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Abstract

The robustness function of an optimization (minimization) problem measures the maximum increase in the value of its optimal
solution that can be produced by spending a given amount of resources increasing the values of the elements in its input. We present
efficient algorithms for computing the robustness function of resource allocation and scheduling problems that can be modeled
with partition and scheduling matroids. For the case of scheduling matroids, we give an O(m2n2) time algorithm for computing a
complete description of the robustness function, where m is the number of elements in the matroid and n is its rank. For partition
matroids, we give two algorithms: one that computes the complete robustness function in O(m log m) time, and other that optimally
evaluates the robustness function at only a specified point.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

The robustness function of an optimization (minimization) problem measures the maximum increase in the value of
its optimal solution that can be produced by spending a given amount of resources increasing the values of the elements
in its input. The robustness function of a problem can be used to assess the quality of its solution when the values of the
elements in its input are not known exactly, and hence, estimates have to be used for them [18,24,25]. In this paper we
present efficient algorithms for computing the robustness function of resource allocation and scheduling problems that
can be modeled with partition and scheduling matroids. We assume a cost model that for any element e of a matroid,
charges � ∗ c(e) to increase the value of e by �, where c(e) is a non-negative value.

� A preliminary version of this paper appeared in the Proceedings of the Eighth Annual ACM-SIAM Symposium on Discrete Algorithms, 1997,
pp. 659–668.
∗ Corresponding author. Tel.: 519 6612111x86974; fax: 519 6613515.

E-mail addresses: gnf@cs.purdue.edu (G.N. Frederickson), solis@csd.uwo.ca (R. Solis-Oba).
1 Research of this author partially supported by the National Science Foundation under Grant CCR-9322501.
2 Part of this research was done while this author was at Purdue University.

0304-3975/$ - see front matter © 2005 Elsevier B.V. All rights reserved.
doi:10.1016/j.tcs.2005.11.023

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/82199987?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.elsevier.com/locate/tcs
mailto:gnf@cs.purdue.edu
mailto:solis@csd.uwo.ca


G.N. Frederickson, R. Solis-Oba / Theoretical Computer Science 352 (2006) 250 –265 251

In [14] we presented an algorithm for computing the robustness function of an arbitrary matroid optimization problem.
In this paper we take advantage of the special structure of scheduling and partition matroids to design algorithms which
are much more efficient than the general algorithm in [14]. Our algorithm for scheduling matroids is also faster that
the more general algorithm for transversal matroids that we give in [14]. A very brief description of the algorithms that
we present here was given in [12].

The concept of robustness function has been considered before in the context of minimum spanning trees [13],
shortest paths [15], maximum flows in planar graphs [25], and intersections of matroids [21]. Related problems have
also been considered. Drangmeister et al. [9] give a constant-approximation algorithm for the problem of spending a
fixed budget reducing the weights of the edges of a given graph to minimize the weight of its minimum spanning trees.
Berman et al. [4] study the problem of shortening the weights of the edges of a given rooted tree to minimize the sum of
the distances from the root to all of the other vertices in the tree. Ahuja and Orlin [2] consider the problem of spending
a fixed budget increasing the capacities of the edges in a flow network so as to maximize the value of a maximum flow.
Burkard et al. [6] study the bottleneck capacity expansion problem which calls for increasing the values of the elements
in the input of a bottleneck problem so maximize the value of its optimum solution.

We showed in [14] that the robustness function of any matroid is piecewise-linear and that it has O(mn) breakpoints,
where m is the number of elements in the matroid and n is its rank. Our algorithm for computing the robustness function
of a scheduling matroid finds all the breakpoints in O(m2n2) time. Each breakpoint is computed by solving a series
of scheduling-with-preemption subproblems in which some subset of elements of the matroid must be scheduled to
completion. We present a formulation for these scheduling subproblems that corresponds to a generalization of the
off-line min problem [1]. This reformulation allows us to solve optimally each subproblem.

For partition matroids, we give two algorithms. The first algorithm computes all the breakpoints of the robust-
ness function in O(m log m) time. As the algorithm computes the breakpoints, it identifies increasingly larger clusters
of elements that must undergo the same weight increases in the determination of the remaining breakpoints. These
clusters have a certain “convexity” property that we exploit to compute each breakpoint in O(log m) time. The in-
creasing size of the clusters allows us to prove that the robustness function of a partition matroid has only O(m)

points.
Our second algorithm for partition matroids does not compute all the breakpoints of the robustness function, but

evaluates the robustness function only at a required point, and does so in O(m) time. This new formulation for the
problem is a version of the optimal distribution of effort problem (see e.g. [22]). All known methods of solution for the
latter problem assume explicit representations for the gain functions that make it possible to evaluate them efficiently
[11,22]. Such representations are not available in our robustness problem, and thus, we cannot use those methods.
Instead, we present a new approach that optimally solves the problem by a sophisticated application of a linear-time
selection algorithm [5], that interleaves searches on weights with searches on costs.

The rest of the paper is organized as follows. In Section 2 we review the general algorithm in [14] to compute the
robustness function of a matroid. In Section 3 we present our algorithm for computing the robustness function of a
scheduling matroid. In Section 4 we describe the algorithm for computing all the breakpoints of the robustness function
of a partition matroid. In Section 5 we present an optimal algorithm for evaluating the robustness function of a partition
matroid at only a given point.

2. Preliminaries

A matroid M = (E, I, w, c) consists of a finite set E of elements and a collection I of subsets of E satisfying
well-known axioms (see e.g. [27]). Function w assigns a non-negative weight to each element in E. We assume that
the weights are not fixed, but they can be changed, and c indicates the cost of each unit increase in the weight of an
element. If an element e ∈ E increases its weight w(e) by some amount � > 0, a total cost �c(e) is incurred. Set
E is called the ground set of the matroid M , and the subsets in I are called the independent sets of the matroid. An
independent set of maximum size is a base of M . The number of elements in any base is the rank of the matroid. We
denote by n the rank of a matroid and by m the size of its ground set.

The robustness function FM(b) of matroid M measures the maximum increase in the weight of the minimum weight
bases of M that can be obtained by increases of total cost b on the weights of its elements. In this section we briefly
review the algorithm in [14] for computing the robustness function of an arbitrary matroid.
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Given a set S ⊆ E, we define coverage (S, M) as the minimum number of elements that any minimum weight base
of M shares with S. Let tolerance (S, M) be the minimum amount by which the weight of each element in S has to be
increased to reduce coverage (S, M). The rate of S in M , denoted as rate (S, M), is defined as c(S)/coverage (S, M),
where c(S) is the sum of the costs of the elements in S. Note that if the weight of each element in set S is increased
by some value �� tolerance (S, M), then the value of rate (S, M) ∗ � gives the cost for increasing the weight of every
minimum weight base of M by at least �.

The following algorithm [14] outputs all the breakpoints of the robustness function of a given matroid M .

Algorithm uplift (M)

value← weight of a minimum weight base of M

cost← 0
Output (cost, value).
Find a set S ⊆ E of smallest rate r in M .
while (tolerance (S, M) �= ∞) do

Increase the weights of the elements in S by tolerance (S, M).
cost← cost + tolerance (S, M) ∗ c(S)

Find a set S′ ⊆ E of smallest rate in M .
if rate (S′, M) < r then Output (cost, value) end if
S ← S′

end while

The most crucial part of algorithm uplift is how to find a set of smallest rate in the matroid. Both of our algorithms
for computing all the breakpoints of the robustness functions of scheduling and partition matroids use algorithm uplift.
However, we take advantage of the special structure of these matroids to design efficient algorithms for finding a set of
smallest rate.

3. Scheduling matroids

Consider the following scheduling problem. Let J = {j1, j2, . . . , jm}, be a set of jobs. Each job ji requires one unit
of processing time and has a weight w(ji). Job ji has integer release time ri and deadline di , with di > ri . Without
loss of generality, we assume that the largest deadline has value at most m. The problem is to select a largest subset of
jobs of minimum total weight that can be executed on a single processor.

This problem can be reduced to a weighted matching problem on a convex bipartite graph G = (J ∪ T , A) (see e.g.
[16]). We think of the ith vertex of J as job ji , and the ith vertex of T as the time interval from i − 1 to i. For each job
ji , graph G has edges of weight w(ji) from ji to each time interval between ri and di . It can be proved that a maximum
cardinality matching of minimum weight in G corresponds to a scheduling of a largest subset of J of minimum total
weight [16].

The set of matchings of a bipartite graph can be modeled with a transversal matroid (see e.g. [16]). For the special
case of a convex bipartite graph, the corresponding transversal matroid is called a scheduling matroid. A scheduling
matroid M = (J, I, w, c) has a set J of jobs as its ground set and a subset of jobs is independent if and only if there
is a feasible schedule for them.

In [14] it is shown that a set of smallest rate in a transversal matroid can be computed by performing a series
of minimum-cut computations over bipartite graphs. We briefly review the approach in [14]. A bipartite graph G =
(J ∪ J ′, E) defines a transversal matroid MT = (J, E, w, c) with ground set J , the set of vertices on one side of G,
and whose independent sets are the subsets of J which can be covered by a matching in G. Let B ⊆ J be a maximum
independent set of minimum weight in MT . Let w1, w2, . . . , wp be the different weights of elements in MT . Given a
set S ⊆ J , let S=wk

be the set formed by the elements of weight wk in S, and let S �=wk
be the set of elements in S of

weight different from wk .
For k = 1, 2, . . . , p, build auxiliary graphs Gk = ({sk, tk} ∪ J=wk

∪ B �=wk
∪ J ′, Ek), with Ek as follows. Given

a parameter �, Ek has an edge of capacity min{1, c(v)/�} from sk to each vertex v ∈ J=wk
, and an edge of capacity

1 from s to each vertex in B�=wk
. There is an edge of infinite capacity from each vertex v ∈ J=wk

∪ B �=wk
to a

vertex w ∈ J ′ whenever the edge (v, w) is in G. Finally, Ek has an edge of capacity 1 from each vertex in J ′ to tk
(see Fig. 1).
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Fig. 1. Auxiliary graph Gk .

Lemma 3.1 (Frederickson and Solis-Oba [14]). A set of smallest rate in a transversal matroid MT = (J, E, w, c)

has rate �∗ equal to the largest parameter � such that the maximum flow in each auxiliary graph Gk has value |B|.

Lemma 3.2 (Frederickson and Solis-Oba [14]). Let Gk be an auxiliary graph such that for every parameter � > �∗
a maximum flow of Gk has value smaller than |B|. For parameter �∗, let z∗k be a maximum flow of Gk that saturates
every edge from sk to B �=wk

. Set S ⊆ J=wk
formed by all elements v ∈ J=wk

for which z∗k(sk, v) = c(v)/�∗ is a set of
smallest rate in MT .

These lemmas can be used to design an efficient algorithm for computing a set of smallest rate in a scheduling
matroid M = (J, I, w, c). Consider one of the auxiliary graphs Gk . It is known [10,26] that in an s-t graph in which
the capacities of the edges leaving the source are linear functions of a parameter 1/�, the value of a maximum flow is a
piecewise-linear concave function of 1/�. Let fk(1/�) denote this flow function for auxiliary graph Gk . By definition
of B, there is a matching of maximum cardinality in G that covers the vertices in B. Therefore, for any value of the
parameter 1/�, there is a maximum flow of Gk that saturates at least |B �=wk

| edges incident to tk . Let us consider this
maximum flow. Note that if � is decreased, the value of the flow increases linearly with 1/� until one more edge incident
to tk is saturated. Since a maximum matching of G has size |B|, then for any value of 1/� at most |B| of the edges
incident to tk can be saturated by a flow. This implies that fk(1/�) has at most |B=wk

| breakpoints.
It is easy to see that a set of smallest rate in M = (J, I, w, c) has rate �∗�c(J )/n. To compute the value of �∗, we

use Newton’s method (see e.g. [23]) on each function fk(1/�) to find the largest value �k for which fk(1/�k) = |B|.
By the above discussion, the value of �k can be found by performing at most |B=wk

| maximum flow computations on
Gk . The value of �∗ is equal to the smallest �k , for k = 1, 2, . . . , p.
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We show that a maximum flow of Gk that saturates all edges from sk to B �=wk
can be computed in O(|J=wk

∪B �=wk
|)

time, whereas the previous best algorithm for finding a maximum flow in a bipartite graph Gk needs O(|J=wk
∪

B�=wk
||Ek| log(|J=wk

∪B �=wk
|2/|Ek|+2) time [3].We describe first how to find in linear time a maximum flow forGk , and

then we show how to modify it so that it saturates all edges from sk to B �=wk
as required by

Lemma 3.2.
Fix one of the auxiliary graphs Gk = ({sk, tk} ∪ J=wk

∪ B �=wk
∪ J ′, Ek). The problem of computing a maximum

flow of Gk can be interpreted as a scheduling-with-preemption problem on a single processor. Let the vertices �k ∈ J ′
be time slots and the vertices ji ∈ J=wk

∪ B�=wk
be jobs. The capacity of edge (sk, ji) is the processing time required

by job ji , and each infinite capacity edge (ji, �k) identifies a time slot �k where job ji can be scheduled. Under this
interpretation, any flow function for Gk defines a feasible preemptive schedule for various portions of the jobs in
J=wk

∪B �=wk
: the value of the flow on edge (sk, ji) determines the total time that job ji is scheduled for execution, and

the flow on edge (ji, �k) defines the portion of job ji that is scheduled in time interval �k . The converse of this statement
is also true, i.e., a preemptive schedule that specifies the execution order of portions of the jobs in J=wk

∪ B �=wk
on a

single processor defines a valid flow for Gk .
By the previous discussion, any algorithm that finds a preemptive schedule for the jobs in B �=wk

∪J=wk
that maximizes

the amount of time that the jobs are executed on a single processor, also computes a maximum flow for Gk . We present
below an efficient implementation of the preemptive earliest deadline first rule [20], which finds in linear time an
optimal preemptive schedule for the jobs B�=wk

∪ J=wk
, and thus, a maximum flow for Gk .

We assume that the largest deadline among the jobs in J=wk
∪ B�=wk

is at most |J=wk
∪ B�=wk

|. If this condition
does not hold, we can modify the deadlines so that this condition is satisfied [12]. This preprocessing step requires
O(|J=wk

∪B�=wk
|) time. The extra time required by this step does not affect the overall time complexity of our algorithm.

A straightforward implementation of the preemptive earliest deadline first rule uses an initially empty set T to store
all those jobs that can be scheduled at a given time. Starting at the earliest release time, and moving forward in time, a
schedule is generated as follows. A job is added into T whenever it becomes available for scheduling, and in each time
interval (a fraction of) the job with smallest deadline in T is scheduled.

Our scheduling problem can be seen as an extension of the off-line min problem defined in [1]. In this latter problem
we are given a set of integers {1, 2, . . . , i}, an initially empty set T , and two operations: insert, that adds an integer to
T , and extract_min, that removes the smallest integer from T . It is desired to maintain T under a given sequence of
insert and extract_min operations, assuming that each integer is inserted in T only once.

As in an off-line min problem, we want to maintain in our scheduling problem a set of jobs T under some sequence
S of two operations: insertion of all the jobs with a particular release time, and extraction of a job with smallest
deadline. However, contrary to the off-line min problem, we might have several jobs with the same deadline, and we
do not know in advance how many jobs will be extracted between two consecutive insertion operations. We define the
generalized off-line min problem over a set of elements {e1, e2, . . . , em} as follows. Each element has two attributes, an
integral value from the domain {1, 2, . . . , m}, and a positive real magnitude no larger than 1. There is an initially empty
set T over which two operations are defined, insert and retrieve. Operation insert adds an element to T . Operation
retrieve extracts from T elements of smallest value until either T is empty or total magnitude 1 is achieved, splitting
the magnitude of the last element before extraction, as necessary. Given a sequence S of insert and retrieve operations,
the generalized off-line min problem consists in finding which portions of what elements are removed by each retrieve
operation.

Consider the following instance of the generalized off-line min problem defined over the set {a, b, c, d, e}. The values
of the elements are 1, 1, 3, 4, and 2, respectively, and their magnitudes are 0.3, 0.5, 0.4, 0.8, and 1.0. The sequence S
is: insert a, insert b, insert c, retrieve, insert d , insert e, retrieve, retrieve. The first retrieve operation extracts from T

elements a and b, and half of element c (so it leaves in T the rest of element c with magnitude 0.2). The second retrieve
operation extracts element e, while the third retrieve extracts the remaining of c plus element d.

To solve the generalized off-line min problem, write the sequence S as I1, R, I2, R, . . . , Iq, R, where R is a retrieve
operation and each Ii is a sequence of insert operations. Let Ai be the set of elements inserted by Ii . As in [1], we
use disjoint-set data structures to represent each set Ai ; these sets are stored in a doubly linked list with succ(Ai) the
successor of Ai . We use an array Q, and store in Q(i) a list with the elements extracted by the ith retrieve operation.
Let the elements be indexed non-decreasingly by value. Function FIND(x) returns the set to which element x belongs
and function UNION(x, y, y) on sets x and y, makes y ← x ∪ y. The algorithm to solve the generalized off-line min
problem is the following.
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Algorithm generalized_off-line(S, {e1, e2, . . . , em})
Initialize each Q(i) to ∅, and set j ← 1.
while j < m do

Ai ← FIND(ej ).
Add ej to the end of list Q(i).
Find Sm, the sum of magnitudes of the elements in Q(i).
if Sm �1 then

UNION(Ai, succ(Ai), succ(Ai))

magnitude (ej )← Sm − 1
end if
if Sm �1 then j ← j + 1 end if

end while
return (Q)

Lemma 3.3. Algorithm generalized_off-line runs in O(m) time.

Proof. We can use counting sort (see e.g. [7]) to index the elements non-decreasingly by value, as required by
generalized_off-line, in O(m) time. Note that the only UNION operations that the algorithm performs are of the
form UNION(Ai, succ (Ai), succ (Ai)). This special order of the UNION operations allows us to use the algorithm
of Gabow and Tarjan [17] to perform all the UNION and FIND operations in O(m) time. �

We use algorithm generalized_off-line to find an optimal scheduling for the jobs in J=wk
∪ B �=wk

as follows. We
initialize the data structures of generalized_off-line by storing in set i all jobs with the ith smallest release time. The
attribute magnitude of each job is set equal to the processing time for the job and the attribute value is equal to the
deadline of the job. The jobs are indexed non-decreasingly by deadline. Run algorithm generalized_off-line with the
following slight change: in each iteration of the while-loop, after finding the set i containing job ej , generalized_off-line
inserts ej in Q(i) only if its deadline is at least i (otherwise job ej cannot be scheduled in the ith time slot). The schedule
can easily be obtained from the information that generalized_off-line stores in Q.

Lemma 3.4. An optimal scheduling for the jobs J=wk
∪ B �=wk

can be computed in O(|J=wk
∪ B �=wk

|) time and
O(|J=wk

∪ B �=wk
|) space.

The maximum flow of Gk corresponding to the schedule generated by generalized_off-line might not saturate all
edges from sk to B �=wk

. We show below how to find a flow that complies with this condition.
First, modify the deadlines of the jobs in B�=wk

so that no two of them have the same deadline. To do this, find an
optimal schedule for the jobs in B�=wk

using a time-reversed version of the preemptive earliest deadline first rule. This
new rule schedules jobs by starting at the largest deadline and moving backwards in time towards the smallest release
time. The rule schedules in each interval the job with latest release time that is available. The correctness of this rule
can be easily established. Let S′ be the schedule for the jobs in B �=wk

obtained with this rule. Modify the deadline
of each job ji ∈ B �=wk

by making it equal to the completion time of job ji in S′. Let d ′i be the modified deadline
for job ji .

Then, modify algorithm generalized_off-line so that whenever two or more jobs have the same modified deadline,
it chooses to schedule first the jobs from B �=wk

. (The only change that we actually need to make is to index the jobs
so that if several jobs have the same modified deadline, the jobs from B �=wk

are indexed first.) Use this modified
generalized_off-line algorithm to find a schedule S∗ for the jobs in J=wk

∪ B �=wk
.

Lemma 3.5. The schedule S∗ maximizes the amount of time that the jobs in J=wk
∪ B �=wk

are executed on a single
processor, and it schedules to completion all jobs from B�=wk

.

Proof. We need only prove that there is an optimal schedule Ŝ for the jobs in J=wk
∪ B �=wk

in which all jobs from
B�=wk

are scheduled to completion, and such that no job ji ∈ B �=wk
is scheduled after its modified deadline d ′i . The

proof is by contradiction.
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Let S′ be the schedule used to determine the modified deadlines d ′i . Suppose there is no optimal schedule Ŝ for the
modified deadlines, but there is one for the original deadlines. Choose S to be an optimal schedule for the original
deadlines that schedules to completion all jobs from B�=wk

, such that the first job ji ∈ B �=wk
that is not completed by

its modified deadline has d ′i as large as possible. Since jobs are scheduled in S′ as late as possible, there must be at
least one job jk ∈ B�=wk

with d ′k > d ′i and rk �ri that is scheduled in S to be completed at a time �k < d ′i . Clearly, we
can modify S so that ji is scheduled within the portions of time alloted to jk , and jk is scheduled in the time intervals
assigned to ji . This modification to S produces a new optimal scheduling in which the completion time for ji does not
exceed d ′i . This is a contradiction. �

Theorem 3.1. The robustness function of a scheduling matroid M = (J, I, w, c) can be computed in O(m2n2) time,
where m = |J | and n = |B| is the size of a maximum independent set in I.

Proof. In each auxiliary graph Gk , the largest value �k for which a maximum flow has value |B| can be computed
in O(|B=wk

||J=wk
∪ B �=wk

|) time. Hence, the total time used to find a set of smallest rate in the scheduling matroid

M is O(
∑p

i=1 |B=wk
||J=wk

∪ B �=wk
|) = O(|B||D| + |B|2) = O(mn). Since algorithm uplift computes O(mn) sets of

smallest rate, the total time needed to compute all the breakpoints in the robustness function in O(m2n2). �

4. Partition matroids

A partition matroid P = (E, I, w, c) is defined over a finite set E of m elements, partitioned into � disjoint blocks
E1, E2, . . . , E�. Given a set of � positive integers ni � |Ei |, i = 1, . . . , �, a set S ⊆ E is independent in P if and
only if |S ∩ Ei |�ni , for all 1� i��. A minimum weight base of P is a minimum weight subset B of E such that
|B ∩ Ei | = ni , for all 1� i��.

We use algorithm uplift to compute the robustness function of a partition matroid. However, we take advantage of
the special structure of these matroids to design a very efficient algorithm for finding a set of smallest rate. Consider a
partition matroid P = (E, I, w, c). The blocks Ei are independent in the sense that any change in the weights of the
elements in some block Ei does not affect the set of elements of another block Ej that might belong to a minimum
weight base. Hence, there must be at least one block Ei that contains a subset of elements having the smallest rate in P .
This observation simplifies the problem. We need only show how to compute a set of smallest rate in one of the blocks
Ei , or, equivalently, how to find a set of smallest rate in a uniform matroid. A uniform matroid is a partition matroid in
which � = 1. In a uniform matroid P = (E, I, w, c) of rank n a set S ⊆ E is independent if and only if |S|�n.

Fix a uniform matroid U = (E, I, w, c) with rank n. Let m = |E|. Let wn be the weight of the nth smallest element
in E. Note that the only elements of E that can belong to a minimum weight base of U are those elements of weight at
most wn. Let E<wn , E=wn , and E>wn denote the subsets of E formed by all elements of weight smaller than wn, equal
to wn, and larger than wn, respectively. Let � = |E<wn | + |E=wn | − n.

Lemma 4.1. If S ⊆ E is a set of smallest rate in U then

rate(S, U) = min{min{c(e)|e ∈ E<wn}, min{c(T )/(|T | − �)|T ⊆ E=wn and |T | > �}}

Proof. For any set T ⊆ E<wn , coverage (T , U) = |T | since all elements in E<wn are in every minimum weight
base of U . Hence, if S ⊆ E<wn , then S must contain only the element of smallest cost in E<wn . Also, for any
set T ⊆ E=wn , coverage (T , U) = max{0, |T | − �} because there is a minimum weight base of U that contains
min{n− |E<wn |, |E=wn | − |T |} elements from E=wn − T . Thus, if S ⊆ E=wn , then S minimizes c(S)/(|S| − �).

Finally, note that for every set T ⊆ E<wn ∪ E=wn , rate (T , U)� min {rate (T ∩ E<wn, U), rate (T ∩ E=wn,

U)}. �

By Lemma 4.1, there is a set of smallest rate in U that either consists of a single element of smallest cost in E<wn , or
that is formed by the � elements of smallest cost in E=wn , for some � < �� |E=wn |. The following observation allows
us to compute efficiently the value of �. Let {e1, e2, . . . , e|E=wn |} be the elements of E=wn indexed in non-decreasing
order of cost.
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Lemma 4.2. The discrete function f (i) = ∑i
j=1 c(ej )/(i − �) with integer argument i is strictly decreasing in the

interval � + 1� i��, and non-decreasing in the interval �� i� |E=wn |, where � is the smallest integer where f

reaches its minimum.

Proof. We show that if f (i)�f (i − 1) for any �+ 2� i� |E=wn | − 1, then f (i + 1)�f (i). This proves the lemma.
If f (i)�f (i − 1), then

(i − 1− �)
i∑

j=1
c(ej ) � (i − �)

i−1∑
j=1

c(ej ), hence,

(i − �)
i∑

j=1
c(ej ) � (i − �+ 1)

i−1∑
j=1

c(ej ), and since c(ei+1)�c(ei)

(i − �)
i+1∑
j=1

c(ej ) � (i − �+ 1)
i∑

j=1
c(ej ).

We use a balanced binary search tree T=wn to compute efficiently the value of �. The elements of E=wn are stored
in the leaves of T=wn , maintaining a dictionary order on the costs. Given a node x of T=wn , let L(x) be the set of all
elements stored in the leaves of T=wn that appear before x in an in-order traversal of the tree. Let next(x) denote the
first leaf of T=wn that appears after x in an in-order traversal of the tree. The largest set of smallest rate in E=wn can be
found by a search in T=wn from the root to the leaves as follows:

Algorithm descend (T=wn, U)

Let x be the root of T=wn .
while x is not a leaf do

if |L(x)|��, or rate (L(x), U) > rate (L(next (x)), U) then
x ← right child of x

else x ← left child of x end if
end while
if (cost of the element stored in node x) = rate (L(x), U) then

Find the rightmost leaf y that stores an element of cost equal to rate (L(x), U).
return (set of elements in L(y))

else return (set of elements in L(x)) end if
The correctness of this algorithm follows from Lemma 4.2.

Lemma 4.3. Algorithm descend runs in O(log |T=wn |) time.

Proof. Since rate (L(x), U) = c(L(x))/(|L(x)| − �), to compute rate (L(x), U) we need to know in each iteration
of descend the number of elements in L(x) and their total cost. This can easily be computed as the algorithm traverses
the tree if each internal node x of T=wn stores the number and total cost of all elements in the subtree rooted at
x, and the smallest cost of any element in that subtree. This information is also used by the algorithm to compute
rate (L(next(x)), U). Since T=wn is a balanced tree, the algorithm runs in O(log |T=wn |) time. �

Let H<wn be a min-heap that stores the elements of E<wn maintaining heap order on their costs. With this heap and
algorithm descend a set of smallest rate in U can be found in O(log |T=wn |) time.

We describe now how our data structures have to be updated so that a set of smallest rate in U can be computed
efficiently in each iteration of algorithm uplift. We use an additional data structure, a list L>wn containing the elements of
E>wn in non-decreasing order of weight. There are two cases that have to be considered. (1) If a singleton {es} ⊆ E<wn

is chosen as the subset of smallest rate in U , then uplift increases the weight of es up to wn and moves es from H<wn

into T=wn . (2) If a set S ⊆ E=wn is the set of smallest rate in U , then algorithm uplift increases the weights of the
elements in S to wg , the smallest element weight larger than wn. Since then wg becomes the weight of the nth smallest
element in E, all elements in E=wn − S are moved from T=wn to H<wn . Also each element of weight wg in L>wn is
removed form L>wn and inserted in T=wn .
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Lemma 4.4. The robustness function of a uniform matroid U = (E, I, w, c) can be computed in O(|E| log |E|) time
and using O(|E|) space.

Proof. We first show that uplift performs at most 2|E| − n iterations. In each iteration in which uplift selects some set
S ⊆ E=wn as the set of smallest rate in U , at least one element is removed from L>wn . This can happen at most |E|−n

times, since no element is ever inserted into L>wn while updating the data structures. In each iteration in which uplift
chooses a singleton {es} as the set of smallest rate, the element es is moved from H<wn to T=wn , and it remains in
T=wn until the algorithm ends. To show this, suppose that in a later iteration j , element es is moved back to H<wn . This
means that in iteration j a set T ⊆ E=wn , with es /∈ T , has the smallest rate in U . Since descend finds the largest set
of smallest rate in E=wn , it follows that c(es) > rate (T , U). But, this is not possible since the robustness function is
non-decreasing. Therefore, the number of iterations in which a singleton is selected as a set of smallest rate is at most
|E|, and hence the total number of iterations that uplift performs is at most 2|E| − n.

A set S of smallest rate in U can be found in O(log |E|) time, and tolerance (S, U) can be computed in constant time
assuming that the weights of the elements are initially sorted non-decreasingly by weight.

It only remains to bound the time required to update the data structures. Removing the smallest element from H<wn

takes O(log |H<wn |) time, and removing the first element from L>wn can be done in constant time. Inserting an element
into T=wn takes O(log |T=wn |) time. Since, by the above discussion, any element is removed from H<wn or L>wn at
most once, and an element can be inserted into T=wn at most twice, the total time required to update the data structures
is O(|E| log |E|). �

We now consider the complexity for computing the robustness function of a partition matroid P = (E, I, w, c)

with ��1.

Theorem 4.1. The robustness function of a partition matroid P = (E, I, w, c) can be computed in O(|E| log |E|)
time and using O(|E|) space.

Proof. Let E1, E2, . . . , E� be the blocks of E. We have shown above how to compute efficiently a set of smallest rate
in each set Ei . To find the set with overall smallest rate in P , we use a heap H in which we store the rate of a set of
smallest rate in each Ei , for each i = 1, 2, . . . , �.

The arguments used in the proof of Lemma 4.4 can be extended to show that uplift performs only O(|E|) iterations.
Hence, uplift computes the robustness function of P in O(|E| log |E|) time.

The overall space used by our data structures is O(|E|). �

5. Evaluating the robustness function at one point

In the previous section we presented an algorithm that computes all the breakpoints of the robustness function FP

for a partition matroid P . If we do not want to compute all the breakpoints of FP , but only wish to evaluate FP at a
specific point b, then we can design an algorithm that requires only linear time.

Consider a partition matroid P = (E, I, w, c) with blocks E1, E2, . . . , E�. Let Pi = (Ei, Ii , w, c) be the uniform
matroid induced by Ei , for i = 1, 2, . . . , �. For some given budget b, the value of FP (b) can be computed by determining
the optimal way of distributing the budget among the matroids Pi , and by optimally spending the fractional budget bi

assigned to each Pi increasing the weights of its elements. Therefore, we can write

FP (b) = max

{
�∑

i=1
FPi

(bi)|bi �0 for all 1� i�� and
�∑

i=1
bi = b

}
. (1)

For arbitrary functions FPi
, problem (1) is known as the optimal distribution of effort problem [22] or as the convex

knapsack problem [11]. There are several efficient algorithms to solve these problems [19,11], but only under the
assumption that the functions FPi

are given in an explicit form that make it possible to compute in constant time
the value of FPi

(x) for any x�0 and 1� i��. Since we do not have an explicit representation of the robustness
functions FPi

, we do not know how to compute the value of FPi
(x) in constant time, and thus, we have not found
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efficient implementations of these algorithms for our problem. Instead, we present here a prune-and-search algorithm
to compute FP (b) in O(m) time.

Let � = �1, �2, . . . , �k be a sequence of increases on the weights of the elements of partition matroid P . We say that �
is a canonical sequence of increases if each �i increases only the weights of the elements in the largest set S of smallest
rate in P , and each element in S has its weight increased by the same amount di � tolerance (S, P ). Algorithm uplift
can be implemented to determine a canonical sequence of increases, and therefore, a canonical sequence of increases
can be used to compute FP (b) for any b�0.

The following property of the largest sets of smallest rate in P plays a key role in our algorithm.

Property 5.1. Let � = �1, �2, . . . , �k be a canonical sequence of increases and Si be the set chosen by some �i , i < k.
In all subsequent increases �j , j > i, all elements of Si will undergo the same weight changes.

Proof. Let us consider a set Si with at least 2 elements, e1 and e2. Note that the cost of e1 (e2) cannot be larger than
the rate rSi

of Si , because otherwise Si − {e1} (Si − {e2}) would have a smaller rate than Si . To see this, assume that

c(e1) > rate (Si)�
c(Si − {e1})+ c(e1)

coverage (Si − {e1})+ 1
,

then,

c(e1) coverage (Si − {e1}) > c(Si − {e1}).
Adding c(Si − {e1}) coverage (Si − {e1}) to both sides, we get

(c(e1)+c(Si−{e1}))coverage (Si−{e1})>c(Si − {e1})(1+coverage (Si−{e1})).
Re-arranging terms we finally get,

rate (Si)�
c(Si − {e1})+ c(e1)

coverage (Si − {e1})+ 1
>

c((Si − {e1}))
coverage (Si − {e1}) = rate (Si − {e1}).

Suppose that �j , j > i, selects set Sj ⊆ E, with rate rSj
, and that e2 ∈ Sj but e1 /∈ Sj . This means that rSj

< c(e1),
because otherwise Sj ∪ {e1} would be a larger set with rate no larger than rSj

. But, then rSj
< rSi

since c(e1)�rSi
.

This contradicts that the robustness function of P is non-decreasing. �

Property 5.1 can be used to design a slightly more efficient version of uplift than that presented in the previous section.
The idea is that if in some iteration of uplift, set S ⊆ E with |S| > 1 is selected as the set of smallest rate, then we can
replace S by a single meta-element eS . We can do this, since in the succeeding iterations uplift does not need to keep
track of the individual weight changes of the elements in S. Although this modified algorithm is more efficient than the
original one, its time complexity is still O(|E| log |E|). We give below a different approach that exploits Property 5.1
to yield a linear time algorithm for computing FP (b), for a given b�0. To introduce our basic strategy, we show first
how to compute FP (b) for a uniform matroid.

5.1. Evaluating the robustness function of a uniform matroid

Let �(wi), for any value wi �0 be a canonical sequence of increases for the elements of a partition matroid P such
that the weights of the elements are increased as much as possible without increasing the weight of any element above
wi . Let �̄(ri), for any value ri �0 be a canonical sequence of increases such that the weights of the elements in P are
increased as much as possible without selecting a set of rate at least ri .

Given a uniform matroid U = (E, I, w, c), our algorithm for evaluating FU(b), for some b�0, does not perform
a linear search over the curve FU , as uplift does, but evaluates FU at some sequence of probe values that converge
to the desired one. The algorithm performs two different types of probes, each one implemented by a prune-and-
search linear-time routine. The first routine, called up_to_weight, takes a weight wi and computes the weight increases
corresponding to �(wi). The routine determines the cost of the weight increases and the rate of a set of smallest rate
according to the increased weights. The second routine, called up_to_rate, takes a rate ri and computes the weight
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increases corresponding to �̄(ri). This routine determines the total cost of the weight increases and the weight of the
nth smallest element according to the increased weights.

We present below implementations for these routines. Routine up_to_weight receives as arguments a weight wi , the
set of elements E, and the weight and cost functions w and c.

Algorithm up_to_weight (wi, E, w, c)

Find the largest set S of smallest rate in E�wi
assuming that all elements in E�wi

have the same weight.
return (rate of S, cost of increasing the weights of the elements in S to wi)

Lemma 5.1. Algorithm up_to_weight finds in linear time the cost of the weight increases made by �(wi) and the rate
of a set of smallest rate according to the increased weights.

Proof. We first describe how to compute in linear time the largest set of smallest rate in E�wi
assuming that all

elements in E�wi
have the same weight. Perform a binary search on the costs of the elements to find the smallest cost

c′ for which c(T )/(|T | − |E�wi
| + n)�(c(T ) + c′)/(|T | + 1 − |E�wi

| + n), where T ⊆ E�wi
is formed by all

elements in E�wi
of cost smaller than c′ and |T | > |E�wi

| − n. If c′ = c(T )/(|T | − |E�wi
| + n), then add to T all

elements from E�wi
of cost c′. By Lemma 4.2, T is the desired set. Using the linear-time algorithm of Blum et al. [5],

the above binary search can be performed in O|E�wi
|) time.

To show that algorithm up_to_weight is correct we have to consider two different cases. Let wn be the weight of the
nth smallest element in E. If wi < wn, then only the elements of smallest cost in E<wn have their weights increased
by �(wi). Note that the set S computed by up_to_weight contains exactly those elements. For the case when wi �wn,
suppose that the weights of the elements have been increased by �(wi). Let R be the largest set of smallest rate according
to the increased weights, and let rR be its rate. Observe that all elements in E�wi

− R have cost no smaller than rR .
Hence, if we assume the same initial weight for all elements in E�wi

, set R would be the largest set of smallest rate
in it. �

Algorithm up_to_rate, described below, receives as input a rate r , the set of elements E, and the weight and cost
functions w and c.

Algorithm up_to_rate (r, E, w, c)

T ← ∅; w∗ ← ∞
repeat

Find the weight w̄ of the � 1
2 |E|�th smallest element in E.

(r1, c1)← up_to_weight(w̄, E, w, c)

if r1 �r then
E← E<w̄

w∗ ← w̄

else
T ← T ∪ {e|w(e)�w̄ and c(e) < r}
E← E>w̄

end if
until |E| = 0
cT ← cost of increasing the weights of the elements in T to w∗.
wn← weight of the nth smallest element in E according to the modified weights
return (cT , wn)

The algorithm performs a binary search on the weights, invoking up_to_weight on each probe weight w̄. If w̄ is
too large, up_to_rate discards all elements of weight w̄ or larger since their weights are not increased by �̄(r). If w̄

is too small, up_to_rate tries a larger probe value, but first it reduces the size of E. Since all elements of cost at least
r and weight at most w̄ do not have their weights increased by �̄(r), they can be ignored. However, all elements of
cost smaller than r and weight at most w̄ will have their weights increased by �̄(r). Instead of keeping track of all the
individual weight increases of these elements, up_to_rate stores them in a set T . When the algorithm determines the
maximum weight increase that those elements should have, it performs the increases in a single step.



G.N. Frederickson, R. Solis-Oba / Theoretical Computer Science 352 (2006) 250 –265 261

The algorithm maintains the invariant that the value of w∗ is an upper bound on the maximum weight wr that �̄(r)

can assign to an element of E without selecting a set of rate at least r . In each iteration of the repeat-loop, either the
value of w∗ is decreased to w̄, or it is discovered that w̄ is a lower bound for wr . The gap between upper and lower
bounds for wr decreases in each iteration of the repeat-loop. When the loop ends, the value of w∗ is equal to wr .

Lemma 5.2. Algorithm up_to_rate finds in linear time the cost of the weight increases determined by �̄(r) and the
weight of the nth smallest element according to the increased weights.

Proof. By the above discussion, up_to_rate correctly computes the weight increases determined by �̄(r). Each iteration
of the repeat-loop takes linear time, and in each iteration the size of E is reduced by at least one half. Therefore, the
total time needed by the algorithm is O(|E|). �

We describe now a recursive algorithm for evaluating the robustness function FU of a uniform matroid U =
(E, I, w, c) at a given budget value b�0. In each recursive call the algorithm reduces in linear time the number of
elements in E by a fraction of at least one third, hence, the overall time complexity of the algorithm is linear in the
number of elements. The essential component of each iteration is a pair of tests that allow the algorithm either to find
at least one third of the elements in E that have weights or costs that are too large (and, thus, that can be discarded),
or to identify at least one third of the elements in E that will end up having the same final weight (and, thus, that can
be contracted to a single meta-element). Let wB be the weight of a minimum weight base of U according to the initial
weights. The algorithm receives as arguments the set of elements E, the weight and cost functions, and the budget
value b.

Algorithm robustness_uniform(E, w, c, b)

if |E| = 1 then
Let E = {e}. Set w(e)← w(e)+ b/c(e).
Let w∗B be the weight of a minimum weight base of U according to the increased weights.
return (w∗B − wB)

else
Compute wt , the weight of the � 2

3 |E|�th smallest element in E.
(ct , rt )← up_to_weight(wt , E, w, c)

if ct �b then
E← E − {e|w(e)�wt }
return (robustness_uniform(E, w, c, b))

else
Compute c̄, the upper median cost among the elements e ∈ E of weight w(e)�wt .
(c̃, w̃n)← up_to_rate (c̄, E, w, c)

if c̃�b then
E← E − {e|w(e)�w̃n and c(e)� c̄}
return (robustness_uniform(E, w, c, b))

else
(E, w, b)← contract_uniform (E, w, c, b, c̃, w̃n, c̄)

if b = 0 then
Let w∗B be the weight of a minimum weight base of U according to the increased
weights.
return (w∗B − wB )

else return (robustness_uniform(E, w, c, b)) end if
end if

end if
end if

Function contract_uniform identifies a set S∪T ⊆ E of size at least �|E|/3� formed by elements that will experience
exactly the same weight increases in the computation of FU(b). Instead of keeping track of the individual weight changes
of these elements, they are contracted to a single meta-element ê and the algorithm computes only the weight increases
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for ê. After the algorithm has computed the final weight increases, it is easy to expand the meta-elements to determine
the final weight for each element in E.

Algorithm contract_uniform(E, w, c, b, c̃, w̃n, c̄)

Let S = {e|w(e)�w̃n and c(e) < c̄}, and T = {e|w(e)�w̃n and c(e) = c̄}.
for each e ∈ S do w(e)← w̃n end for
b← b − c̃

for each e ∈ T do
(w(e), b)← (min{w̃n, w(e)+ b/c(e)}, max{0, b − (w̃n − w(e)) ∗ c(e)})
if b = 0 then exit the for-loop end if

end for
if b > 0 then

E← (E − S − T ) ∪ {ê}, where ê is meta-element with w(ê) = w̃n and c(ê) = c(S ∪ T ).
end if
return (E, w, b)

Observe that every call that algorithm robustness_uniform makes to contract_uniform is preceded by a call to
up_to_rate, which determines the cost c̃ of optimally increasing the weights of the elements in E to the point at
which the following weight increase would be over a set of rate at least c̄. Algorithm contract_uniform continues these
optimal weight increases by lifting to w̃n the weights of the elements in S and T . If the budget is exhausted while
performing these increases, then the algorithm stops since it has computed the weight function needed to determine
FU(b). Otherwise, the budget is decreased to account for the new weight increases.

If any budget remains after increasing the weights of the elements in S ∪ T , then all elements of weight at
most w̃n and cost at most c̄ are contracted. Note that these elements belong to the first set formed by elements of
weight w̃n that a canonical sequence of increases would select, and thus, by Property 5.1, they can be replaced by a
meta-element.

To illustrate how algorithm robustness_uniform works, consider the following example. Let U = (E, I, w, c) be a
uniform matroid of rank 4 with set E = {a, b, c, d, e, f, g}. The initial weights of the elements are 1, 1, 2, 3, 4, 5, and
6, respectively, and their costs are 1, 3, 5, 1, 3, 1, and 3. The value of wB is 1 + 1 + 2 + 3 = 7. We wish to evaluate
FU(9). The algorithm first computes wt = 4, and invokes routine up_to_weight. This routine returns (ct , rt ) = (4, 2).
The value of ct is the cost of increasing the weights of the elements to 4, 1, 2, 4, 4, 5, and 6, respectively; with these
weights the next set of smallest rate is {a, d} and it has rate rt = 2. Since ct < 9, robustness_uniform computes c̄ = 3,
and invokes routine up_to_rate. This routine returns (c̃, w̃n) = (6, 5). The value of c̃ is the cost of increasing the
weights of the elements to 5, 1, 2, 5, 4, 5, and 6. Since c̃ < 9, then contract_uniform is invoked, and it exhausts the
budget by increasing the weights of the elements to 5, 2, 2, 5, 4, 5, and 6. Since upon return from contract_uniform b

is zero, robustness_uniform outputs FU(9) = (2+ 2+ 4+ 5)− 7 = 6.

Lemma 5.3. Algorithm robustness_uniform computes FU(b), for any given b�0, in O(|E|) time.

Proof. Each call to algorithm robustness_uniform takes linear time, and, as we show below, reduces the size of E by
at least a fraction of one third. Therefore, the overall time complexity is linear on the number of elements.

In each recursive call, robustness_uniform invokes routine up_to_weight, which computes the weight increases of
canonical sequence of increases �(wt ). If the cost of these weight increases exceeds b, then all elements with weight at
least wt are discarded from E. There are at least � 1

3 |E|� of these elements, and so, in this case the size of E is reduced
to at most 
 2

3 |E|�.
If the cost of the weight increases is smaller than b, then robustness_uniform invokes up_to_rate to find the weight

increases defined by �̄(c̄). If the cost of these new increases surpasses the budget, then all elements of weight at most
w̃n and cost at least c̄ are discarded. Since w̃n �wt , this step discards at least � 1

3 |E|� elements from E. However, if
the cost of the last weight increases is smaller than b, then robustness_uniform invokes routine contract_uniform. This
routine either makes optimal weight increases that exhaust the budget, or it replaces all elements of weight at most w̃n

and cost at most c̄ by a meta-element. These elements represent at least one third of E. Note that if |E| < 4 the size of
E is still reduced by a fraction of at least one third, even when a meta-element is added to E. The reason for this is that
either � 2

3 |E|� rounds up (in the computation of wt ), or � 1
2� 2

3 |E|�� rounds up (in the computation of c̄). �
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5.2. Evaluating the robustness function of a partition matroid

We turn our attention now to the problem of evaluating in linear time FP (b) for a partition matroid P with � blocks,
and � > 1. This problem is more difficult than for the case when � = 1 since we have to determine simultaneously how
the weights of the elements change in all the blocks Ei . As for the case of � = 1, we compute FP (b) by a recursive
prune-and-search process that combines searches on weights with searches on costs. However, our new algorithm
reduces the size E by a fraction of only one tenth in each recursive call. This decrease in performance, compared to
robustness_uniform, is due to the additional difficulty that multiple blocks Ei impose on finding good probe values.
The algorithm uses an array upper of size �, and it stores in upper(i) an upper bound on the maximum weight that can
be assigned to any element in Ei . Each entry of upper is initialized to∞. Let wB be the weight of a minimum weight
base of P according to the initial weights. The algorithm is the following.

Algorithm robustness_partition(E, w, c, b, upper)
if |E| = 1 then

Let E = {e}. Set w(e)← w(e)+ b/c(e).
Let w∗B be the weight of a minimum weight base of P according to the increased weights.
return (w∗B − wB)

else
for i = 1, 2, . . . , � do

Compute wi , the weight of the � 4
5 |Ei |�th smallest element in Ei .

(ci, ri)← up_to_weight (wi, Ei, w, c)

end for
Compute r ′, the weighted median of the rates ri using, for each i, |Ei | as the weight for ri .
for i = 1, 2, . . . , � do (c′i , w′i )← up_to_rate (r ′, Ei, w, c) end for
if

∑�
i=1 c′i �b then

for i = 1, 2, . . . , � do
Ei ← Ei − {e|w(e)�w′i}
upper(i)← w′i

end for
return (robustness_partition(E, w, c, b, upper))

else
Let S = ∪{i|ri � r ′}{e|e ∈ Ei and w(e) < w′i}
Compute c̄, the cost of the � 3

4 |S|�th smallest cost element in S.
for i = 1, 2, . . . , � do (c̃i , w̃ni

)← up_to_rate (c̄, Ei, w, c) end for
if

∑�
i=1 c̃i �b then

for i = 1, 2, . . . , � do Ei ← Ei − {e|w(e)�w̃ni
and c(e)� c̄} end for

return (robustness_partition(E, w, c, b, upper))
else

(E, w, b)← contract_partition (E, w, c, b,
∑�

i=1 c̃i , {w̃ni
, . . . , w̃n�

}, c̄, upper)
if b = 0 then

Let w∗B be the weight of a minimum weight base of P according to the increased
weights.
return (w∗B − wB )

else return (robustness_uniform(E, w, c, b, upper)) end if
end if

end if
end if

Note the correspondence between the structure of robustness_uniform and the structure of robustness_partition.
The part of robustness_partition preceding the test “

∑�
i=1 c′i �b” is more complex than the corresponding part of

algorithm robustness_uniform. The reason is that robustness_partition has to consider all blocks Ei , and the weights
of the elements in all the blocks are not increased at the same rate. This makes the computation of good probe values
more difficult than for the case of a uniform matroid. Note also that the probe values wi and c̄ are different from
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the corresponding probe values chosen by robustness_uniform. These values were selected to ensure that each call to
robustness_partition decreases the size of E by a fixed fraction. Algorithm contract_partition is described below.

Algorithm contract_partition(E, w, c, b, c̃, {w̃n1 , . . . , w̃n�
}, c̄, upper)

Let Si = {e|e ∈ Ei, w(e)�w̃ni
and c(e) < c̄}, and

Ti = {e|e ∈ Ei, w(e) < w̃ni
and c(e) = c̄}, for all i = 1, 2, . . . , �.

for i = 1, 2, . . . , � do
Increase to w̃ni

the weight of every element in Si .
end for
b← b − c̃

for i = 1, 2, . . . , � do
if |Ei | > 1 then

for every e ∈ Ti do
(w(e), b)← (min{w̃ni

, w(e)+ b/c(e)}, max{0, b − (w̃ni
− w(e)) ∗ c(e)})

if b = 0 then exit the inner for-loop end if
end for
if b = 0 then exit the for-loop
else Ei ← (Ei − Si − Ti) ∪ {ê}, where meta-element ê has w(ê) = w̃ni

,
and c(ê) = c(Si ∪ Ti).

end if
else

Let Ei = {e}.
if c(e)� c̄ then

(w(e), b)← (min{upper(i), w(e)+ b/c(e)}, max{0, b − (upper(i)− w(e)) ∗ c(e)})
if b = 0 then exit the for-loop
else E← E − Ei end if

end if
end if

end for
return (E, w, b)

Algorithm contract_partition is similar to contract_uniform, but it has to deal with one situation that does not appear
for the case of uniform matroids. If any one of the sets Ei has only one element, then it cannot be further contracted. In
this case, contract_partition does the following. If the unique element e ∈ Ei has cost at most c̄, then contract_partition
increases its weight to upper(i) if the budget is large enough and then it discards block Ei . This can be done, since the
weight of e cannot be increased above upper(i), and when it reaches such weight robustness_partition does not have
to consider it any more. But, if the remaining budget is too small to perform the weight increase, then the weight of e

is increased only as much as the budget allows. Since the budget is exhausted, no more weight increases are possible.

Theorem 5.1. Given a partition matroid P = (E, I, w, c) and a positive budget b, the value of FP (b) can be computed
in O(|E|) time.

Proof. To show that the algorithm runs in O(|E|) time, it suffices to show that each iteration of the while-loop reduces
the size of E by at least 1

10 |E|. The value r ′ computed by robustness_partition is such that the weight increases defined
by �̄(r ′) do not affect the weights of at least 1

2 ∗ (1− 4
5 )|E| = 1

10 |E| elements of E. Hence, if the cost of these weight
increases exceeds b, robustness_partition discards those elements and reduces the size of E by at least � 1

10 |E|�. If the
cost of the weight increases is smaller than b, robustness_partition makes a test on c̄, the � 3

4 |S|� smallest element cost in
S. It is not difficult to see that |S|� 2

5 |E|. If the cost of the new weight increases is at least b, then robustness_partition
discards at least � 1

4 |S|��� 1
10 |E|� elements form E.

If
∑�

i=1 c̃i < b, then contract_partition contracts in each Ei all elements from S of cost at most c̄. Let Si = Ei ∩ S.
There is one situation in which the algorithm cannot contract the elements in Si of cost at most c̄. Suppose that set Si

has only two elements, one of cost at most c̄ and the other of cost larger than c̄, then contract_partition cannot reduce
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the size of Ei (since it would try to contract the element of cost at most c̄ to a meta-element). Since c̄ is the � 3
4 |S|�th

smallest element cost, then there are at most 
 1
4 |S|� elements of cost larger than c̄. Hence, there are at most 
 1

4 |S|� sets
Si of two elements for which the algorithm cannot contract their sizes as described above. These sets include at most

 1

2 |S|� elements. The other � 1
2 |S|� elements must belong to sets Sj that contract_partition contracts to at most half of

their sizes. Therefore, contract_partition contracts the size of E by at least � 1
4 |S|���|E|/10� elements. �
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