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Abstract

A finite poset X carries a natural structure of a topological space. Fix a field k, and denote by Db(X) the bounded derived
category of sheaves of finite dimensional k-vector spaces over X . Two posets X and Y are said to be derived equivalent if Db(X)

and Db(Y ) are equivalent as triangulated categories.
We give explicit combinatorial properties of X which are invariant under derived equivalence; among them are the number of

points, the Z-congruency class of the incidence matrix, and the Betti numbers. We also show that taking opposites and products
preserves derived equivalence.

For any closed subset Y ⊆ X , we construct a strongly exceptional collection in Db(X) and use it to show an equivalence
Db(X) ' Db(A) for a finite dimensional algebra A (depending on Y ). We give conditions on X and Y under which A becomes an
incidence algebra of a poset.

We deduce that a lexicographic sum of a collection of posets along a bipartite graph S is derived equivalent to the lexicographic
sum of the same collection along the opposite Sop.

This construction produces many new derived equivalences of posets and generalizes other well-known ones.
As a corollary we show that the derived equivalence class of an ordinal sum of two posets does not depend on the order of

summands. We give an example that this is not true for three summands.
c© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Over the last years a growing interest in the understanding of derived categories of coherent sheaves over algebraic
varieties and, in particular, the question as to when two varieties have equivalent derived categories of sheaves, has
emerged [5].

We investigate a similar question for partially ordered sets (posets). A poset X carries a natural structure of a
topological space, therefore we can consider the category of sheaves over X with values in an abelian category A.

We focus on the case where A is the category of finite dimensional vector spaces over a field k, which allows us
to identify the category of sheaves with a category of modules over the incidence algebra of X over k, so that tools
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from the theory of derived equivalence of algebras can be used. However, there is no known algorithm which decides,
given two posets, whether their derived categories of sheaves of finite dimensional k-vector spaces are equivalent.

In Section 2, we present in a specific way, appropriate for dealing with posets, the basic notions from sheaf theory
that will be used throughout the paper. In Section 3 we discuss combinatorial invariants of derived equivalence,
whereas in Section 4 we construct, for any poset X admitting a special structure, a new poset derived equivalent to
X . This construction is based on the notion of strongly exceptional sequences in triangulated categories and partially
generalizes the known constructions of [1,3].

2. Preliminaries

2.1. Finite posets and T0 spaces

Throughout this note, the term poset will mean a finite partially ordered set. Any poset (X,≤) carries a structure
of a topological space by defining the closed sets to be the subsets Y ⊆ X such that if y ∈ Y and y′ ≤ y, then y′ ∈ Y .

For each x ∈ X , denote by {x}− the closure of {x} and by Ux the minimal open subset of X containing x , which
equals the intersection of the open sets containing x . Then {x}− =

{
x ′ ∈ X : x ′ ≤ x

}
, Ux =

{
x ′ ∈ X : x ′ ≥ x

}
and

x ≤ x ′ ⇐⇒ {x}− ⊆ {x ′}− ⇐⇒ Ux ′ ⊆ Ux .

If x, y are two distinct points in X , then one of the open sets Ux , Uy does not contain both points, thus X satisfies the
T0 separation property.

Conversely, given a finite T0 topological space X , let Ux be the intersection of all open sets in X containing x ∈ X .
Define a partial order ≤ on X by x ≤ x ′ if Ux ′ ⊆ Ux .

This leads to an identification of posets with finite T0 topological spaces. Such spaces have been studied in the past
[16,22], where it transpired that their homotopy and homology properties are more interesting than might seem at first
glance. For example, if K is any finite simplicial complex and X is the T0 space induced by the partial order on the
simplices of K, then there exists a weak homotopy equivalence |K| → X [16].

2.2. Sheaves and diagrams

Given a poset X , its Hasse diagram is a directed graph defined as follows. Its vertices are the elements of X and
its directed edges x → y are the pairs x < y in X such that there is no z ∈ X with x < z < y. The anti-symmetry
condition on ≤ implies that this graph has no directed cycles.

Let X be a poset and A be an abelian category. Using the topology on X , we can consider the category of sheaves
over X with values in A, denoted by ShXA or sometimes AX .

We note that sheaves over posets were used in [7] for the computation of cohomologies of real subspace
arrangements. In addition, it is of interest to note the relation between (weakly) K-constructible sheaves on a finite
simplicial complex K and sheaves on the poset of simplices of K, see [14, Section 8.1].

Let F be a sheaf on X . If x ∈ X , let F(x) be the stalk of F over x , which equals F(Ux ). The restriction maps
F(x) = F(Ux ) → F(Ux ′) = F(x ′) for x ′ > x give rise to a commutative diagram over the Hasse diagram of X .
Conversely, such a diagram {Fx } defines a sheaf F by setting the sections as the inverse limits F(U ) = limx∈U Fx .
Indeed, it is enough to verify the sheaf condition for the sets Ux , which follows from the observation that for any cover
Ux =

⋃
i Uzi , one of the zi equals x .

Thus, we may identify ShXA with the category of commutative diagrams over the Hasse diagram of X and
interchange the terms sheaf and diagram as appropriate. The latter category can be viewed as the category of functors
X → A where we consider X as a category whose objects are the points x ∈ X , with unique morphisms x → x ′

for x ≤ x ′. Under this identification, the global sections functor Γ (X;−) : AX
→ A defined as Γ (X;F) = F(X),

coincides with the (inverse) limit functor limX : AX
→ A.

2.3. Functors associated with a map f : X → Y

A map f : X → Y between two finite posets is continuous if and only if it is order preserving, that is, f (x) ≤ f (x ′)
for any x ≤ x ′ in X [22, Prop. 7].
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A continuous map f : X → Y gives rise to the functors f∗, f! : ShXA → ShYA and f −1
: ShYA → ShXA,

defined, in terms of diagrams, by

( f −1G)(x) = G( f (x))

( f∗F)(y) = lim
←−
{F(x) : f (x) ≥ y}

( f!F)(y) = lim
−→
{F(x) : f (x) ≤ y}

where x ∈ X , y ∈ Y andF ∈ ShXA, G ∈ ShYA. Viewing X , Y as categories andF ∈ ShXA as a functorF : X → A,
the sheaves f∗F and f!F are the right and left Kan extensions of F along f : X → Y .

The functors f −1, f∗ coincide with the usual ones from sheaf theory. We have the following adjunctions:

HomShXA( f −1G,F) ' HomShYA(G, f∗F) (2.1)

HomShXA(F, f −1G) ' HomShYA( f!F,G)

so that f∗ is left exact and f! is right exact. f −1 is exact, as can be seen from its action on the stalks.
If Y is a closed subset of X , we have a closed embedding i : Y → X . In this case, i∗ is exact. This is because i∗

takes a diagram on Y and extends it to X by filling the vertices of X \ Y with zeros. Similarly, for an open embedding
j : U → X , j! is exact, as it extends by zeros diagrams on U . Now let Y ⊆ X be closed and U = X\Y its complement.
The adjunction morphisms j! j−1F → F and F → i∗i−1F for the embeddings i : Y → X and j : U → X induce a
short exact sequence

0→ j! j
−1F → F → i∗i

−1F → 0 (2.2)

for any sheaf F on X , as can be verified at the stalks.

2.4. Simples, projectives and injectives

When f : X → • is the mapping to a point, f∗ = Γ (X;−), and for an object M of A, f −1(M) is the constant
sheaf on X with value M .

Let x ∈ X and consider the map ix : • → X whose image is {x}. Then i−1
x (F) = F(x) is the stalk at x and for an

object M of A we have

(ix∗M)(y) =

{
M if y ≤ x
0 otherwise

(ix !M)(y) =

{
M if y ≥ x
0 otherwise

with identity arrows between the M-s. The adjunctions (2.1) take the form:

HomShXA(F, ix∗M) ' HomA(F(x), M) (2.3)

HomShXA(ix !M,F) ' HomA(M,F(x))

and we deduce the following lemma:

Lemma 2.1. If I is injective in A, ix∗ I is injective in ShXA. If P is projective in A, ix !P is projective in ShXA.

Corollary 2.2. If A has enough injectives (projectives), so does ShXA.

Proof. The identity maps F(x)
=
−→ F(x) induce, via (2.3), an injection F ↪→ ⊕x∈X ix∗F(x) and surjection

⊕x∈X ix !F(x) � F . Now replace each F(x) by an injective (or projective) cover. �

For a sheaf F , let suppF = {x ∈ X : F(x) 6= 0} be its support. We call F a stalk sheaf if its support is a point.
For any object M of A and x ∈ X there exists a stalk sheaf Mx whose stalk at x equals M . Moreover Mx is simple in
ShXA if and only if M is simple in A.

The following lemma is proved by induction on the number of elements |X |, using (2.2) and the fact that the partial
order on X can be extended to a linear order, i.e. one can write the elements of X in a sequence x1, x2, . . . , xn such
that for any 1 ≤ i, j ≤ n, xi < x j implies that i < j .
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Lemma 2.3. Any sheaf F on X admits a finite filtration whose quotients are stalk sheaves.

Denote by gl.dimA the global dimension of an abelian category A. This is the maximal integer n for which there
exist objects M, M ′ of A with Extn(M, M ′) 6= 0 (and ∞ if there is no such maximal n). Recall that an abelian
category is a finite length category if every object is of finite length. From Lemma 2.3, we have:

Corollary 2.4. If A is a finite length category, so is ShXA.

Definition 2.5. A strictly increasing sequence x0 < x1 < · · · < xn in X is called a chain of length n. The dimension
of X , denoted dim X , is the maximal length of a chain in X .

Proposition 2.6 ([17]). gl.dim ShXA ≤ gl.dimA+ dim X.

The difference gl.dim ShXA − gl.dimA obviously depends on X , but it may well depend also on A; see the
examples in [13,21].

2.5. Sheaves of finite-dimensional vector spaces

Fix a field k and consider the category A of finite dimensional vector spaces over k. Denote by ShX the category
ShXA and by HomX (−,−) the morphism spaces HomShX (−,−) (We omit the reference to k to emphasize that it is
to be fixed throughout).

The incidence algebra of X over k, denoted k X , is the algebra spanned by exy for the pairs x ≤ y in X , with
multiplication defined by exyezw = δyzexw.

Lemma 2.7. The category ShX is equivalent to the category of finite dimensional right modules over the incidence
algebra k X.

Proof. The proof is similar to the corresponding fact about representations of a quiver and right modules over its path
algebra. Namely, for a sheaf F , consider M = ⊕x∈X F(x) and let ιx : F(x) → M , πx : M → F(x) be the natural
maps. Equip M with a structure of a right k X -module by letting the basis elements exx ′ for x ≤ x ′ act from the right

as the composition M
πx
−→ F(x)→ F(x ′)

ιx ′
−→ M . Conversely, given a finite dimensional right module M over k X ,

set F(x) = Mexx and define the maps F(x)→ F(x ′) using the right multiplication by exx ′ . �

The one-dimensional space k is both simple, projective and injective in the category of k-vector spaces. Applying
the results of the previous subsection, we obtain, for any x ∈ X , sheaves Sx , Px , Ix which are simple, projective and
injective, respectively. Explicitly,

Sx (y) =

{
k y = x
0 otherwise

, Px (y) =

{
k y ≥ x
0 otherwise

, Ix (y) =

{
k y ≤ x
0 otherwise.

By (2.3), for any sheaf F , HomX (Px ,F) = F(x) and HomX (F, Ix ) = F(x)∨ (the dual space). Since the sets
Ux , {x}− are connected, the sheaves Px , Ix are indecomposable. The sheaves Sx , Px , Ix form a complete set of
representatives of the isomorphism classes of simples, indecomposable projectives and indecomposable injectives
(respectively) in k X .

By Corollary 2.2, ShX has enough projectives and injectives (note that this can also be deduced by its identification
with the category of finite dimensional modules over a finite dimensional algebra). It has finite global dimension, since
by Proposition 2.6, gl.dim ShX ≤ dim X .

Proposition 2.8. ShX and ShY are equivalent if and only if X and Y are isomorphic (as posets).

Proof. Since the isomorphism classes of simple objects in ShX are in one-to-one correspondence with the elements
x ∈ X , and for two such simples Sx , Sy , dimk Ext1(Sx , Sy) equals 1 if there is a directed edge x → y in the Hasse
diagram of X and 0 otherwise, we see that the Hasse diagram of X , hence X , can be recovered (up to isomorphism)
from the category ShX . �
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2.6. The derived category of sheaves over a poset

If E is a set of objects of a triangulated category T , we denote by 〈E〉 the triangulated subcategory of T generated
by E , that is, the minimal triangulated subcategory containing E . We say that E generates T if 〈E〉 = T .

For a poset X , denote by Db(X) the bounded derived category of ShX . Since ShX is of finite global dimension
with enough projectives and injectives, Db(X) can be identified with the homotopy category of bounded complexes
of projectives (or bounded complexes of injectives). Hence the collections {Px }x∈X and {Ix }x∈X generate Db(X).

Lemma 2.9. Let x, y ∈ X and i ∈ Z. Then

HomDb(X)(Px , Py[i]) = HomDb(X)(Ix , Iy[i]) =

{
k y ≤ x and i = 0
0 otherwise.

Proof. Since Px is projective, HomDb(X)(Px ,F[i]) = 0 for any sheaf F and i 6= 0. If x, y ∈ X , then

HomDb(X)(Px , Py) = HomX (Px , Py) = Py(x) =

{
k if x ≥ y
0 otherwise.

The proof for {Ix }x∈X is similar. �

For a continuous map f : X → Y , denote by R f∗, L f!, f −1 the derived functors of f∗, f!, f −1. The
adjunctions (2.1) imply that

HomDb(X)( f −1G,F) ' HomDb(Y )(G, R f∗F) (2.4)

HomDb(X)(F, f −1G) ' HomDb(Y )(L f!F,G)

for F ∈ Db(X), G ∈ Db(Y ).

Definition 2.10. We say that two posets X and Y are derived equivalent, denoted X ∼ Y , if the categories Db(X) and
Db(Y ) are equivalent as triangulated categories.

3. Combinatorial invariants of derived equivalence

We give a list of combinatorial properties of posets which are preserved under derived equivalence. Most of the
properties are deduced from known invariants of derived categories. For the convenience of the reader, we review the
relevant definitions.

3.1. The number of points and K -groups

Recall that for an abelian category A, the Grothendieck group K0(A) is the quotient of the free abelian group
generated by the isomorphism classes [X ] of objects X of A divided by the subgroup generated by the expressions
[X ] − [Y ] + [Z ] for all the short exact sequences 0→ X → Y → Z → 0 in A.

Similarly, for a triangulated category T , the group K0(T ) is the quotient of the free abelian group on the
isomorphism classes of objects of T divided by its subgroup generated by [X ] − [Y ] + [Z ] for all the triangles
X → Y → Z → X [1] in T (where [1] denotes the shift). The natural inclusionA→ Db(A) induces an isomorphism
K0(A) ∼= K0(Db(A)).

Let X be a poset and denote by |X | the number of points of X . Denote by K0(X) the group K0(Db(X)).

Proposition 3.1. K0(X) is free abelian of rank |X |.

Proof. The set {Sx }x∈X forms a complete set of representatives of the isomorphism classes of simple finite
dimensional k X -modules, hence it is a Z-basis of K0(X) (alternatively one could use the filtration of Lemma 2.3).

�

Corollary 3.2. If X ∼ Y then |X | = |Y |.
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It is known [8] that rings with equivalent derived categories have the same K -theory. However, higher K -groups
do not lead to refined invariants of the number of points.

Proposition 3.3. Ki (ShX ) ' Ki (Sh•)|X | for i ≥ 0.

Proof. ShX is a finite length category and by [18, Corollary 1, p. 104],

Ki (ShX ) '
⊕
x∈X

Ki (EndX (Sx )).

Clearly, k = EndX (Sx ). �

3.2. Connected components

For two additive categories T1, T2, consider the category T = T1 × T2 whose objects are pairs (M1, M2) and the
morphisms are defined by

HomT ((M1, M2), (N1, N2)) = HomT1(M1, N1)× HomT2(M2, N2).

T1, T2 are embedded in T via the fully faithful functors M1 7→ (M1, 0) and M2 7→ (0, M2). Denoting the images
again by T1, T2, we have that HomT (T1, T2) = 0. In addition, the indecomposables in T are of the form (M1, 0) or
(0, M2) for indecomposables M1 ∈ T1, M2 ∈ T2.

An additive category T is connected if for any equivalence T ' T1 × T2, one of T1, T2 is zero.

Definition 3.4. A poset X is connected if it is connected as a topological space. This is equivalent to the following
condition [22, Prop. 5]:

For any x, y ∈ X there exists a sequence x = x0, x1, . . . , xn = y in X such that for all 0 ≤ i < n, either xi ≤ xi+1
or xi ≥ xi+1.

Lemma 3.5. If X is connected, then the category Db(X) is connected.

Proof. Let Db(X) ' T1×T2 be an equivalence and consider the indecomposable projectives {Px }x∈X . Since each Px
is indecomposable, its image lies in T1 or in T2, and we obtain a partition X = X1 t X2.

Assume that X1 is not empty. Since Hom(Px , Py) 6= 0 for all y ≤ x and Hom(T1, T2) = 0, X1 must be both open
and closed in X , and by connectivity, X1 = X . Moreover, {Px }x∈X generates Db(X) as a triangulated category, hence
Db(X) ' T1 and T2 = 0. �

Proposition 3.6. Let X and Y be two posets with decompositions

X = X1 t X2 t · · · t X t Y = Y1 t Y2 t · · · t Ys

into connected components. If X ∼ Y , then s = t and there exists a permutation π on {1, . . . , s} such that X i ∼ Yπ(i)
for all 1 ≤ i ≤ s.

Proof. There exists a pair of equivalences

Db(X1)× · · · ×Db(X t ) = Db(X)
F //

Db(Y ) = Db(Y1)× · · · ×Db(Ys).
G

oo

If x ∈ X , the image F(Px ) is indecomposable in Db(Y ), hence lands in one of the Db(Y j ), and we obtain a function
f : X → {1, . . . , s}. For any x ′ ≤ x , HomX (Px , Px ′) 6= 0, therefore f is constant on the connected components X i
and induces a map πF : {1, . . . , t} → {1, . . . , s} via πF (i) = f (x) for x ∈ X i . Moreover, since {Px }x∈X i generates
Db(X i ) as a triangulated category, F restricts to functors Db(X i )→ Db(YπF (i)), 1 ≤ i ≤ t .

Similarly for G, we obtain a map πG : {1, . . . , s} → {1, . . . , t} and functors Db(Y j ) → Db(YπG ( j)) which are
restrictions of G.

For any 1 ≤ i ≤ t , the image of Db(X i ) under G F lies in Db(XπGπF (i)). Since G F is isomorphic to the identity
functor but on the other hand there are no nonzero maps between Db(X i ) and Db(X i ′) for i 6= i ′ (as we think of X i
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as subsets of X , not just as abstract sets!), we obtain that πGπF (i) = i so that πGπF is identity. Similarly, πFπG is
identity.

We deduce that s = t , πF and πG are permutations, and the restrictions of F induce equivalences Db(X i ) '

Db(YπF (i)). �

One can also deduce that the number of connected components is a derived invariant by considering the center
Z(k X) of the incidence algebra k X using the fact that derived equivalent algebras have isomorphic centers [19].

Lemma 3.7. Z(k X) ∼= k × k × · · · × k where the number of factors equals the number of connected components
of X.

Proof. Let c =
∑

x≤y cxyexy ∈ Z(k X). Comparison of the coefficients of exx c and cexx gives cxy = 0 for x 6= y,
thus c =

∑
x cx exx .

If x ≤ y then cx exy = cexy = exyc = cyexy , hence cx = cy if x, y are in the same connected component. �

3.3. The Euler form and Möbius function

Let X be a poset. Since ShX has finite global dimension, the expression

〈K , L〉X =
∑
i∈Z

(−1)i dimk HomDb(X)(K , L[i])

is well-defined for K , L ∈ Db(X) and induces a Z-bilinear form on K0(X), known as the Euler form.
Recall that the incidence matrix of X , denoted 1X , is the X × X matrix defined by

(1X )xy =

{
1 x ≤ y
0 otherwise.

By extending the partial order on X to a linear order, we can always arrange the elements of X such that the incidence
matrix is upper triangular with ones on the diagonal. In particular, 1X is invertible over Z.

Definition 3.8. The Möbius function µX : X × X → Z is defined by µX (x, y) = (1−1
X )xy .

The following is an immediate consequence of the definition.

Lemma 3.9 (Möbius Inversion Formula). Let f : X → Z. Define g : X → Z by g(x) =
∑

y≥x f (y). Then

f (x) =
∑
y≥x

µX (x, y)g(y).

The Möbius inversion formula can be used to compute the matrix of the Euler form with respect to the basis of
simple objects.

Lemma 3.10.
〈
[Px ], [Sy]

〉
X = δxy for all x, y ∈ X.

Proof. Since Px is projective, HomDb(X)(Px ,F[i]) = 0 for any sheaf F and i 6= 0. Now by (2.3),

HomDb(X)(Px , Sy) = HomX (Px , Sy) = Sy(x). �

Proposition 3.11. Let x, y ∈ X. Then
〈
[Sx ], [Sy]

〉
X = µX (x, y).

Proof. Fix y and define f : X → Z by f (x) =
〈
[Sx ], [Sy]

〉
X . Since [Px ] =

∑
x ′≥x [Sx ′ ], Lemmas 3.9 and 3.10 imply

that

f (x) =
∑
x ′≥x

µX (x, x ′)
〈
[Px ′ ], [Sy]

〉
X = µX (x, y). �
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Definition 3.12. Let R be a commutative ring. Two matrices M1, M2 ∈ GLn(R) are congruent over R if there exists
a matrix P ∈ GLn(R) such that M2 = P M1 P t .

Note that if M1, M2 is a pair of congruent matrices, so are M t
1, M t

2 and M−1
1 , M−1

2 . Denote by M−t the inverse of
the transpose of M .

Corollary 3.13. If X ∼ Y then 1X , 1Y are congruent over Z.

Proof. An equivalence F : Db(X) → Db(Y ) induces an isomorphism [F] : K0(X) → K0(Y ) which preserves
the Euler form. By Proposition 3.11, the matrix of the Euler form of Db(X) over the basis of simples is 1−1

X , hence
[F]t 1−1

Y [F] = 1−1
X . �

In practice, testing for congruence over Z is not an easy task. However, the following necessary condition is often
very useful in ruling out congruence.

Lemma 3.14. Let M1, M2 ∈ GLn(R) be congruent. Then the matrices M1 M−t
1 , M2 M−t

2 are conjugate in the group
GLn(R).

Proof. If M2 = P M1 P t for some P ∈ GLn(R), then

M2 M−t
2 = (P M1 P t )(P−t M−t

1 P−1) = P M1 M−t
1 P−1. �

Corollary 3.15. If X ∼ Y then 1X 1−t
X and 1Y 1−t

Y are similar over Z. In particular, they are similar over Q and
modulo all primes p.

Note that 1X 1−t
X is (up to sign) the Coxeter matrix of the algebra k X . It is the image in K0(X) of the Serre functor

on Db(X).

3.4. Betti numbers and Euler characteristic

The Hochschild cohomology is a known derived invariant of an algebra [11,20]. For posets, one can compute the
Hochschild cohomology as the simplicial cohomology of an appropriate simplicial complex [6,10]. Thus the simplicial
cohomology is a derived invariant, which we relate to the cohomology of the constant sheaf.

For the convenience of the reader, we review the notions of sheaf cohomology, simplicial cohomology and
Hochschild cohomology. As before, we keep the field k fixed.

3.4.1. Sheaf cohomology
Recall that the i-th cohomology of a sheaf F ∈ ShX , denoted H i (X;F), is the value of the i-th right derived

functor of the global sections functor Γ (X;−) : ShX → Sh•. Observe that Γ (X;F) = HomX (kX ,F) where kX
is the constant sheaf on X , i.e. kX (x) = k for all x ∈ X with all morphisms being the identity of k. It follows that
H i (X;F) = ExtiX (kX ,F). Specializing in this for the particularly interesting cohomologies of the constant sheaf, we
obtain that H i (X; kX ) = ExtiX (kX , kX ).

3.4.2. Simplicial cohomology
Let X be a poset, p ≥ 0. A p-dimensional simplex in X is a chain of length p. Since subsets of chains are again

chains, the set of all simplices in X forms a simplicial complex K(X) [16], known as the order complex of X . The
i-th simplicial cohomology of X is defined as the i-th simplicial cohomology of K(X), and we denote it by H i (X).
The number β i (X) = dimk H i (X) is the i-th Betti number of X .

The simplicial cohomology of X is related to the cohomology of the constant sheaf via appropriate simplicial
resolution, which we now describe.

Let Ix be the indecomposable injective corresponding to x . For a simplex σ , set Iσ = Imin σ where min σ is the
minimal element of σ . If τ ⊆ σ , then min τ ≥ min σ , hence HomX (Iτ , Iσ ) ' k.

Let X (p) denote the set of p-simplices of X and let I p
X = ⊕σ∈X (p) Iσ . For a p-simplex σ = x0 < x1 < · · · < x p

and 0 ≤ j ≤ p, denote by σ̂ j the (p − 1)-simplex obtained from σ by deleting the vertex x j . By considering, for all

σ ∈ X (p) and 0 ≤ j ≤ p, the map Iσ̂ j → Iσ corresponding to (−1) j
∈ k, we get a map d p−1

: I p−1
X → I p

X . The
usual sign considerations give d pd p−1

= 0.
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Lemma 3.16. H i (X) = H i (HomX (kX , I•X )) for all i ≥ 0.

Proof. Indeed, the p-th term is HomX (kX , I p
X ) = ⊕σ∈X (p) HomX (kX , Iσ ) ∼= ⊕σ∈X (p) kX (min σ) and can be viewed

as the space of functions from X (p) to k. Moreover, the differential is exactly the one used in the definition of simplicial
cohomology. �

Lemma 3.17. The complex 0→ kX → I0
X

d0

−→ I1
X

d1

−→ · · · is an injective resolution of the constant sheaf kX .

Proof. It is enough to check acyclicity at the stalks.
Let x ∈ X . Then Iσ (x) 6= 0 only if min σ ≥ x , hence it is enough to consider the p-simplices of Ux , and the

complex of stalks at x equals

0→ k → HomUx (kUx , I0
Ux

)→ HomUx (kUx , I1
Ux

)→ · · · .

The acyclicity of this complex follows by Lemma 3.16 with X = Ux , using the fact that Ux has x as the unique
minimal element, hence K(Ux ) is contractible and H i (Ux ) = 0 for i > 0, H0(Ux ) = k. �

Proposition 3.18. H i (X; kX ) = H i (X) for all i ≥ 0.

Proof. Using Lemma 3.16 and the injective resolution of Lemma 3.17,

H i (X; kX ) = H i (HomX (kX , I•X )) = H i (X). �

3.4.3. Hochschild cohomology
A k-algebra Λ has a natural structure of a Λ-Λ-bimodule, or a Λ⊗k Λop right module. The group ExtiΛ⊗Λop(Λ,Λ)

is called the i-th Hochschild cohomology of Λ, and we denote it by HHi (Λ).
The Hochschild cohomology of incidence algebras of posets was widely studied, see [6,9,10]. The following

theorem relates the Hochschild cohomology of an incidence algebra of a poset X with its simplicial cohomology.

Theorem 3.19 ([6,10]). HHi (k X) = H i (X) for all i ≥ 0.

Combining this with Proposition 3.18, we obtain:

Corollary 3.20. HHi (k X) = H i (X; kX ) = ExtiX (kX , kX ) for all i ≥ 0.

3.4.4. Derived invariants

Corollary 3.21. If X ∼ Y then β i (X) = β i (Y ) for all i ≥ 0.

Proof. This follows from Theorem 3.19 and the fact that the Hochschild cohomology of a k-algebra is preserved
under derived equivalence [12,20]. �

The alternating sum χ(X) =
∑

i≥0(−1)iβ i (X) is known as the Euler characteristic of X .

Corollary 3.22. If X ∼ Y then χ(X) = χ(Y ).

We give two interpretations of χ(X). First, by Proposition 3.18,

χ(X) =
∑
i≥0

(−1)iβ i (X) =
∑
i≥0

dimk HomDb(X)(kX , kX [i]) = 〈[kX ], [kX ]〉X

where [kX ] is the image of kX in K0(X). Since [kX ] =
∑

x∈X [Sx ],

〈[kX ], [kX ]〉 =
∑

x,y∈X

〈
[Sx ], [Sy]

〉
X =

∑
x,y∈X

µX (x, y)

hence χ(X) is the sum of entries of the matrix 1−1
X . We see that not only the Z-congruence class of 1−1

X is preserved
by derived equivalence, but also the sum of its entries.
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For the second interpretation, changing the order of summation we obtain∑
x,y∈X

〈
[Sx ], [Sy]

〉
X =

∑
i≥0

(−1)i
∑

x,y∈X

dim ExtiX (Sx , Sy).

Using the fact that dim Exti (Sx , Sy) equals δxy for i = 0, counts the number of arrows from x to y in the Hasse
diagram of X when i = 1, and counts the number of commutativity relations between x and y for i = 2, we see that
at least when gl.dim X ≤ 2, χ(X) equals the number of points minus the number of arrows in the Hasse diagram plus
the number of relations etc.

3.5. Operations preserving derived equivalence

We show that derived equivalence is preserved under taking opposites and products.

Definition 3.23. The opposite of a poset X , denoted by Xop, is the poset (X,≤op) with x ≤op x ′ if and only if x ≥ x ′.

Lemma 3.24. Let A be an abelian category. Then ShXopA ' (ShXAop)op.

Proof. A sheafF over Xop with values inA is defined via compatibleA-morphisms between the stalksF(y)→ F(x)

for x ≤ y. Viewing these morphisms as Aop-morphisms we identify F with a sheaf over X with values in Aop. Since
a morphism of sheaves F → G is specified via compatible A-morphisms F(x)→ G(x), this identification gives an
equivalence ShXopA ' (ShXAop)op. �

Corollary 3.25. ShXop is equivalent to (ShX )op.

Proof. Let A be the category of finite dimensional k-vector spaces. Then the functor V 7→ V∨ mapping a finite
dimensional k-vector space to its dual induces an equivalence A ' Aop. �

Proposition 3.26. If X ∼ Y , then Xop
∼ Y op.

Proof. It is well known that for an abelian category A, the opposite category Aop is also abelian and Db(A) '

Db(Aop)op by mapping a complex K = (K i )i∈Z over A to the complex K∨ over Aop with (K∨)i
= K−i .

Applying this for A = ShX and using Corollary 3.25, we deduce that Db(Xop) ' Db(X)op. �

Definition 3.27. The product of two posets X , Y , denoted X × Y , is the poset whose underlying set is X × Y , with
(x, y) ≤ (x ′, y′) if x ≤ x ′ and y ≤ y′.

Lemma 3.28. k(X × Y ) = k X ⊗k kY .

Proof. Observe that the function k X ⊗k kY → k(X × Y ) defined by mapping the basis elements exx ′ ⊗ eyy′ to
e(x,y)(x ′,y′) where x ≤ x ′ and y ≤ y′, is an isomorphism of k-algebras. �

Proposition 3.29. If X1 ∼ X2 and Y1 ∼ Y2, then X1 × Y1 ∼ X2 × Y2.

Proof. The claim follows from the previous lemma and the corresponding fact for tensor products of finite
dimensional algebras over k; see [20, Lemma 4.3]. �

4. Derived equivalences via exceptional collections

4.1. Strongly exceptional collections

Let k be a field and let T be a triangulated k-category.

Definition 4.1. A sequence E1, . . . , En of objects of T is called a strongly exceptional collection if

HomT (Es, Et [i]) = 0 1 ≤ s, t ≤ n, i 6= 0

HomT (Es, Et ) = 0 1 ≤ s < t ≤ n

HomT (Es, Es) = k 1 ≤ s ≤ n.

(4.1)
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An unordered finite collection E of objects of T will be called strongly exceptional if it can be ordered in a sequence
which forms a strongly exceptional collection.

Let E = E1, . . . , En be a strongly exceptional collection in T , and consider E = ⊕n
s=1 Es . The conditions (4.1)

imply that HomT (E, E[i]) = 0 for i 6= 0 and that EndT (E) is a k-algebra. If E generates T , then E is a tilting object
in T .

For an algebra A over k, denote by Db(A) the bounded derived category of complexes of finite dimensional
right modules over A. The following result of Bondal shows that the existence of a generating strongly exceptional
collection in a derived category leads to derived equivalence with Db(A) where A is the endomorphism algebra of the
corresponding tilting object.

Theorem 4.2 ([4, Section 6]). Let A be an abelian k-category and let E1, . . . , En be a strongly exceptional collection
which generates Db(A). Set E = ⊕n

s=1 Es . Then the functor

RHom(E,−) : Db(A)→ Db(EndDb(A) E)

is a triangulated equivalence.

When A is a category of finite dimensional modules over a finite dimensional algebra, as in the case of ShX , the
result of the theorem can also be deduced from Rickard’s Morita theory of derived equivalences of algebras [19] (see
also [15, (3.2)]) by observing that E is a so-called one-sided tilting complex.

Example 4.3. For a poset X , the collection {Px }x∈X (and {Ix }x∈X ) of indecomposable projectives (injectives) is
strongly exceptional, generates Db(X), and the corresponding endomorphism algebra is isomorphic to the incidence
algebra of X (use Lemma 2.9).

4.2. A gluing construction

Let T , T ′, T ′′ be three triangulated categories with triangulated functors

T ′
i∗ //

T
i−1

oo
j−1

//
T ′′

j!
oo

Assume that there are adjunctions

HomT ′(i
−1F,F ′) ' HomT (F, i∗F ′) (4.2)

HomT ′′(F ′′, j−1F) ' HomT ( j!F ′′,F) (4.3)

for F ∈ T , F ′ ∈ T ′, F ′′ ∈ T ′′. Assume also that j−1i∗ = 0, i−1 j! = 0, i−1i∗ ' IdT ′ and j−1 j! ' IdT ′′ .

Lemma 4.4. Let F,G ∈ T . Then

HomT (i∗i
−1F, i∗i

−1G) ' HomT (F, i∗i
−1G) (4.4)

HomT ( j! j
−1F, j! j

−1G) ' HomT ( j! j
−1F,G) (4.5)

HomT ( j! j
−1F, i∗i

−1G) = 0. (4.6)

Proof. The claims follow from the adjunctions (4.2) and (4.3) and our additional hypotheses. For example, for the
first claim use (4.2) and i−1i∗ ' IdT ′ to obtain that

HomT (i∗i
−1F, i∗i

−1G) ' HomT ′(i
−1i∗i

−1F, i−1G) = HomT ′(i
−1F, i−1G) ' HomT (F, i∗i

−1G). �

We apply this for the following situation, cf. [2, Section 1.4]. Let X be a poset and let Y ⊆ X be a closed subset,
U = X \ Y its complement. Denote by i : Y → X , j : U → X the embeddings. Since the functors i∗, j! are exact,
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we can consider the functors

i−1
: Db(X)→ Db(Y ) j−1

: Db(X)→ Db(U )

i∗ : Db(Y )→ Db(X) j! : Db(U )→ Db(X)

between the derived categories. Taking T = Db(X), T ′ = Db(Y ) and T ′′ = Db(U ), we see that the above
assumptions are satisfied, where the adjunctions (4.2) and (4.3) follow from (2.4).

For y ∈ Y and u ∈ U , let P̃y = i∗i−1 Py and Ĩu = j! j−1 Iu be “truncated” versions of the projectives and injectives.
Explicitly,

P̃y(x) =

{
k x ∈ Y, y ≤ x
0 otherwise

Ĩu(x) =

{
k x ∈ U, x ≤ u
0 otherwise

with identity maps between nonzero stalks.

Proposition 4.5. The collection EY =
{

P̃y
}

y∈Y

⋃ {
Ĩu[1]

}
u∈U is strongly exceptional and generates Db(X).

Proof. Let y, y′ ∈ Y . By (4.4),

Hom(P̃y, P̃y′) ' Hom(Py, P̃y′) = P̃y′(y) =

{
k if y′ ≤ y
0 otherwise

(4.7)

and Hom(P̃y, P̃y′ [n]) = 0 for n 6= 0. Similarly, for u, u′ ∈ U , by (4.5),

Hom( Ĩu, Ĩu′) ' Hom( Ĩu, Iu′) = Ĩu(u′) =

{
k if u′ ≤ u
0 otherwise

(4.8)

and Hom( Ĩu, Ĩu′ [n]) = 0 for n 6= 0.
Let y ∈ Y and u ∈ U . By (4.6), Hom( Ĩu, P̃y[n]) = 0 for all n ∈ Z. Consider now Hom(P̃y, Ĩu[n]). The

distinguished triangle Ĩu → Iu → i∗i−1 Iu → Ĩu[1] of (2.2) gives rise to a long exact sequence

· · · → Hom(P̃y, Ĩu)→ Hom(P̃y, Iu)→ Hom(P̃y, i∗i
−1 Iu)→ · · · . (4.9)

Since Iu is injective, Hom(P̃y, Iu[n]) = 0 for n 6= 0 and Hom(P̃y, Iu) = P̃y(u) = 0. Therefore (4.9) induces
isomorphisms

Hom(P̃y, i∗i
−1 Iu[n])

'
−→ Hom(P̃y, Ĩu[n + 1]) (4.10)

for all n ∈ Z. By (4.4),

Hom(P̃y, i∗i
−1 Iu[n]) = Hom(Py, i∗i

−1 Iu[n]) =

{
(i∗i
−1 Iu)(y) n = 0

0 n 6= 0

and (i∗i−1 Iu)(y) = k if y < u and 0 otherwise, hence

Hom(P̃y, Ĩu[1]) =
{

k if y < u
0 otherwise

(4.11)

and Hom(P̃y, Ĩu[1+ n]) = 0 for n 6= 0.
Note that one can also compute Hom(P̃y, Ĩu[n]) by considering the triangle j! j−1 Py → Py → P̃y → j! j−1 Py[1]

and using the induced isomorphisms

Hom( j! j
−1 Py, Ĩu[n])

'
−→ Hom(P̃y, Ĩu[n + 1]). (4.12)

The above calculations show that if we order each of the sets Y and U linearly extending the partial order induced
by X and arrange the elements of EY in a sequence by first taking the elements of U and then taking those of Y , we
obtain a strongly exceptional collection.

To prove that EY generates Db(X), it is enough to show that every sheaf belongs to the triangulated subcategory
generated by EY . By (2.2), it is enough to verify this for i∗F ′ and j!F ′′ where F ′ ∈ ShY , F ′′ ∈ ShU . The collection of
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sheaves i−1 Py , being a complete set of indecomposable projectives of ShY , generates Db(Y ). Similarly, the sheaves
j−1 Iu form a complete set of indecomposable injectives of ShU and generate Db(U ). Now the result follows by
applying the triangulated functors i∗, j!. �

4.3. The endomorphism algebras AY

Fix a poset X , and let Y ⊆ X be a closed subset. Consider TY = (⊕y∈Y P̃y) ⊕ (⊕u∈U Ĩu)[1] and let AY =

EndDb(X) TY . By Theorem 4.2 and Proposition 4.5, we have:

Corollary 4.6. Db(X) ' Db(AY ).

Proposition 4.7. The algebra AY has as a k-basis the elements{
eyy′ : y ≤ y′

}
∪

{
eu′u : u

′
≤ u

}
∪

{
euy : y < u

}
where y, y′ ∈ Y , u′, u ∈ U. The multiplication is defined by

eyy′ey′y′′ = eyy′′ eu′′u′eu′u = eu′′u

euyeyy′ =

{
euy′ y′ < u
0 otherwise

eu′ueuy =

{
eu′y y < u′

0 otherwise

for y ≤ y′ ≤ y′′ ∈ Y , u′′ ≤ u′ ≤ u ∈ U (all other products are zero).

Proof. For y ≤ y′ ∈ Y , using (4.7), choose eyy′ ∈ Hom(P̃y′ , P̃y) corresponding to 1 ∈ P̃y(y′). In other words, the
stalk of the morphism eyy′ at y′ is the identity map on k. Then eyy′ey′y′′ = eyy′′ for y ≤ y′ ≤ y′′ ∈ Y .

Similarly, for u′ ≤ u ∈ U , using (4.8), choose eu′u ∈ Hom( Ĩu[1], Ĩu′ [1]) corresponding to 1 ∈ Ĩu(u′). The stalk of
eu′u at u′ is the identity map on k and we have eu′′u′eu′u = eu′′u for all u′′ ≤ u′ ≤ u ∈ U .

Now consider y ∈ Y and u ∈ U such that y < u. Using the isomorphisms (4.10) and (4.12), we have

Hom( j! j−1 Py, Ĩu)

'

��

' // Hom(P̃y, Ĩu[1]) Hom(P̃y, i∗i−1 Iu)
'oo

'

��
( j! j−1 Py)(u) (i∗i−1 Iu)(y)

There are unique euy, ẽuy ∈ Hom(P̃y, Ĩu[1]) such that the image of euy in ( j! j−1 Py)(u) equals 1 and the image of ẽuy
in (i∗i−1 Iu)(y) is 1. The formula for eu′ueuy where u′ ≤ u now follows by considering the composition

Hom( j! j−1 Py, Ĩu)

eu′u◦−

��

' // Hom(P̃y, Ĩu[1]) 3 euy

Hom( j! j−1 Py, Ĩu′)
' // Hom(P̃y, Ĩu′ [1]) 3 eu′y

The formula for euyeyy′ would follow in a similar manner by considering the composition −◦ eyy′ once we know that
the scalar ratio between ẽuy and euy is independent of u and y.

Indeed, replacing the objects P̃y and Ĩu[1] by the quasi-isomorphic complexes ( j! j−1 Py → Py)[1] and (Iu → i∗
i−1 Iu)[1], we see that Hom(P̃y, Ĩu[1]) equals the set of morphisms (λ, µ) between the two complexes

. . . // 0 // j! j−1 Py
//

λ

��

Py //

µ

��t
t

t
t

t
t 0 // . . .

. . . // 0 // Iu // i∗i−1 Iu
// 0 // . . .
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modulo homotopy. Note that (λ, µ) ∼ (λ′, µ′) if and only if λ− µ = λ′ − µ′. The morphism euy corresponds to the
pair (1, 0) while ẽuy corresponds to (0, 1), hence ẽuy = −euy .

It is clear that the elements constructed above form a k-basis of AY and satisfy the required relations. �

Example 4.8. Let X be the poset with the Hasse diagram as in the left picture, and let Y = {1}. The algebra AY is
shown in the right picture, as the path algebra of the quiver A3 modulo the zero relation indicated by the dotted arrow
(i.e. the product of 2→ 3 and 3→ 1 is zero).

1

��=
==

= 2

����
��

3

2 // 3 // 1

Lemma 4.9. Let X ′ = U ∪ Y and define a binary relation ≤′ on X ′ by

u′≤′ u ⇔ u′ ≤ u y≤′ y′ ⇔ y ≤ y′ u <′ y ⇔ y < u (4.13)

for u, u′ ∈ U, y, y′ ∈ Y . Then ≤′ is a partial order if and only if the following condition holds:

Whenever y ≤ y′ ∈ Y, u′ ≤ u ∈ U and y < u, we have that y′ < u′. (?)

When this condition holds, the endomorphism algebra AY is isomorphic to the incidence algebra of (X ′,≤′).

Proof. The first part is clear from the requirement of transitivity of ≤′.
The condition (?) implies that eu′ueuy = eu′y and euyeyy′ = euy′ whenever u′ ≤ u, y ≤ y′ and y < u, so that AY

is the incidence algebra of (X ′,≤′). �

4.4. Lexicographic sums along bipartite graphs

Definition 4.10. Let S be a poset, and let X = {Xs}s∈S be a collection of posets indexed by the elements of S. The
lexicographic sum of X along S, denoted ⊕S X, is the poset (X,≤) where X =

∐
s∈S Xs is the disjoint union of the

Xs and for x ∈ Xs , y ∈ X t we have x ≤ y if either s < t (in S) or s = t and x ≤ y (in Xs).

Example 4.11. The usual ordinal sum X1 ⊕ X2 ⊕ · · · ⊕ Xn of n posets is the lexicographic sum of {X1, . . . , Xn}

along the chain 1 < 2 < · · · < n.

Definition 4.12. A poset S is called a bipartite graph if it can be written as a disjoint union of two nonempty subsets
S0 and S1 such that s < s′ in S implies that s ∈ S0 and s′ ∈ S1.

It follows from the definition that the posets S0, S1 are anti-chains, that is, no two distinct elements in S0 (or S1)
are comparable.

Example 4.13. The left Hasse diagram represents a bipartite poset S. The right one is the Hasse diagram of its opposite
Sop.

1
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==
= 2

�� ��=
==

==
=

3 4 5

3

��
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��

��

5

����
��

��

1 2

Let X = {X1, X2, X3, X4, X5} be the collection
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The graphs shown below are the Hasse diagrams of ⊕S X (left) and ⊕Sop X (right).
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Theorem 4.14. If S is a bipartite graph and X = {Xs}s∈S is a collection of posets, then ⊕S X ∼ ⊕Sop X.

Proof. Let S = S0 q S1 be a partition as in the definition of bipartite poset. Let X0 = {Xs}s∈S0 , X1 = {Xs}s∈S1 and
let X = ⊕S X, Y = ⊕S0 X0, U = ⊕S1 X1. The sets Y and U can be viewed as disjoint subsets of X with X = Y ∪U .
Moreover, since there are no relations s1 < s0 with s0 ∈ S0, s1 ∈ S1, there are no relations u < y with y ∈ Y , u ∈ U ,
thus Y is closed and U is open in X . By Corollary 4.6, Db(X) ' Db(AY ) where AY is the endomorphism algebra of
the direct sum of the strongly exceptional collection of Proposition 4.5.

We show that the condition (?) of Lemma 4.9 holds. Indeed, let y ≤ y′ ∈ Y , u′ ≤ u ∈ U . There exist s0, s′0 ∈ S0,
s1, s′1 ∈ S1 such that y ∈ Xs0 , y′ ∈ Xs′0

, u ∈ Xs1 and u′ ∈ Xs′1
. Now, s′0 = s0 and s′1 = s1 since y ≤ y′, u′ ≤ u and S0,

S1 are anti-chains. If y < u, then s0 < s1, hence y′ < u′ and (?) is satisfied. Therefore AY is the incidence algebra of
the poset X ′ defined in (4.13).

Since X ′ is a disjoint union of the posets U and Y with the original order inside each but with reverse order between
them, it is easy to see that X ′ equals the lexicographic sum of X along the opposite poset Sop. �

Corollary 4.15. Let X, Y be two posets. Then X ⊕ Y ∼ Y ⊕ X.

Proof. Take S to be the chain 1 < 2. �

As special cases, we obtain the following two well-known examples.

Example 4.16. The following two posets (represented by their Hasse diagrams) are derived equivalent.
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The right poset is obtained from the left one by an APR tilt [1]; see also [11, (III. 2.14)].

Example 4.17. The two posets below are derived equivalent.

•
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•
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•
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This is a special case of BGP reflection [3], turning a source into a sink (and vice versa).

Corollary 4.18. Let S be a bipartite graph. Then S ∼ Sop.

Proof. Take in Theorem 4.14 each Xs to be a point. �

Note that the last Corollary can also be deduced from [3] since ShS is the category of representations of a quiver
without oriented cycles, namely the Hasse diagram of S, and Sop is obtained from S by reverting all the arrows.
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Fig. 1. Two posets which are not derived equivalent despite their structure as ordinal sums of the same three posets in different orders.

4.5. Ordinal sums of three posets

The result of Corollary 4.15 raises the natural question whether the derived equivalence class of an ordinal sum
of more than two posets does not depend on the order of the summands. The following proposition shows that it is
enough to consider the case of three summands.

Proposition 4.19. Let X be a family of posets closed to taking ordinal sums. Assume that for any three posets
X, Y, Z ∈ X ,

X ⊕ Y ⊕ Z ∼ Y ⊕ X ⊕ Z . (4.14)

Then for any n ≥ 1, π ∈ Sn and X1, . . . , Xn ∈ X ,

Xπ(1) ⊕ · · · ⊕ Xπ(n) ∼ X1 ⊕ · · · ⊕ Xn .

Proof. For n = 1 the claim is trivial and for n = 2 it is just Corollary 4.15. Let n ≥ 3 and consider the set Gn of
permutations in π ∈ Sn such that Xπ(1) ⊕ · · · ⊕ Xπ(n) ∼ X1 ⊕ · · · ⊕ Xn for all X1, . . . , Xn ∈ X . Then Gn is a
subgroup of Sn , and the claim to be proved is that Gn = Sn .

Let X1, . . . , Xn ∈ X . Taking X = X1 and Y = X2⊕ · · · ⊕ Xn , we see by Corollary 4.15 that the cycle (1 2 . . . n)

belongs to Gn . Now take X = X1, Y = X2 and Z = X3 ⊕ · · · ⊕ Xn . By (4.14), Y ⊕ X ⊕ Z ∼ X ⊕ Y ⊕ Z , hence
(1 2) ∈ Gn . The claim now follows since (1 2) and (1 2 . . . n) generate Sn . �

We give a counterexample to show that (4.14) is false in general.

Example 4.20. Let

X = • • • Y = •

��

•

•

and let Z = X ⊕ Y . Then the posets X ⊕ Y ⊕ Z and Y ⊕ X ⊕ Z , depicted in Fig. 1, are not derived equivalent since
their Euler forms are not equivalent over Z (they are equivalent over Q, though). This is shown using Corollary 3.15
with the prime p = 11.
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vol. 100, Soc. Math., France, Paris, 1982, pp. 5–171.
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