] extended Brenier’s result to the case of strictly convex cost
functions (including the case of the square of an arbitrary norm). Ambrosio and Rigot treated the
case of Heisenberg group [4]. Ambrosio, Kirchheim and Pratelli proved the existence of optimal
maps for Monge’s original problem for crystalline norms [2]. Very recently, Bernard and Buffoni
proved the existence of optimal maps on Finsler manifolds with strictly convex norms [5]. We
refer to the books [16,21,22] for more on optimal mass transport.

Let us mention another geometric motivation which led us to study the problem above. Re-
cently, the notion of having bounded below Ricci curvature has been extended to the setting
of metric measure spaces independently by Lott and Villani, and by Sturm [11,12,18,19]. This
equivalent definition uses optimal mass transport theory. For a Riemannian manifold, the proof
of the equivalence between both definitions basically relies on McCann’s theorem [13] and on a
non-smooth change of variables formula [9]. A natural question (mentioned in [11]) is whether
or not an Alexandrov space has Ricci curvature bounded below in this generalised sense. Our
result may be useful in investigating this.

The rest of this paper is organised as follows. In the next section, we present properties of
Alexandrov spaces, referring to the book [7] for a background of the theory. We then use these
results in Section 3 to prove our main theorem. A sketch of our proof is given at the beginning
of this section. In the last section, we indicate how to adapt our result to other strictly convex
costs of the distance function and how to relax the compactness assumption on the supports of
the given measures.

2. Properties of Alexandrov spaces

In this section, we summarize known properties of Alexandrov spaces used in the rest of the
paper. These results are taken from a paper by Burago, Gromov, and Perelman [8] and a paper
by Otsu and Shioya [15]. Most of the results of [8] and proofs can also be found in the book [7].

Definition 2.1 (Alexandrov space). Let S2
k be the 2-dimensional space form of curvature k and δk

be the metric induced by the Riemannian metric. A finite dimensional Alexandrov space X

of curvature bounded below by k is a complete, connected, locally compact, geodesic space
such that for all geodesics γ in X and γ in S2

k such that their lengths are equal, d(p,γ (0)) =
δk(p̄, γ (0)) and d(p,γ (1)) = δk(p̄, γ (1)), the inequality below is satisfied for all t ∈ [0,1]:

d
(
p,γ (t)

)
� δk

(
p̄, γ (t)

)
.
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The lower bound on the curvature of an Alexandrov space allows one to define the angle
between two geodesics starting at the same point. Using this property, we can prove the first
variation formula for distance functions.

Lemma 2.2 (First variation formula). Let a and x be two distinct points of an Alexandrov
space X and γ be a unitary geodesic starting from x. Then, the equality

d
(
a, γ (t)

) = d(a, x) − t cos � min + o(t),

holds for all nonnegative t where � min is the smallest angle between γ and a geodesic between x

and a.

For a proof, we refer to [7, Corollary 4.5.7 and Remark 4.5.12] or [15, Theorem 3.5].
To prove our main result, we will use the fact that an Alexandrov space is not far from being

a (Riemannian) manifold. We explain this point of view, starting with a definition.

Definition 2.3. Let X be an n-dimensional Alexandrov space. A point p ∈ X is said to be regular
if the tangent cone at p is isometric to Euclidean space and singular otherwise. Throughout the
rest of this paper, we denote by Reg(X) (respectively Sing(X)) the set of regular (respectively
singular) points of X.

Remark 2.4. The curvature bound implies that the tangent cone at each point is unique, and is
isometric to the Euclidean cone over the space of directions at x. The Hausdorff dimension of
any tangent cone is equal to the dimension of X. (See [7] for a proof.)

We gather together the main properties of the regular set of an Alexandrov space in three
theorems. The first one states that, in a certain sense, the regular set covers almost all of X.
The second theorem shows there is a certain kind of differential structure on Reg(X). The last
establishes the existence of a Riemannian structure on Reg(X) and the compatibility of this
structure with the Alexandrov metric. The order in which these theorems are given below is not
chronological; furthermore, we have mixed results proved by various authors. We hope that this
non-standard presentation helps the readers’ understanding.

Theorem 2.5. The subset Reg(X) is a dense measurable set (because it is the intersection of
countably many dense open sets) of full measure in X. More precisely, the Hausdorff dimension
of the singular set satisfies dimH (Sing(X)) � n − 1.

Proof. The first statement was proved by Burago, Gromov and Perelman in [8], see also
[7, Chapter 10]. The Hausdorff measure property was obtained by Burago, Gromov and Perel-
man [8] and Otsu and Shioya [15, Theorem A] independently. �
Theorem 2.6 (Charts on Reg(X)). There exists an atlas (φ,Uφ)φ∈Φ on Reg(X). In other words,
∀φ ∈ Φ , φ : Uφ �→ R

n is a bilipschitz map defined on an open set Uφ of X. Moreover, for any
φ ∈ Φ , there exists Vφ ⊂ Uφ , which is dense and of full measure such that

⋃
Vφ ⊃ Reg(X).
φ∈Φ
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Now, if φ,ψ ∈ Φ are such that Uφ ∩ Uψ �= ∅, ψ ◦ φ−1 is continuously differentiable on
φ(Vφ ∩ Vψ ∩ Reg(X)) (see Definition 2.12 for a precise definition).

Proof. This statement is proved in [15, Theorem 4.2]. �
Remark 2.7. Notice however that Sing(X) can be a dense subset of X; an example is provided
in [15].

Theorem 2.8 (Riemannian structure on Reg(X)).

(a) There exists a continuous Riemannian metric on Reg(X), i.e. a family (gφ)φ∈Φ of maps such
that

gφ : Uφ −→ Sym+(
R

n
)

is a continuous map (Sym+(Rn) denotes the set of symmetric positive definite matrices
in R

n), and these maps satisfy the usual formula

gφ = t
(
d
(
φ ◦ ψ−1))gψ d

(
φ ◦ ψ−1).

(b) The Riemannian structure is compatible with the Alexandrov metric, in the following sense:
(i) For any x ∈ Reg(X) any chart φ ∈ Φ such that x ∈ Uφ and any δ > 0, there exists a

neighbourhood of x in Uφ such that the map φ is a bilipschitz homeomorphism with
Lipschitz constants smaller than 1 + δ on this neighbourhood.

(ii) The tangent cone based at a point x ∈ Reg(X), endowed with the induced metric, is
isometric to (Rn, gφ(x)) (assuming that x ∈ Uφ).

(iii) The metric induced by the Riemannian metric coincides with the original metric.

Proof. Statement (b)(i) was obtained by Burago, Gromov, and Perelman in [8], see also [7,
Chapter 10] for a proof. The others were proved by Otsu and Shioya. �
Remark 2.9. Otsu and Shioya also showed that, up to some modifications (taking averages
of suitable distance functions), the natural maps can be made C1 on the whole image of
Uφ ∩ Uψ ∩ Reg(X) (see [15, Section 5] for a statement). However, for our purpose, the previ-
ous version is more convenient.

In order to give some idea of the proof of the theorem of Otsu and Shioya, let us give some
details of these charts.

Definition 2.10 (Strained points and natural charts). Let (X,d) be an n-dimensional Alexandrov
space. A point p is called a (n, ε) (or simply ε if the dimension is implicit) strained point if there
are n pairs of points (xi, yi)i∈{1,...,n} in X such that ∀i, j (i �= j) ∈ {1, . . . , n},

˜� xipyi > π − ε,

˜� xipxj >
π − 10ε,

2
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˜� xipyj >
π

2
− 10ε,

˜� yipyj >
π

2
− 10ε,

where ˜� denotes the comparison angle. The collection (xi, yi) itself is called a (n, ε)-strainer
for p.

We denote by φx1,...,xn (or simply φ if there is no ambiguity) the following map:

φ : U −→ R
n

x �−→ (
d(x1, x), . . . , d(xn, x)

)
.

Remark 2.11. Strained points were introduced in [8]. In particular, any regular point x is an
ε-strained point for arbitrary positive ε (actually, a point is regular if and only if it is ε-strained
for arbitrary ε > 0). It follows that we can consider the above map φ for any strainer at x, and it
can be shown that this map induces a chart (in the sense of Theorem 2.6) for ε sufficiently small.
Throughout the rest of this text, we refer to such a map as a “natural map.”

Definition 2.12. Let p be a point of X. We denote by Vp the set of points q such that there exists
a unique geodesic between p and q .

Let φx1,...,xn be a natural map. We set

Vφ =
n⋂

i=1

Vxi
.

One of the main ingredients used to prove Theorem 2.6 is the following lemma on regularity
of distance functions on Alexandrov space, which is of independent interest.

Lemma 2.13. (See [15, Lemma 4.1].) Let φ = φx1,...,xn be a natural map in a neighbourhood
of a regular point p and q be an arbitrary point in X. The function dq ◦ φ−1 is continuously
differentiable on φ(Vφ ∩ Vq).

An important consequence of the above theorems is that Rademacher’s theorem on Lipschitz
maps holds in this setting.

Corollary 2.14 (Rademacher’s theorem). On an n-dimensional Alexandrov space of curvature
bounded below, the usual notion of differentiability (as in the Riemannian setting), (gradient)
vector field and first order expansion are well-defined on Reg(X) hence almost everywhere.
Moreover, any Lipschitz function is differentiable almost everywhere with respect to the n-
dimensional Hausdorff measure.

Proof. More precisely, we say that a map f is differentiable at x if there exists a natural chart φ

such that x ∈ Vφ and f ◦ φ−1 is differentiable at φ(x). With this definition, the differentiability
statement follows easily from the above results. Let us prove Rademacher’s theorem. Reg(X) is
a subset of a separable metric space, hence separable. As a consequence, there exists a countable
subset ΦN of Φ such that
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⋃
φ∈ΦN

Vφ ⊃ Reg(X).

Thanks to this property and the fact that Reg(X) is of full measure in X, it is sufficient to prove
that any Lipschitz map f is differentiable almost everywhere on any open set Uφ . Now, let φ

be a natural chart defined on Uφ . The map f ◦ φ−1 is a Lipschitz map (Theorem 2.8(b)(i)),
hence differentiable almost everywhere thanks to the usual Rademacher theorem. We conclude
the proof by noticing that φ is a Lipschitz map (Theorem 2.8) and Vφ is a subset of full measure
of Uφ (Theorem 2.6). �
3. Optimal map on an Alexandrov space

The goal of this section is to prove Theorem 1.1. The proof is divided in several steps. First,
we use the Kantorovich duality. This result (see Theorem 3.3) gives us the existence of an optimal
plan and characterizes the support of such a plan. More precisely, the support of an optimal plan
is related to special maps called c-concave functions. This part holds in the general setting of
Polish spaces. The second step, which is the core of the proof, is a proof of the fact that any
optimal plan is supported in the graph of a map F (up to a negligeable set). In the penultimate
step, we prove that the map F sends the initial measure onto the final one. In the last part, we
establish the uniqueness of such a map (up to a negligeable set).

3.1. Kantorovich duality

Throughout this paragraph, we refer to μ0,μ1 as Borel probability measures on a complete
separable metric space X without any further assumption on their support.

The dual Kantorovich problem is the problem of maximizing the following quantity

J (φ,ψ) =
∫
X

φ(x)dμ0(x) +
∫
X

ψ(y)dμ1(y)

where φ and ψ are elements of the space Cb(X) of continuous bounded functions on X such
that ∀x, y ∈ X × X,

φ(x) + ψ(y) � c(x, y).

Under quite general assumptions, it is possible to show that extrema of both problems co-
incide, and, moreover, any minimizer of the Kantorovich problem is associated to a pair of
maximizers for the dual problem. Before we state this duality theorem, we recall some defi-
nitions which will enable us to describe properties of a maximizing pair.

Definition 3.1. A cost function on X is a lower semicontinuous function c : U × V �→ R
+,

where U , V are Borel subsets of X. Let φ : U �→ R∪{+∞} be a proper (i.e. �= +∞) measurable
function. We define φc : V �→ R ∪ {−∞}, the c-transform of φ by the formula

φc(y) = inf c(x, y) − φ(x).

x∈U
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We define in a similar manner the c-transform of a function defined on V (keeping c(x, y) un-
changed because of the possible asymmetry of c) and we call φ as above, a c-concave function
if (φc)c = φ (in the rest of the paper, we will write φcc).

Remark 3.2. Assume that a cost function is locally Lipschitz (e.g. c(x, y) = d2/2(x, y)) and U ,
V are compact sets, then any c-concave function is Lipschitz also (see [13] for a proof).

We refer to [21] or [16] for a more detailed analysis of c-concavity. There exist numerous
versions of the Kantorovich duality. We give here a version borrowed from the book [1, Theo-
rem 6.1.5].

Theorem 3.3 (Kantorovich duality). Let (X,d) be a complete separable metric space, μ0,μ1 be
Borel probability measures on X and c be a cost function such that

∫
X×X

c dμ0 dμ1 < +∞.

Then

sup
(ψ,φ)∈Cb(X)×Cb(X)

J (ψ,φ) = min
π∈S(μ0,μ1)

∫
X×X

c(x, y) dπ(x, y) (1)

where S(μ0,μ1) denotes the set of probability measures whose marginals are μ0,μ1. In addi-
tion, there exists a maximizing pair (φ,φc) ∈ L1(μ0) × L1(μ1) for the dual problem where φ is
a c-concave function. Moreover there exists an optimal plan γ such that for the above pair

φ(x) + φc(y) = c(x, y) γ -a.e. in X × X. (2)

Conversely, if there exists φ ∈ L1(μ0) such that (2) holds, then γ is optimal.

3.2. The support of an optimal plan is a graph

In this section, we prove the main technical result of this paper, namely that the support
of an optimal plan is concentrated on the graph of a function. First, we state a lemma on the
differentiability of a function along geodesics.

Lemma 3.4 (Differentiability along geodesics). Let f be a function on X, differentiable at a
point x ∈ Reg(X) and γ be a unitary geodesic defined on [0, T ]. Then, the Taylor expansion
given below holds:

f
(
γ (t)

) = f (x) + t
〈∇f (x), γ ′(0)

〉 + o(t).

Proof. Let φ = φp1,...,pn be a natural map around x such that x ∈ Vφ . By definition, f ◦ φ−1 is
then differentiable in the usual sense. It remains to prove that φ ◦ γ is differentiable at 0. This
follows from the first variation formula (Lemma 2.2) using the fact that x ∈ Vφ . �
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Lemma 3.5. Let ψ be a d2/2-concave function on an Alexandrov space (X,d). Let us assume
that the supports of ψ and ψc are compact sets. Then

1

2
d2(x, y) � ψ(x) + ψc(y) (3)

for all x, y ∈ X. If x ∈ Reg(X) is a point where ψ is differentiable, then equality holds in (3) if
and only if y = expx(−∇ψ(x)).

Remark 3.6. expx(−∇ψ(x)) denotes the endpoint of the geodesic whose direction is ∇ψ
|∇ψ | and

is parametrized on [0, |∇ψ(x)|]. In particular, d(x, expx(−∇ψ(x)) = |∇ψ(x)|.

Proof. The inequality follows from the definition of ψc. The compactness of the support of ψc

implies the existence of a pair which satisfies the equality. So, let us assume that the equality
holds in (3) for a pair (x, y). We set θ(z) = d2(y, z)/2. Let γ (t) be a unitary geodesic which
starts at x and is parametrized by [0, T ]. By assumption on x and y, we have

θ
(
γ (t)

) − θ(x) = d2(γ (t), y
)
/2 − d2(x, y)/2

� ψ
(
γ (t)

) − ψ(x)

� t
〈∇ψ(x), γ ′(0)

〉 + o(t)

where we get the first inequality from (3) and the second from Lemma 3.4. The function θ is
said to be subdifferentiable at x with subgradient ∇ψ(x). Now, we are going to prove that θ

is also superdifferentiable at x (actually everywhere). As a consequence, we will get that θ is
differentiable at x and the subgradient and the supergradient coincide, yielding the equality at
the end of the proof.

Applying the first variation formula (Lemma 2.2) to θ and γ yields

d2(γ (t), y
)
� d2(x, y) − 2td(x, y) cos � (

σ ′(0), γ ′(0)
) + o(t)

where σ is a geodesic between x and y, and � (σ ′(0), γ ′(0)) is the angle between σ and γ . Let
us remark that the above inequality holds true for any geodesic γ starting at x and any other
geodesic linking x and y (if any).

Letting t go to 0, we obtain

〈∇ψ(x) + d(x, y)σ ′(0), γ ′(0)
〉
� 0.

To prove the reverse inequality, one would like to consider a geodesic which starts at x and whose
direction is −γ ′(0). Unfortunately, we cannot suppose such a geodesic exists; however, applying
the above argument to a sequence of geodesics starting at x and whose directions converge to
−γ ′(0) allows to conclude that the function θ is differentiable at x and

∇ψ(x) = −d(x, y)σ ′(0).

This gives the characterization of y stated in the lemma. �
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Remark 3.7. Note that we also showed that if x is a point such that ψ is differentiable at x, there
exists a unique geodesic between x and expx(−∇ψ(x)).

Now, we can deduce from the previous lemma that any optimal plan is actually supported in
the graph of a Borel function.

Proposition 3.8. Let Π0 be a minimizer of the variational problem

min
∫

X×X

d2(x, y) dΠ(x, y)

among all couplings on X ×X whose marginals are two probability measures μ0,μ1 that satisfy
the assumptions of Theorem 1.1. Then, there exists a measurable function F such that

Π0 = (Id,F )�μ0.

Moreover, the map F is defined by the formula

F(x) = expx

(−∇ψ(x)
)

(4)

and ψ is a d2/2-concave function.

Remark 3.9. By abuse of language, we will say that F is a minimizer of the above problem.

Proof. We deduce from Kantorovich duality (Theorem 3.3) the existence of a pair (ψ,ψc) of
c-concave maps which are locally Lipschitz maps (see Remark 3.2) and such that

∫
X×X

d2/2(x, y) dΠ0(x, y) =
∫
X

ψ(x)dμ0(x) +
∫
X

ψc(y) dμ1(y)

where (ψ,ψc) satisfy (3) by definition of the c-transform. Now, Rademacher’s theorem and
Lemma 3.5 imply that the support of Π0 is concentrated on the graph of the map

F(x) = expx

(−∇ψ(x)
)
.

Note that the map F restricted to the subset of Reg(X) of points where φ is differentiable is a
continuous map. Hence, the measurability of Reg(X) (Theorem 2.5) entails the measurability
of F .

It remains to prove that F�μ0 = μ1. Let Z be a subset of Reg(X) of full measure, such that
∀x ∈ Z,ψ is differentiable at x. By definition of Π0 and by assumption on μ0, Π0(Z × X) = 1.
As a consequence, if A is a Borel set of X, then the following equalities hold

μ1(A) =
∫

X×A

dΠ0 =
∫

Z×A

dΠ0 = μ0
(
Z ∩ F−1(A)

) = F�μ0(A). �
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3.3. Uniqueness property

It remains to prove the uniqueness of the optimal plan and optimal map. The results of Sec-
tion 3.2 reduce the proof to the case of the optimal map. Therefore, to complete the proof of
Theorem 1.1, we just need the following result.

Proposition 3.10. Under the assumptions of Theorem 1.1, we set t (x) = expx(−∇ψ(x)) where ψ

is a d2/2-concave function, a solution of Monge’s problem. Then, up to modifications on a neg-
ligeable subset, the map ∇ψ is uniquely determined.

Proof. Let s be another solution. Namely, s is a Borel function, mapping μ0 to t�μ0, such that:

∫
X

ψ dμ0 +
∫
X

ψc dt�μ0 =
∫
X

1

2
d2(x, s(x)

)
dμ0.

As t�μ0 = s�μ0 by assumption, we get

∫
X

ψ(x) + ψc
(
s(x)

) − 1

2
d2(x, s(x)

)
dμ0(x) = 0,

where the integrand is nonpositive by definition of the c-transform, and consequently is equal
to 0 μ0 almost everywhere. Lemma 3.5 and Rademacher’s theorem allow us to conclude that
s = t almost everywhere. The uniqueness of ∇ψ follows from Remarks 3.6 and 3.7. �
4. Generalisation to other costs

As in the Riemannian case, our main result can be adapted to other strictly convex costs of the
distance function. Compactness of supports can also be relaxed. The proof of the theorem below
is similar to the proof in the Riemannian case, so we only sketch it. We refer to [1, Theorem 6.2.4]
for a detailed proof in the Euclidean case.

Throughout the section, we consider a cost c(x, y) defined by

c(x, y) = h
(
d(x, y)

)
,

where h : R
+ �→ R

+ is a strictly convex and nondecreasing differentiable function.
We also use the approximate differential of a map, which we recall the definition of in this

setting.

Definition 4.1. We say that f : X �→ R has an approximate differential at x ∈ Reg(X) if there
exists a map g : X �→ R differentiable at x such that the set {f �= g} has density 0 at x.

Theorem 4.2. Let (X,d) be a finite dimensional Alexandrov space and μH be the corresponding
Hausdorff measure. Let μ0,μ1 be probability measures on X such that μ0 is absolutely contin-
uous with respect to μH and
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∫
X×X

c dμ0 dμ1 < +∞.

Under these assumptions, the Kantorovich problem admits a solution, and any optimal plan is
supported in the graph of a Borel function F . This map F is also a minimizer of Monge’s problem
and satisfies for μ almost every x ∈ X,

F(x) = exp

(
− (h′)−1(|∇̃φ(x)|)

|∇̃(φ(x))| ∇̃φ(x)

)
,

if |∇̃φ(x)| �= 0 and F(x) = x otherwise. φ is a c-concave function (see Definition 3.1) and ∇̃
denotes the approximate gradient of φ.

Moreover, up to modifications on negligeable sets, the map ∇̃φ is unique, and as a conse-
quence so is the optimal map F .

Proof. To get the result, we only have to prove an analogue of Lemma 3.5. To this aim, we set
(φ,φc) a maximizing pair of the dual Kantorovich problem. To circumvent difficulties arising
from the noncompactness of supports, we use auxiliary maps defined on compact subsets. We fix
o ∈ X, R a positive number, and define

φR(x) = inf
B(o,R)

c(x, y) − φc(y).

As h is a convex function, the cost c is a locally Lipschitz map and so is φR . By compactness,
for any x ∈ support(μ0), there exists y ∈ B(o,R) such that

φR(x) + φc(y) = h
(
d(x, y)

)
.

Now, let us assume that φR is differentiable at x and set θ(x) = c(x, y). Arguing as in Lemma 3.5,
we get that θ is subdifferentiable at x with subgradient ∇φR(x). The differentiability of h entails
that θ is also superdifferentiable at x (see Lemma 3.5)

θ
(
γ (t)

)
� θ(x) − th′(d(x, y)

)
cos � (

σ ′(0), γ ′(0)
) + o(t) (5)

where we use the notations of Lemma 3.5.
Consequently, using the strict convexity of h, we get the following equivalence (assuming φR

is differentiable at x):

φR(x) + φc(y) = c(x, y)

if and only if

y = exp

(
− (h′)−1(|∇φR(x)|)

|∇(φR(x))| ∇φR(x)

)

where the equality reads y = x in the case where |∇(φR(x))| = 0.
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Now, let Π be an optimal plan, the Kantorovich duality implies

φ(x) + φc(y) = c(x, y) Π-a.e.

Therefore, for μ0 almost every x ∈ X, there exists y such that the above equality holds. This
entails that

⋃
R∈N∗{φ = φR} is a subset of full measure. We conclude the proof as in [1] (note that

Lebesgue’s theorem on approximate differentiability holds in our setting thanks to the existence
of charts on Reg(X) satisfying property (b)(i) of Theorem 2.8 and Theorem 2.5). �
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