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1. Introduction

Lie symmetries provide a powerful and systematic tool for the analysis of partial differential equations. For instance, the
method of reduction of variables via Lie point symmetries is an extremely useful technique for simplifying or solving PDE’s
[1,2,7,8,10,11,13,14,17,15,18,21,3]. Of course, the entire theory is based on the notion of local one-parameter actions of Lie
groups. As a result, the various algorithms give rise to infinitesimal symmetries that only generate a Lie algebra. Typically,
the corresponding local one-parameter actions do not exponentiate to a global action of the corresponding Lie group. As
a result, the enormous body of literature devoted to the study of Lie groups is frequently not applicable to the study of
symmetries of PDE’s.

However in [5,6], M. Craddock made an important discovery. He found that, in certain cases, a global representation was
made possible by restricting to an appropriate subset of the solution space. This allows the full weight of representation
theory to be brought to bear. For instance when this machinery is applied to the wave equation, representation theory
naturally picks out a distinguished orthonormal basis that is extremely well behaved with respect to energy and momentum
(actually consisting of smooth rational solutions when the space dimension is odd) [9]. Similarly nice results are achieved
in the case of the heat and Schrödinger equations with links to the harmonic oscillator [19,20].

Of course the cases mentioned above consist of linear PDE’s and so it is not surprising that representation theory can be
used on the problem. In this paper we examine the nonlinear heat equation

ut = (
k(u)ux

)
x

where k(u) is not a constant. The classification of Lie point symmetries and equivalence transformations are well known
[10,16,15,4,14]. The Lie point symmetries of this equation fall into four categories, each of which will be examined. It turns
out that three of the cases generate solvable groups while one case has a semisimple component. A priori, there is no
reason to suppose that an algebra of Lie point symmetries exponentiates to an action of the entire corresponding group.
Nevertheless in each case, we show that the Lie algebra of symmetries extends to a global action of the corresponding Lie
group by restricting to a natural subclass of functions. In each of the four cases, we explicitly write down this global action.
Remarkably in three of these cases, including the one with the semisimple component, we show that the action of the
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group is actually given by a linear action. In the remaining case where the group acts nonlinearly, we show that the action
is given by the composition of a linear action with a relatively simple (nonlinear) translation.

2. Equivalence transformations

The equivalence transformations for

ut = (
k(u)ux

)
x,

k(u) not a constant, are given by

t = at + e, x = bx + f , u = cu + g,k = b2

a
k

where abc �= 0 [10,16,15,14]. Up to these transformations, the classification of the Lie point symmetries breaks into four

cases: the generic case, k = eu , k = uσ with σ �= 0,− 4
3 , and k = u− 4

3 . The first three cases lead to solvable Lie algebras
and will be studied in Section 3. The last case leads to an algebra with an sl(2,R) component and will be examined in
Section 4. All cases end up producing a global action of the corresponding Lie group on a natural class of functions. In all
but the second case, the resulting global action is the restriction of a linear action.

3. Solvable cases

3.1. Generic case

In the generic case, the symmetry Lie algebra is three-dimensional and spanned by

X1 = ∂

∂t
,

X2 = ∂

∂x
,

X3 = x
∂

∂x
+ 2t

∂

∂t
.

As to be expected, this case is particularly simple.
To find a globalization of the corresponding local one-parameter actions, consider the solvable group G1 ∼= R+ �R2 given

by

G1 =
{( r 0 v

0 r2 w
0 0 1

) ∣∣∣ r, v, w ∈ R, r > 0

}

along with the subgroups

D1 =
{( r 0 0

0 r2 0
0 0 1

) ∣∣∣ r ∈ R, r > 0

}
,

N1 =
{(1 0 x

0 1 t
0 0 1

) ∣∣∣ x, t ∈ R

}
.

Define the trivial character χ1 : D1 → C× by

χ1

(( r 0 0
0 r2 0
0 0 1

))
= 1

and consider the representation of G1

IndG1
D1

χ1 = {
ϕ ∈ C∞(G1)

∣∣ ϕ(gd) = χ1(d)−1ϕ(g) for g ∈ G1, d ∈ D1
}

with G1-action given by

(g1 · f )(g2) = f
(

g−1 g2
)

1
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for gi ∈ G1. Using what would be called the noncompact picture if we were working in the semisimple case [12], let

I1 =
{

f ∈ C∞(
R2) ∣∣∣ f (x, t) = ϕ

((1 0 x
0 1 t
0 0 1

))
for some ϕ ∈ IndG1

D1
χ1

}
.

By requiring that the map ϕ → f be an intertwining operator, I1 inherits an action of G1 so that I1 ∼= IndG1
D1

χ1. Writing( r 0 x
0 r2 t
0 0 1

)
=

( 1 0 x
0 1 t
0 0 1

)( r 0 0
0 r2 0
0 0 1

)
,

we see that ϕ can be reconstructed from f by

ϕ

(( r 0 x
0 r2 t
0 0 1

))
= ϕ

(( 1 0 x
0 1 t
0 0 1

)( r 0 0
0 r2 0
0 0 1

))

= f (x, t).

It follows that I1 = C∞(R2) in this case. Of course it is possible to move out of the smooth category by studying L2-
functions, though we do not pursue such ideas here.

Theorem 1. The (linear) action of G1 on I1 is given by(( r 0 v
0 r2 w
0 0 1

)
· f

)
(x, t) = f

(
x − v

r
,

t − w

r2

)
.

Proof. Observe that( r 0 v
0 r2 w
0 0 1

)−1 (1 0 x
0 1 t
0 0 1

)
=

⎛
⎝ 1 0 − v−x

r

0 1 t−w
r2

0 0 1

⎞
⎠

( r−1 0 0
0 r−2 0
0 0 1

)
.

Thus (( r 0 v
0 r2 w
0 0 1

)
· f

)
(x, t) = ϕ

⎛
⎝( r 0 v

0 r2 w
0 0 1

)−1 (1 0 x
0 1 t
0 0 1

)⎞
⎠

= ϕ

⎛
⎝

⎛
⎝1 0 x−v

r

0 1 t−w
r2

0 0 1

⎞
⎠( r−1 0 0

0 r−2 0
0 0 1

)⎞
⎠

= f

(
x − v

r
,

t − w

r2

)

where ϕ corresponds to f under the isomorphism I1 ∼= IndG1
D1

χ1. �
Corollary 1. The linear action of G1 on I1 gives a globalization of the local one-parameter group action generated by the Lie point
symmetries of the nonlinear heat equation ut = (k(u)ux)x in the generic case.

Proof. Let

R =
( 1 0 0

0 2 0
0 0 0

)
, V =

( 0 0 1
0 0 0
0 0 0

)
, and W =

( 0 0 0
0 0 1
0 0 0

)

be a basis for the Lie algebra of G1. Using Theorem 1, it follows that(
esR · f

)
(x, t) = f

(
e−sx, e−2st

)
,(

esV · f
)
(x, t) = f (x − s, t),(

esW · f
)
(x, t) = f (x, t − s).

Applying ∂ |s=0 shows that R, V , W act on I1 by the differential operators

∂s



38 M.R. Sepanski / J. Math. Anal. Appl. 360 (2009) 35–46
R = −x
∂

∂x
− 2t

∂

∂t
,

V = − ∂

∂x
,

W = − ∂

∂t
.

Under the prolongation formalism, an easy application of the chain rule shows that the vector field Lie point symmetry

h1(x, t)
∂

∂x
+ h2(x, t)

∂

∂t

on R2 × R corresponds to the differential operator

−h1(x, t)
∂

∂x
− h2(x, t)

∂

∂t

on C1(R2). Therefore the one-parameter groups corresponding to {R, V , W } give rise to the symmetry vector fields

X3 = x
∂

∂x
+ 2t

∂

∂t
,

X2 = ∂

∂x
,

X1 = ∂

∂t
.

Since the Lie point symmetries of ut = (k(u)ux)x are spanned by {X1, X2, X3} in the generic case, we are done. �
3.2. k = eu

In this case, the symmetry Lie algebra is four-dimensional and spanned by

X1 = ∂

∂t
,

X2 = ∂

∂x
,

X3 = x
∂

∂x
+ 2t

∂

∂t
,

X4 = x
∂

∂x
+ 2

∂

∂u
.

To find a globalization of these local one-parameter actions, consider the solvable group G2 ∼= (R+)2 � R2 given by

G2 =
{( r1 0 v

0 r2 w
0 0 1

) ∣∣∣ ri, v, w ∈ R, ri > 0

}

along with the subgroups

D2 =
{( r1 0 0

0 r2 0
0 0 1

) ∣∣∣ ri ∈ R, ri > 0

}
,

N2 =
{(1 0 x

0 1 t
0 0 1

) ∣∣∣ x, t ∈ R

}
.

Define the trivial character χ2 : D2 → C× by

χ2

(( r1 0 0
0 r2 0
0 0 1

))
= 1

and consider the representation of G2

IndG2 χ = {
ϕ ∈ C∞(G2)

∣∣ ϕ(gd) = χ2(d)−1ϕ(g) for g ∈ G2, d ∈ D2
}

D2
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with G2-action given by (g1 · f )(g2) = f (g−1
1 g2) for gi ∈ G2. Using what would be called the noncompact picture if we

were working in the semisimple case, let

I2 =
{

f ∈ C∞(
R2) ∣∣∣ f (x, t) = ϕ

((1 0 x
0 1 t
0 0 1

))
for some ϕ ∈ IndG2

D2
χ2

}
.

By requiring that the map ϕ → f be an intertwining operator, I2 inherits an action of G2 so that I2 ∼= IndG2
D2

χ2. Writing

( r1 0 x
0 r2 t
0 0 1

)
=

( 1 0 x
0 1 t
0 0 1

)( r1 0 0
0 r2 0
0 0 1

)
,

we see that ϕ can be reconstructed from f by

ϕ

(( r1 0 x
0 r2 t
0 0 1

))
= ϕ

(( 1 0 x
0 1 t
0 0 1

)( r1 0 0
0 r2 0
0 0 1

))

= f (x, t).

It follows that I2 = C∞(R2) in this case.

Theorem 2. The (linear) action of G2 on I2 is given by

(( r1 0 v
0 r2 w
0 0 1

)
· f

)
(x, t) = f

(
x − v

r1
,

t − w

r2

)
.

Proof. Observe that

( r1 0 v
0 r2 w
0 0 1

)−1 (1 0 x
0 1 t
0 0 1

)
=

⎛
⎝ 1 0 − v−x

r1

0 1 t−w
r2

0 0 1

⎞
⎠

⎛
⎝ r−1

1 0 0
0 r−1

2 0
0 0 1

⎞
⎠ .

Thus

(( r1 0 v
0 r2 w
0 0 1

)
· f

)
(x, t) = ϕ

⎛
⎝( r1 0 v

0 r2 w
0 0 1

)−1 (1 0 x
0 1 t
0 0 1

)⎞
⎠

= ϕ

⎛
⎝

⎛
⎝1 0 − v−x

r1

0 1 t−w
r2

0 0 1

⎞
⎠

⎛
⎝ r−1

1 0 0
0 r−1

2 0
0 0 1

⎞
⎠

⎞
⎠

= f

(
x − v

r1
,

t − w

r2

)

where ϕ corresponds to f under the isomorphism I2 ∼= IndG2
D2

χ2. �
To complete our picture, let

(
τ

(( r1 0 v
0 r2 w
0 0 1

))
· f

)
(x, t) = f (x, t) + ln

(
r2

1

r2

)
.

This defines a (nonlinear) action of G2 on I2 since

(
τ

(( r1 0 v
0 r2 w
0 0 1

)( s1 0 v ′
0 s2 w ′
0 0 1

))
· f

)
(x, t) = f (x, t) + ln

(
r2

1s2
1

r2s2

)

and
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(
τ

(( r1 0 v
0 r2 w
0 0 1

))
·
(
τ

(( s1 0 v ′
0 s2 w ′
0 0 1

))
· f

))
(x, t)

=
(
τ

(( s1 0 v ′
0 s2 w ′
0 0 1

))
· f

)
(x, t) + ln

(
r2

1

r2

)

= f (x, t) + ln

(
s2

1

s2

)
+ ln

(
r2

1

r2

)
.

The key observation about this new action is that it commutes with our original action of G2 on I2 given in Theorem 2.
In other words,

g1 · (τ (g2) · f
) = τ (g2) · (g1 · f )

for gi ∈ G2 and f ∈ I2 since

(( r1 0 v
0 r2 w
0 0 1

)
· τ

(( s1 0 v ′
0 s2 w ′
0 0 1

))
· f

)
(x, t) =

(
τ

(( s1 0 v ′
0 s2 w ′
0 0 1

))
· f

)(
x − v

r1
,

t − w

r2

)

= f

(
x − v

r1
,

t − w

r2

)
+ ln

(
s2

1

s2

)

and (
τ

(( s1 0 v ′
0 s2 w ′
0 0 1

))
·
( r1 0 v

0 r2 w
0 0 1

)
· f

)
(x, t) =

(( r1 0 v
0 r2 w
0 0 1

)
· f

)
(x, t) + ln

(
s2

1

s2

)

= f

(
x − v

r1
,

t − w

r2

)
+ ln

(
s2

1

s2

)
.

As a result, we get an action of G2 ×G2 on I2 given by (g1, g2) · f = g1 ·τ (g2) · f . Under the diagonal map � : G → G ×G ,
we therefore get a composite action of G2 on I2 given by

δ(g) · f = g · τ (g) · f .

Explicitly, we see that

(
δ

(( r1 0 v
0 r2 w
0 0 1

))
· f

)
(x, t) = f

(
x − v

r1
,

t − w

r2

)
+ ln

(
r2

1

r2

)
. (3.1)

Corollary 2. The nonlinear action of G2 on I2 given by δ gives a globalization of the local one-parameter group action generated by
the Lie point symmetries of the nonlinear heat equation ut = (euux)x.

Proof. Let

R1 =
( 1 0 0

0 0 0
0 0 0

)
, R2 =

( 0 0 0
0 1 0
0 0 0

)
, V =

( 0 0 1
0 0 0
0 0 0

)
, and W =

( 0 0 0
0 0 1
0 0 0

)

be a basis for the Lie algebra of G2. Using Eq. (3.1), it follows that

(
esR1 · f

)
(x, t) = f

(
e−sx, t

) + 2s,(
esR2 · f

)
(x, t) = f

(
x, e−st

) − s,(
esV · f

)
(x, t) = f (x − s, t),(

esW · f
)
(x, t) = f (x, t − s).

Applying ∂ |s=0 shows that

∂s
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∂

∂s

(
esR1 · f

)
(x, t)|s=0 = −x

∂

∂x
f (x, t) + 2,

∂

∂s

(
esR2 · f

)
(x, t)|s=0 = −t

∂

∂t
f (x, t) − 1,

∂

∂s

(
esV · f

)
(x, t)|s=0 = − ∂

∂x
f (x, t),

∂

∂s

(
esW · f

)
(x, t)|s=0 = − ∂

∂t
f (x, t).

Under the prolongation formalism, an easy application of the chain rule shows that the vector field Lie point symmetry

h1(x, t)
∂

∂x
+ h2(x, t)

∂

∂t
+ h3(x, t, u)

∂

∂u

on R2 × R gives rise to a local one-parameter group action on f whose partial with respect to s at s = 0 is given by

−h1(x, t)
∂

∂x
f (x, t) − h2(x, t)

∂

∂t
f (x, t) + h3

(
x, t, f (x, t)

)
.

Therefore the one parameter groups corresponding to {R1, R2, V , W } give rise to the symmetry vector fields

X3 = x
∂

∂x
+ 2

∂

∂u
,

1

2
X3 − 1

2
X4 = t

∂

∂t
− ∂

∂u
,

X2 = ∂

∂x
,

X1 = ∂

∂t
.

Since the Lie point symmetries of ut = (euux)x are spanned by {X1, X2, X3, X4}, we are done. �
3.3. k = uσ , σ �= 0,− 4

3

In this case, the symmetry Lie algebra is four-dimensional and spanned by

X1 = ∂

∂t
,

X2 = ∂

∂x
,

X3 = x
∂

∂x
+ 2t

∂

∂t
,

X4 = σ

2
x

∂

∂x
+ u

∂

∂u
.

To find a globalization of these local one-parameter actions, consider the solvable group G3 ∼= (R+)2 � R2

G3 =
{( r1 0 v

0 r2 w
0 0 1

) ∣∣∣ ri, v, w ∈ R, ri > 0

}

(here G3 = G2 though we keep separate notation for the sake of clarity) along with the subgroups

D3 =
{( r1 0 0

0 r2 0
0 0 1

) ∣∣∣ ri ∈ R, ri > 0

}
,

N3 =
{(1 0 x

0 1 t
0 0 1

) ∣∣∣ x, t ∈ R

}
.

Define the character χ3 : D3 → C× by

χ

(( r1 0 0
0 r2 0

))
=

(
r2

1

r2

) 1
σ

0 0 1
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and consider the representation of G3

IndG3
D3

χ3 = {
ϕ ∈ C∞(G)

∣∣ ϕ(gd) = χ3(d)−1ϕ(g) for g ∈ G3, d ∈ D3
}

with G3-action given by (g1 · f )(g2) = f (g−1
1 g2) for gi ∈ G3. Using what would be called the noncompact picture if we

were working in the semisimple case, let

I3 =
{

f ∈ C∞(
R2) ∣∣∣ f (x, t) = ϕ

((1 0 x
0 1 t
0 0 1

))
for some ϕ ∈ IndG3

D3
χ3

}
.

By requiring that the map ϕ → f be an intertwining operator, I3 inherits an action of G3 so that I3 ∼= IndG3
D3

χ3. Writing

( r1 0 x
0 r2 t
0 0 1

)
=

( 1 0 x
0 1 t
0 0 1

)( r1 0 0
0 r2 0
0 0 1

)
,

we see that ϕ can be reconstructed from f by

ϕ

(( r1 0 x
0 r2 t
0 0 1

))
= ϕ

(( 1 0 x
0 1 t
0 0 1

)( r1 0 0
0 r2 0
0 0 1

))

= r
− 2

σ
1 r

1
σ
2 f (x, t).

It follows that I3 = C∞(R2) in this case.

Theorem 3. The (linear) action of G3 on I3 is given by(( r1 0 v
0 r2 w
0 0 1

)
· f

)
(x, t) = r

2
σ
1 r

− 1
σ

2 f

(
x − v

r1
,

t − w

r2

)
.

Proof. Observe that( r1 0 v
0 r2 w
0 0 1

)−1 (1 0 x
0 1 t
0 0 1

)
=

⎛
⎝1 0 − v−x

r1

0 1 t−w
r2

0 0 1

⎞
⎠

⎛
⎝ r−1

1 0 0
0 r−1

2 0
0 0 1

⎞
⎠ .

Thus (( r1 0 v
0 r2 w
0 0 1

)
· f

)
(x, t) = ϕ

⎛
⎝( r1 0 v

0 r2 w
0 0 1

)−1 (1 0 x
0 1 t
0 0 1

)⎞
⎠

= ϕ

⎛
⎝

⎛
⎝1 0 − v−x

r1

0 1 t−w
r2

0 0 1

⎞
⎠

⎛
⎝ r−1

1 0 0
0 r−1

2 0
0 0 1

⎞
⎠

⎞
⎠

= r
2
σ
1 r

− 1
σ

2 f

(
x − v

r1
,

t − w

r2

)

where ϕ corresponds to f under the isomorphism I3 ∼= IndG3
D3

χ3. �
Corollary 3. The linear action of G3 on I3 gives a globalization of the local one-parameter group action generated by the Lie point
symmetries of the nonlinear heat equation ut = (uσ ux)x.

Proof. Let

R1 =
( 1 0 0

0 0 0
0 0 0

)
, R2 =

( 0 0 0
0 1 0
0 0 0

)
, V =

( 0 0 1
0 0 0
0 0 0

)
, and W =

( 0 0 0
0 0 1
0 0 0

)

be a basis for the Lie algebra of G3. Using Theorem 3, it follows that
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(
esR1 · f

)
(x, t) = e

2s
σ f

(
e−sx, t

)
,(

esR2 · f
)
(x, t) = e− s

σ f
(
x, e−st

)
,(

esV · f
)
(x, t) = f (x − s, t),(

esW · f
)
(x, t) = f (x, t − s).

Applying ∂
∂s |s=0 shows that R1, R2, V , W act on I by the differential operators

R1 = −x
∂

∂x
+ 2

σ
,

R2 = −t
∂

∂t
− 1

σ
,

V = − ∂

∂x
,

W = − ∂

∂t
.

Under the prolongation formalism, an easy application of the chain rule shows that the Lie symmetry vector field

h1(x, t)
∂

∂x
+ h2(x, t)

∂

∂t
+ h3(x, t)u

∂

∂u

on R2 × R corresponds to the differential operator

−h1(x, t)
∂

∂x
− h2(x, t)

∂

∂t
+ h3(x, t)

on C1(R2). Therefore the one-parameter groups corresponding to {R1, R2, V , W } give rise to the symmetry vector fields

2

σ
X4 = x

∂

∂x
+ 2

σ
u

∂

∂u
,

1

2
X3 − 1

σ
X4 = t

∂

∂t
− 1

σ
u

∂

∂u
,

X2 = ∂

∂x
,

X1 = ∂

∂t
.

Since the Lie point symmetries of ut = (uσ ux)x are spanned by {X1, X2, X3, X4}, we are done. �
4. Nonsolvable case, k = u− 4

3

Let A ∼= R+ � R be the group of orientation preserving affine motions of R realized as

A =
{(

r v
0 1

) ∣∣∣ r, v ∈ R, r > 0

}

and consider the group

G = SL(2,R) × A.

Define the subgroup Q + ⊆ G by

Q + =
{((

a b
0 a−1

)
,

(
r 0
0 1

))}

and the subgroup N− ⊆ G by

N− =
{((

1 0
x 1

)
,

(
1 t
0 1

))}
.

Define the character χ : Q + → C× by

χ

(((
a b
0 a−1

)
,

(
r 0
0 1

)))
= a3r

3
4
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and consider the representation of G

IndG
Q + χ = {

ϕ ∈ C∞(G)
∣∣ ϕ(gq) = χ(q)−1ϕ(g) for g ∈ G, q ∈ Q +}

with G-action given by (g1 · f )(g2) = f (g−1
1 g2) for gi ∈ G . Using what would be called the noncompact picture if we were

working in the semisimple case, let

I =
{

f ∈ C∞(
R2) ∣∣∣ f (x, t) = ϕ

(((
1 0
x 1

)
,

(
1 t
0 1

)))
for some ϕ ∈ IndG

Q + χ

}
.

By requiring that the map ϕ → f be an intertwining operator, I inherits an action of G so that I ∼= IndG
Q + χ .

By writing(
a b
c d

)
=

(
1 0

ca−1 1

)(
a b
0 a−1

)
,(

r v
0 1

)
=

(
1 v
0 1

)(
r 0
0 1

)

when a �= 0, we see that ϕ can be reconstructed from f by

ϕ

(((
a b
c d

)
,

(
r v
0 1

)))
= ϕ

(((
1 0

ca−1 1

)(
a b
0 a−1

)
,

(
1 v
0 1

)(
r 0
0 1

)))

= a−3r− 3
4 f

(
c

a
, v

)
.

As a result, we see that I �C∞(R2). For instance since
( 1

x −1
1 0

) → ( 0 −1
1 0

)
as x → ±∞, any f ∈ I must satisfy

lim
x→−∞ x3 f (x, t) = lim

x→∞ x3 f (x, t).

In particular, f (x, t) decays as least as fast as 1
x3 when x → ±∞.

Theorem 4. The (linear) action of G on I is given by(((
a b
c d

)
,

(
r v
0 1

))
· f

)
(x, t) = (d − bx)−3r

3
4 f

(
ax − c

d − bx
,
−v + t

r

)

whenever d − bx �= 0.

Proof. By straightforward matrix multiplication,(
a b
c d

)−1 (
1 0
x 1

)
=

(
1 0

ax−c
d−bx 1

)(
d − bx −b

0 (d − bx)−1

)

when d − bx �= 0 and(
r v
0 1

)−1 (
1 t
0 1

)
=

(
1 −v+t

r
0 1

)(
r−1 0

0 1

)
.

It follows that(((
a b
c d

)
,

(
r v
0 1

))
· f

)
(x, t)

= ϕ

(((
a b
c d

)
,

(
r v
0 1

))−1 ((
1 0
x 1

)
,

(
1 t
0 1

)))

= ϕ

((
1 0

ax−c
d−bx 1

)(
d − bx −b

0 (d − bx)−1

)
,

(
1 −v+t

r
0 1

)(
r−1 0

0 1

))

= (d − bx)−3r
3
4 f

(
ax − c

d − bx
,
−v + t

r

)

where ϕ corresponds to f under the isomorphism I ∼= IndG
Q + χ . �
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Corollary 4. The linear action of G on I gives a globalization of the local one-parameter group action generated by the Lie point

symmetries of the nonlinear heat equation ut = (u− 4
3 ux)x.

Proof. We use Theorem 4 to calculate the various one parameter group actions. Beginning with the action of SL(2,R), write
{H, E, F } for the standard sl2-triple in sl(2,R). We see that

(
esH · f

)
(x, t) = e3s f

(
e2sx, t

)
,

(
esE · f

)
(x, t) = (1 − sx)−3 f

(
x

1 − sx
, t

)
,

(
esF · f

)
(x, t) = f (x − s, t).

Applying d
ds |s=0, we see that {H, E, F } act on I by the differential operators

H = 2x
∂

∂x
+ 3,

E = x2 ∂

∂x
+ 3x,

F = − ∂

∂x
.

Under the prolongation formalism, an easy application of the chain rule shows that the Lie symmetry vector field

h1(x, t)
∂

∂x
+ h2(x, t)

∂

∂t
+ h3(x, t)u

∂

∂u

on R2 × R corresponds to the differential operator

−h1(x, t)
∂

∂x
− h2(x, t)

∂

∂t
+ h3(x, t)

on C1(R2). Therefore the one parameter groups corresponding to {H, E, F } give rise to the symmetry vector fields

1

3
X4 = −2x

∂

∂x
+ 3u

∂

∂u
,

X5 = −x2 ∂

∂x
+ 3xu

∂

∂u
,

X2 = ∂

∂x
.

Turning to the action of A, let R = ( 1 0
0 0

)
and V = ( 0 1

0 0

)
be a basis for the Lie algebra of A. It follows that

(
esR · f

)
(x, t) = e

3
4 s f

(
x, e−st

)
,(

esV · f
)
(x, t) = f (x, t − s).

Therefore {R, V } act on I by the differential operators

R = −t
∂

∂t
+ 3

4
,

V = − ∂

∂t
.

Under the prolongation formalism, this gives rise to the symmetry vector fields

1

2
X3 + 3

4
X4 = t

∂

∂t
+ 3

4

∂

∂u
,

X1 = ∂

∂t
.

Since the Lie point symmetries of ut = (u− 4
3 ux)x are spanned by {X1, X2, X3, X4, X5}, we are done. �
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