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A family of polynomial sequences, named &R-sequences, is introduced and its 
connections with both graded coalgebras and posets of full binomial type are 
studied. Moreover, the G-R-sequences p,(x), such that ,r~” is a divisor of p.+ , , are 
characterized in terms of roots of unity and linearly recursive sequences. 0 1986 

Academic Press, Inc. 

1. INTRODUCTION 

The central role played in a number of topics by the elementary binomial 
theorem is well known. In particular, its form 

counts in two ways the number of one-to-one maps J A +X such that 
Imfn Y = @, where A, X, Y, Z are sets, YC ZE X and n, x, y, z are the 
cardinalities of A, X, Y, Z, respectively. 

In their systematic investigation on the foundations of combinatorial 
theory, Goldman and Rota in [ 111 aimed to obtain a similar com- 
binatorial derivation of various identities classically known as q-identities 
(see also [3,4, 10, 121). In particular, they studied the case of the list of 
homogeneous polynomials 

n-l 
Pn(x,Y)= n (x-qiyh P,= 1, (2) 

i=O 

and proved the identity 

Pk(X, z) p, ~ k(Z, Y) 
Y 

(3) 
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by counting in two ways the one-to-one linear transformations f: A --*A’ 
such that Imfn Y = 0, where A, X, Y, Z are now linear spaces over the 
finite field GF(q), YE Z c A’, n = dim (A), x, y, z are the cardinalities of 
X, Y, Z and (;), denotes the usual Gaussian coefficient. 

In order to produce a detailed analysis of the previous analogy, the 
authors of the present paper found it suitable in [7] to introduce the 
following definitions. 

DEFINITION 1. Let K be a field of characteristic zero; the polynomial 
sequence 

P,(x, y) = 2 p;xy, n>O (4) 
i=o 

(where: p: E K, p::=n,#O, pg = no = 1) is said to be a homogeneous 
Goldman-Rota-sequence, if there exist suitable constants h; E K such that 

PAX, y) = i h: J’k(x, z) Pn-AZ, Y). (5) 
k=O 

Moreover, the corresponding non-homogenous sequence p,(x) := 
P,,(x, 1) will be simply called a G-R-sequence. 

It is easy to see that the G-R-sequence p,(x) may be directly charac- 
terized by 

k=O 

in substitution for (5). 

DEFINITION 2. The polynomial sequences 

%z(x, Y) = t SYYn-i, n B 0, (7) 
i=O 

will be called a homogeneous Goldman-Rota-Sheffer-sequence associated 
with the G-R-sequence p,(x) if 

&(x, Y) = i h; PAX, 2) L-k(z, Y). 
k=O 

63) 

The G-R-S-sequences are the corresponding non-homogeneous sequences 
s,(x) := SJX, 1). 

It is plain that a G-R-sequence is also a (self-associated) G-R-S- 
sequence. 

409/l IS/i-4 
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It is possible to prove (cf. [7, Proposition 53) that (8) is equivalent to 

which, by putting k = r and s,(x) =.u,,(x), gives 

Pf:=h;p:-,. (10) 

In Section 2 we shall show that the coefficients h;: which occur from (5) 
to (10) can be assumed as structure constants of a comultiplication d, 
over K[x], so that a G-R-sequence introduces a structure of graded 
coalgebra C, into K[x] and, conversely, the G-R-sequences can be 
characterized in coalgebraic terms. 

Regarding the foregoing instances of G-R-sequences, let us note that 
(x - 1)” is the characteristic polynomial of the lattice of subsets of a finite 
n-set in the same way that JJy1-j (x - qi) is the characteristic polynomial of 
the lattice of subspaces of an n-dimensional vector space over GF(q). The 
latter sequence has also been studied by Andrews [4] in order to develop a 
theory for enumeration problems in finite vector spaces that is analogous 
to the theory of binomial enumeration of Mullin and Rota [14]. As a 
further example of a G-R-sequence one may consider the list 
p,(x) :=xn--‘(x- 1) h’ h w ic corresponds to h; = 1; in this case, p,(x) is the 
characteristic polynomial of the chain of length n. In the next section we 
shall describe a more comprehensive class of G-R-sequences which may be 
regarded as the sequences of characteristic polynomial of suitable partial 
ordered sets. 

However, not all the polynomial sequences with such a property are 
G-R-sequences; for instance, the sequence 

p,(x)=x(x- l)...(X--n l), n 2 0, (11) 

associated with the lattice of partitions of an n-set. On the other hand all 
four examples considered are graded bases p,(x) of the vector space K[x] 
such that p,, + i(x) is divisible by p,(x). Proposition 5 below will describe 
the G-R-sequences with such a property. 

2. G-R-SEQUENCES, COALGEBRAS, AND THEIR 
COMBINATORIAL INTERPRETATION 

For the sake of simplicity, in the following we shall consider only G-R- 
sequences of manic polynomials (nt, = 1). Concerning the general case as 
well as the proofs of Proposition 2 and Proposition 3 see [7]. 
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We first remark that there is .a bijection between the G-R-sequences 
p,(x) and their allied constants h;. In fact, putting y = 0 and z = 1 in (5), 
we get xn = C; =0 h; pk(x); this, together with p,(x) = C; = 0 pf: xk, gives the 
change of basis from x” to p,(x). This proves the following: 

PROPOSITION 1. Let p,(x) = C;!Opi xk be a G-R-sequence associated 
with constants h;; then we have 

‘HE p-’ (12) 

where P = @) and H = (h;), with pf: = h; = 0 for k > n. 

Associated with a given G-R-sequence p,(x) let us consider the following 
two linear maps: 

A,: K[x] + K[x] @ K[x] (comultiplication or 
n diagonalization) (13) 

x”t-+ 1 h;:xkQxnpk 
k=O 

and 

E: K[x] -+ K (counit). 

XflH6;f 
(14) 

F%~WSITION 2. With reference to Definition 1, if hz # 0 for every n E N, 
then C n := (K[x], A,, E) is a (graded) coalgebra, i.e., the following 
diagrams are commutative: 

c, --f-L CHQC, 

AH 
I I 

AHO1 (coassociativiry ) (15) 

c&c,= C,QC,QC, 

KOCH =c,cgc Ha C,QK 

(counitary property) ( 16) 

(H = (h[t), (I/ is the canonial isomorphism and Z is the identical map). When 
h;( = 0 for some n, then only the right-hand side of diagram (16) commutes, in 
which case C, will be called a right graded coalgebra. 
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Note that the commutativity of (15) is equivalent to 

Let us denote by C z := (KC [xl], m, U) the (right) graded algebra 
obtained by dualizing the (right) coalgebra C,,: 

m:C;l;@CX-+Cg 

X’Q XiHhj+JX’+J, 

l.4: K-C; 

lHXO. 

(18) 

(19) 

Here K[[x]] has been identified with the linear dual of K[x] and the 
“series” X” with the dual form of the “polynomial” x”; consequently the 
series x” is not in general the nth power of x1 in Cj!, but, according to (17), 
we have (x’)“=h:h:...h::~,x”=h:h:...hlx”. 

Note also that C, is cocommutative (Cg is commutative) if and only if 
h;=h;-,; this is the case, because of (17), if h; # 0 for every n. 

Concerning the G-R-sequences in Section 1, note that C, and Cc are 
respectively known as (i) the polynomial coalgebra and the algebra of 
divided power series, if h; = (;), p,(x) = (x - 1)“; (ii) the coalgebra of 
divided powers and the algebra of power series if hi= 1, 
p,(x) = x” - ‘(x - 1); (iii) the q-Eulerian coalgebra and the algebra of for- 
mal q-Eulerian series if h; = (;&, p,(x) = n;:,’ (x - qi). 

It is quite natural to associate with any series s=cjaO S,X~‘E C$ the 
linear map 

S:=m(-@s):C%-)C;E, 

xn++m(x”@s) = c skp,htxk. 
k2n 

(20) 

In the following the series p = ~j,O~jxj defined as the multiplicative 
inverse (in Cg) of the series [ = ~j,Oxi will be of special interest; in the 
combinatorial interpretation we shall give later, they correspond to the 
usual Moebius function and zeta-function (see [2]). 

We are now able to invert Proposition 2; in fact, Proposition 3 below 
shows how to construct the G-R-S-sequences (and then, the unique G-R- 
sequence) associated with a given graded coalgebra C,. 

PROPOSITION 3. Let C,= (K[x], A,,, E) be a coalgebra, graded with 
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reference to the basis x” on K[x] (i.e., (13) to (16) are satisfied); the linear 
transformation 

s^:=l+bo(I@s)odH:CH3CH 

xnwsn(x) := f hys,-ix’ 
(21) 

i=O 

associated with the series s = cj a o , s-xi E CX maps the canonical basis xn in to 
a G-R-S-sequence s,(x). In particular, zf s = p, one gets the G-R-sequence 
p,(x), the associated coalgebra of which (in the sense of Proposition 2) is just 

cff 

The intrinsic simplicity of the above statement appears manifest if one 
remarks that by dualizing map (21) one obtains (20). 

We now come to consider a class of graded coalgebras arising in a com- 
binatorial setting, whose allied G-R-sequences have the interpretation 
referred to in Section 1. Most of the results used here, as well as a more 
general treatment of the algebraic and coalgebraic aspects of combinatorial 
structures, can be found in [2, 9, 133. 

First recall that a coalgebra C(9), the so-called incidence coalgebra of 
9, is associated with any locally finite partial ordered set 9, hereafter 
abbreviated to “1. f. poset.” The support of C(P) is the free K-space span- 
ned by the set of all intervals [a, b] in 9; comultiplication d and counit E 
are given by 

4[a,bl)= 1 Ca,tlOIt,bl (22) 
o<r<b 

-%[a, bl)= 1 if a = b, 

=o otherwise. 
(23) 

By dualizing C(P) one obtains the more familiar “incidence algebra” 
c*(s) of 9. 

In the remaining part of this section we shall only consider I. f. posets of 
full binomial type. After Doubilet-Rota-Stanley [9], an 1. f. poset P is said 
to be of fur/ binomial type if (i) all the maximal chains in a given interval 
[a, b] have the same length (Jordan-Dedekind chain condition); (ii) all 
the intervals of length n possess the same number, say B,, of maximal 
chains; (iii) P contains a O-element. The lattices considered in Section 1 
(except the lattice of partitions of an n-set) are 1. f. posets of full binomial 
We. 

Without loss of generality, we may assume that 9 has infinite length. 
Two intervals [a, b] and [c, d] of 9 are said to be equivalent, 
[a, b] N [c, d], if they have the same length. Later we shall make use of the 
following simple lemmas. 
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LEMMA 1. Any two equivalent intervals [a, b] - [c, d] of an 1. j1 poset of 
full binomial type 9 have the same level numbers (of the second kind). 

Proof: Let [a, b] be an arbitrary interval of length n in 9, W, be the 
number of elements of rank k in [a, b], and t E [a, b] be one such element. 
It is easy to check that the maximal chains in [a, b] containing t are 
WC-,; hence, W, = Bn/(BkBnpk). 1 

We shall call the “level number indicator” of [a, b] the polynomial 

B 
z(x)= i WkXnpk= f AX n-k 

k=OBkB,-k 

(n = length of [a, b]). (24) 
k=O 

LEMMA 2. In the hypotheses of Lemma 1, there exists a bijection 
4: [a, b] + [c, d] such that if a 6 a, 6 b, 6 b then [a,, b,] - [d(a,), rj(b,)]. 

Proof. Lemma 1 enables us to define a bijection $k from the kth level of 
[a, b] to the kth level of [c, d]. Obviously, the map 4(t) :=#k(t) with 
k = rank of t, satisfies the conditions in the lemma. i 

From Lemma 2 we deduce that the subspace J of C(P) spanned by the 
collection { [a, b] - [c, d] : [a, b] N [c, d] } is a coideal (really, a maximal 
coideal) of C(P), i.e., d(J) G JO C(P) + C(P)OJ and E(J) = 0. In fact, if 
[a, b] - [c, d] we have 

A(Ca, bl- [c, 4) 
= c [a, tlOCt,bl- c C~sl0C.c dl 

a<rCb c<s<d 

= a<~cb [a, tl0 Ct, bl - 1 C&a), d(t)1 0 C4(t), d(b)1 
. . a<t<b 

= o<~cb {([a, tl- C$(aL 4(t)l)@ Cc bl 
. . 

+ [d(a), d(t)1 0 (Ct, bl- Cd(t), 4(b)l)) E JO CC+7 + C(S)OJ. 

By identifying the polynomial Y with the class of all intervals [a, b] E 9’ 
of length n in the quotient coalgebra of C(9) modulo J, one obtains a 
graded coalgebra C, = (K[x], A,, E), called the maximally reduced 
incidence coalgebra of 9. In accordance with (22) and (23) we have 

A,(x”)= i, B, 
k=oBkBn-k 

Xk@Xn-k, h; = W, = B,/(B,B,m k) (25) 

&(Xn) = s;t (26) 

We may now state the following: 
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PROPOSITION 4. A cocommutative graded coalgebra C, = (K[x], A,, E) 
given by (25) and (26) is associated with any 1.J poset of full binomial 

type 2 If P,(x) is the G-R-sequence associated with Cn and s,(x) is the 
G-R-S-sequence relative to the series [ = CnaO x”, then any interval of 
length n in 9 has p,(x) as its characteristic polynomial and s,(x) as its level 
number indicator. 

Proof The second part of the statement remains to be proved. In the 
transformation from the incidence algebra C*(9) to Cz, the zeta- 
function [ and the Moebius function p become the series [ and ,U = i -’ 
considered above and we have [(a, b) = [(x”) = 1 and p(a, b) = u(xn) if 
[a, b] 5 B has length n. Then, in particular, 

Bnl(BkBn-k) &“I = WkPL(a, 7) = 1 ih t) 
a<t<b 

k=rank (I) 

where r E [a, b] and rank (r) = k. On the other hand, from (21) of 
Proposition 3 we deduce 

P,(x)= f: k/(&h-k) P1(Xkbn-k 
k=O 

and 

s,(x)= i Bn/(BkBn-k) ((Xk)Xn-k= i h;X”-k. 1 

k=O k=O 

3. ON A PARTICULAR CLASS OF G-R-SEQUENCES 

In this section we shall deal with G-R-sequences p,(x) of the form 

p,(x)= fl (x--A UiE K. 
i=O 

(27) 

The following proposition enables us to construct all the sequences of this 
kind. 

PROPOSITION 5. Polynomial sequence (27) is a G-R-sequence if and only 
if either (i) ui = 0 for every iE N or (ii) every initial segment (uo, u1 ,..., u,) of 
the sequence of scalars (ui)ic N is also the initial segment of a linearly recur- 
sive sequence v = (vi)it N- depending on n-with a characteristic polynomial 
of the form xm -p (m<n; p E K) and whose first m terms 
vo = UC),..., v,,- L = u,,- , are the mth roots of unity. 
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Regarding the notion of a linearly recursive sequence used here, see [.5]; 
we should remember that not long ago it was proved (cf. [15]) that such 
sequences may be given a structure of Hopf algebra which is the dual of the 
polynomial one. 

Note that the condition relating to (u~)~~ N # 0 in Proposition 5 is 
equivalent to asserting that it may be generated by making use of the 
following prescriptions: 

(a) uO= 1; 

(b) if uo,..., u,~ r (WI 3 1) are the mth roots of unity then U, is an 
arbitrary scalar and U, = (u,)~. U, (where n = sm + t, t < m) for 
n < lcm (p, m) or for every n depending on whether U, is or is not a 
primitive pth root of unity, where p is not a divisor of m. 

In order to prove Proposition 5, it is helpful to recall (cf. [6]) that if we 
put p,(x) = C[t=opE~k = lJl:d (X - ui), p. = 1, P = (p:), and H= (hz) is an 
arbitrary (infinite) matrix (n, k > 0), then the following conditions are 
equivalent: 

(i) ‘H= P-l; 

(ii) the kth column hk of H is a linearly recursive sequence whose 
characteristic polynomial is pk+ r(x) and whose first terms are 
h;=@,Odn<k; 

(iii) the matrices P and H are fully described by the recurrences 

PE+l=Pf:~l-KIPf:, p;=cg, p;l=O (n,k20), (28) 
/,"+I =h" 

k k-,+Ukh[l, hi = a;, h”,=O (n, k 2 0). (29) 

Obviously, functions pi =pt(u,,..., u,- 1) [resp. h;: = h;(u,,..., uk)] are the 
elementary symmetric [resp. homogenous] functions of degree n -k in the 
variables uo, U, ,... . 

Moreover, if p,(x) is also a G-R-sequence then from (i) and 
Propositions 1 and 3, it follows that the matrix H above is exactly that con- 
structed with the structure constants of the graded coalgebra associated 
with p,(x). In such a case, by substituting (10) in (28) we obtain 

u,h;p:p, =p:+ 1 ek(h;p, -h;+‘) 

and then, by (29) 

hence, because pi + 1 ~ k = - u, _ kpIj ~ k we have 

(30) 
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Proof of Proposition 5. First note that as a consequence of (10) we get 

Um=O*Um+n=O. 

Considering uO, we have either u,, =0 (and then, u, = 0 for every n) or 
uO= 1. In fact, putting r=k=O#n in (17) we get either h;;= 1 or h;;=O 
(but hz= hi= 1 because P-’ = ‘H); on the other hand, by (ii) above the 
sequence (h;f)nE N is a geometrical progression with ratio u,, and first term 
ht = 1; then it follows that either h;f = 1 = u,, for every n or hi+ * = 0 = u,, for 
every n. 

Suppose now that u0 ,..., u,,- , are the mth roots of unity (which is true at 
least for m = 1, if u,, # 0) so that p,(x) = xm - 1. It is easy to check that the 
polynomial P, + 1 (x, y) = (xM -y”) (x - u,y), whatever u, may be, 
satisfies (5). If u, = 0, there is nothing else to prove. Whereas, on the con- 
trary, if u, # 0, consider the mth column h, of the matrix H; it is a linearly 
recursive sequence with characteristic polynomial pm + I(x) = 
X 

m+l 
-UU,Xrn- x + U, and first terms h; = Sk, 0 6 n 6 m. It follows that 

h” =h~++‘=[1+(u,,,)“+(u,)2”+ ... +(u,)+‘)~](u,)~, m 

n=sm+t, t<m. (31) 

Hence, hr + f # 0 and then, from (30), 

un=usm+I=(%?hS.% n=sm+t, (32) 

for all n, or only for n < lcm (m, p) = r if u, should be a primitive pth root 
of unity, where p is not a divisor of m. In the latter case, the terms 
UOY, 4 - 1 are the 7th roots of unity and the argument may be repeated. 
Thi.s completes the proof. 1 

It is plain to see that if the sequence p,(x) = C;=opk~k, p; = 1, is 
required to be a sequence of characteristic polynomials of intervals then 
pk E Z and the polynomial p*(x) =x2 - 1 must be excluded. Hence from 
Proposition 5 we deduce the following: 

COROLLARY. Zf a G-R-sequence p,(x) of form (27) has the combinatorial 
interpretation in terms of 1.5 posets of full binomial type given in Section 2, 
then p,(x) must be of the form p,(x) = JJ;:d (x - qi). 

Thus, depending on whether q = 0, q = 1, or q =p” (p prime), we have 
the three lattices considered in Section 1. It must be noted, however, that 
several non-isomorphic posets of the required type can be associated with 
the same maximally reduced incidence coalgebra C, and then with the 
same G-R-sequence. For instance, the coalgebra of divided powers is 
associated with both a chain and a planted tree. 
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