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a b s t r a c t

A systematic literature review was undertaken to analyse the linkages between different biodiversity
attributes and 11 ecosystem services. The majority of relationships between attributes and ecosystem
services cited in the 530 studies were positive. For example, the services of water quality regulation, water
flow regulation, mass flow regulation and landscape aesthetics were improved by increases in community
and habitat area. Functional traits, such as richness and diversity, also displayed a predominantly positive
relationship across the services, most commonly discussed for atmospheric regulation, pest regulation and
pollination. A number of studies also discussed a positive correlation with stand age, particularly for
atmospheric regulation. Species level traits were found to benefit a number of ecosystem services, with
species abundance being particularly important for pest regulation, pollination and recreation, and species
richness for timber production and freshwater fishing. Instances of biodiversity negatively affecting the
examined ecosystem services were few in number for all ecosystem services, except freshwater provision.
The review showed that ecosystem services are generated from numerous interactions occurring in complex
systems. However, improving understanding of at least some of the key relationships between biodiversity
and service provision will help guide effective management and protection strategies.
& 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/3.0/).

1. Introduction

The significance and value of ecosystem services for human well-
being is well known (e.g. Butler and Oluoch-Kosura, 2006; Costanza
et al., 1997; Daily, 1997; de Groot et al., 2002; Harrison et al., 2010).
Ecosystems provide four types of service: provisioning (e.g. food),
regulating (e.g. water quality regulation and pollination), cultural (e.g.
recreation) and supporting (e.g. nutrient cycling) (Millennium Eco-
system Assessment, MA, 2005). The importance of biodiversity in
underpinning the delivery of both ecosystem services and the
ecosystem processes that underlie them is well recognised (Díaz
et al., 2006; MA, 2005), and our understanding of the nature of the
biodiversity–ecosystem services relationship and the possible effects
of biodiversity loss on the delivery of ecosystem services is increasing
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(e.g. Balvanera et al., 2006; Cardinale et al., 2006). Consequently,
there is an increasing trend to integrate ecosystem service arguments
within the management plans and strategies of protected areas (e.g.
García-Mora and Montes, 2011), as well as the wider landscape (e.g.
The Scottish Land Use Strategy, Scottish Government, 2011). How-
ever, ecosystem service-related argumentation is not undisputed
(Schroẗer et al., 2014).

Early work on the biodiversity–ecosystem services relationship
explored the contribution of habitats to different ecosystem services
(Chan et al., 2006) and of individual species to the functional
structure of ecosystems, as well as the impact of interactions, both
between species, and between species and the environment, on
ecosystem function (Balvanera et al., 2005). The link between
ecosystem services and biodiversity has further been examined, not
only in terms of species, but also genotypes, populations, species
functional groups and traits in an ecosystem (Díaz et al., 2006).

Much recent work has focused on functional relationships
between biodiversity and ecosystem services. Functional diversity
is one of the most important biodiversity attributes affecting
ecosystem services by impacting the underlying ecosystem pro-
cesses (e.g. de Bello et al., 2010; Díaz et al., 2006). Research has
focused on single species (Luck et al., 2009) and groups of species
(Díaz et al., 2007; Hooper et al., 2005), in addition to a number of
broader scale syntheses (e.g. Conti and Diaz, 2013). Other studies
have tended to examine a small selection or individual ecosystem
services (Kremen, 2005; Luck et al., 2009; Seppelt et al., 2011),
with few spanning multiple ecosystems (Bastian, 2013; Lavorel
and Grigulis, 2012). Trait3 analysis (e.g. Balvanera et al., 2006; de
Bello et al., 2010; Díaz et al., 2006; Hooper et al., 2005; Lavorel and
Grigulis, 2012; Luck et al. 2012) has been shown to be useful in
identifying specific links between species, ecosystem processes
and ecosystem service delivery and can demonstrate the complex-
ity of processes and interactions which occur in ecosystems
(Fagan, et al., 2008; Gaston, 2000; Lavorel, 2013).

Population dynamics are another factor impacting ecosystem
functioning and service provision. This was first highlighted by
Luck et al. (2003), who proposed the concept of a Service
Providing Unit (SPU) to describe the ecological unit which pro-
vides the ecosystem service. Subsequently, Kremen (2005) sug-
gested identifying Ecosystem Service Providers (ESP) and the
concepts were combined into the SPU–ESP continuum by Luck
et al. (2009), showing how the ESP concept can be applied at
various levels, for example population, functional group and
community scales.

Knowledge on the links between biodiversity and the provision
of ecosystem services is key for furthering arguments for ecological
restoration (Rey Benayas et al., 2009; Bullock et al., 2011). It could
also contribute to the management of protected and restored areas
(Bastian, 2013) in order to meet the dual goal of optimising the
delivery of ecosystem services and supporting biodiversity conser-
vation (Palomo et al., 2014). However, despite a number of meta-
analyses, and advances in research and understanding of this
relationship (Balvanera et al., 2006; Bastian, 2013; Cardinale et al.,
2006, 2012; Hooper et al., 2005; Luck et al., 2009; Mace et al., 2012)
there remains much uncertainty over the effect of the complexity of
biodiversity components on the ecosystem functioning that under-
lies service provision (Balvanera et al., 2014; Schroẗer et al., 2014).
Current knowledge has been poorly integrated and few studies
incorporate a wide range of both biodiversity attributes and
ecosystem services. Also there are few studies using empirical
evidence to examine the role of biodiversity in providing ecosystem

services (Mertz et al., 2007), and the quantitative relationships
between components of biodiversity and ecosystem services are
still poorly understood (Carpenter et al., 2009; de Groot et al., 2010).

This review builds on current state-of-the-art concepts that link
ecosystem service provision with biodiversity, particularly on the
identification of ESPs. It examines the underpinning role of biodiver-
sity for a range of ecosystem services from the provisioning, regulating
and cultural categories (MA, 2005; CICES, Haines-Young and Potschin,
2013). We focus on the key biotic and abiotic attributes of individual
ESPs and evidence of their influence on the delivery of particular
services. We explore the direction (positive, negative or unclear) and
strength (from very weak to very strong) of this influence in order to
understand the multifaceted nature of the ESP-attributes-services
relationships and indicate future research challenges. Our overall
objective is to contribute to the understanding of the possible effects
of biodiversity on ecosystem services and human well-being using
network diagrams as an innovative approach to illustrate the complex-
ity of interconnections. This also improves the scientific knowledge
base allowing those biodiversity attributes that are crucial for the
delivery of ecosystem services to be more effectively targeted in
management plans. Importantly, unlike other similar studies, this
review also documents possible negative effects of biodiversity on
ecosystem service provision.

2. Material and methods

2.1. Data collection

Eleven ecosystem services were included in the review chosen
to represent the key groups of services from the MA and CICES
classifications (Table 1). In order to review and consolidate existing
research on the linkages between biodiversity and these 11
ecosystem services, a literature search was conducted between
July 2012 and August 2013 using Web of Science or Web of
Knowledge. The primary aim of focusing on peer-reviewed aca-
demic literature was to find the best available knowledge reported
by the scientific community. A systematic methodology was
adopted in order to ensure that a rigorous and repeatable method
was applied to each ecosystem service. The method consisted of
three stages: (i) the generation of keywords, (ii) a systematic
search, and (iii) extraction of the data.

Keywords were generated based on the results of a pilot test
(conducted from February to April 2012) which showed that
‘ecosystem services’ is a relatively new term and, hence, only
using this term in a literature search is likely to miss relevant
papers. Thus, keywords specific to each ecosystem service were
selected, accompanied by appropriate biodiversity terms which
could be related to the given ecosystem service. We included both
synonyms (i.e. the service) and antonyms (i.e. the disservice) in
the search terms to enable negative, as well as positive, impacts of
biodiversity on ecosystem service supply to be captured. Addi-
tional service-related terms were used if necessary to refine
results when large numbers of papers were found for the initial
search terms (see Online resources for a full list of search terms).

The objective was to find 50 relevant papers for each service in
order to have a wide range of relationships and studies. For many
ecosystem services, however, the number of relevant results using the
above methodology was too few. In these cases, additional intelligent
search approaches were utilised. These included: (i) searching the
reference lists of relevant articles for secondary references which may
be of interest (termed snowballing) and (ii) searching for papers that
have cited the relevant papers (termed reverse snowballing). In total,
50 papers were found for all services except timber production and
freshwater fishing, where only 35 and 45 papers could be found,
respectively, after applying all search approaches. This reflects the

3 Specific properties of species which define their ecological function and
govern their impact on ecosystem processes and services (De Bello et al., 2010; Diaz
and Cabido, 2001).
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limited number of studies that have examined how biodiversity
influences timber and fish production, despite the large amount of
literature on the impact of best management and/or harvesting
practices on wood yield/quality and the impact of fishing on fish
attributes.

Data from the 530 papers were extracted into a database, with
parameters covering: (i) the ecosystem service; (ii) the reference;
(iii) the location of the study; (iv) the spatial scale; (v) the
temporal scale; (vi) the ESP4, (vii) the important biotic attributes
of the ESP; and (viii) abiotic factors which affect service delivery.
ESPs were categorised into seven groups: single population; two
or more populations; single functional group; two or more
functional groups; dominant community; single community/habi-
tat; and two or more communities/habitats. The biotic and abiotic
attributes were determined from the pilot test which identified
those attributes cited as being important within a selection of
papers across the 11 ecosystem services. It also took into account
biodiversity-related indices from other studies (e.g. Feerst, 2006;
Feerst et al., 2010; Hooper et al., 2005). The final list of biodiversity
attributes included species attributes (presence of a specific
species type, species abundance, species richness, species popula-
tion diversity, species size or weight, population growth rate,
mortality rate, natality rate, life span/longevity); functional group
attributes (presence of a specific functional group type, abundance
of a specific functional group, functional richness, functional
diversity, flower-visiting behavioural traits, predator behavioural
traits); and community/habitat attributes (presence of a specific
community/habitat type, community/habitat area, community/
habitat structure, primary productivity, aboveground biomass,
belowground biomass, sapwood amount, stem density, wood
density, successional stage, habitat/community/stand age, litter/
crop residue quality, leaf N content). The final list of abiotic factors
included temperature, precipitation, evaporation, wind, snow, soil,

geology, water availability, water quality, nutrient availability (soil
minerals) and slope (angle, aspect).

The direction of each relationship between the biodiversity
attributes of the ESP and the ecosystem service was also classified
as being predominantly positive, negative or unclear (i.e. both
positive and negative, or authors unsure of the relationship).
Where quantitative information on the relationship was provided
in the literature, this was also extracted into the database.
Furthermore, it was noted whether the paper discussed the ESP
as being an ecosystem service antagoniser (ESA5), and where
biodiversity could also have a negative effect on the ecosystem
service concerned. Finally, all papers were evaluated for the
strength of the presented findings. This was based on five ques-
tions: (i) is the evidence qualitative, quantitative or both?, (ii) is
the evidence based on single or multiple observations?, (iii) is
the evidence direct or indirect (i.e. through a surrogate)?, (iv) is
the link explicitly mentioned or only inferred, and (v) is the
evidence based on empirical data, modelled information, or both?
Responses to these questions were then combined with equal
weighting into a five class qualitative scale ranging from 1 (very
weak) to 5 (very strong).

2.2. Data analysis

The collected data were compiled and three variables summar-
ising the linkages between biodiversity attributes and each eco-
system service were calculated: (i) the level of support given – this
reflects the number of papers providing the same evidence for a
particular linkage; (ii) the strength of evidence – an average
ranking of the strength of evidence for the particular linkage
ranging from 1 (very weak) to 5 (very strong); and (iii) the
direction of the evidence for the relationship – predominantly

Table 1
The 11 ecosystem services included in the literature review and their association with the MA and CICES classifications.

Ecosystem service MA classification CICES division/group

Provisioning services:
Timber production Fibre (timber and wood fuel) Materials/biomass (timber)
Freshwater fishing Food (capture fisheries and

aquaculture)
Nutrition/biomass (freshwater fish and marine fish)

Freshwater provision (quantity) Freshwater Nutrition/water

Regulating services:
Water purification (quality) Water purification/waste

treatment
Mediation of waste, toxics and other nuisances/mediation by biotic and ecosystems

Water flow regulation (flood
protection)

Natural hazard regulation Mediation of flows/liquid flows

Mass flow regulation (erosion
protection)

Erosion regulation Mediation of flows/mass flows

Atmospheric regulation (carbon
sequestration)

Climate regulation Maintenance of physical, chemical, biological conditions/atmospheric composition and climate
regulation

Pest regulation Biological control Maintenance of physical, chemical, biological conditions/pest and disease control
Pollination Pollination Maintenance of physical, chemical, biological conditions/lifecycle maintenance, habitat and gene

pool protection (pollination)

Cultural services:
Recreation (species-based) Recreation and ecotourism Physical and intellectual interactions with biota, ecosystems, and land-/seascapes/physical and

experiential interactions
Landscape aesthetics Aesthetic values Physical and intellectual interactions with biota, ecosystems, and land-/seascapes/intellectual and

representative interactions (aesthetic)

4 ESPs are defined as the component populations, functional groups or
communities that contribute to ecosystem service provision (see Harrington et
al., 2010 for a more detailed definition).

5 ESAs are defined as the populations, functional groups or communities which
disrupt the provision of other ecosystem services and the functional relationships
between them and ESPs (see Harrington et al., 2010 for a more detailed definition).
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positive, negative, or unclear (i.e. uncertain). The latter was
calculated as follows:

The parameter “strength of evidence for positive or negative
relationships” was chosen rather than raw counts of direction to
ensure that those records offering weak evidence had a smaller
influence on the overall direction than those identified as having
strong evidence. Network diagrams were then created based on
the above variables using the Pajek software (http://pajek.imfm.si/
doku.php) to explore the linkages between biotic attributes and
the individual ecosystem services. Linkages between abiotic attri-
butes and each ecosystem service were also incorporated into the
networks based on the number of papers citing a particular
linkage.

3. Results

3.1. Linkages between ESPs and ecosystem services

The 11 ecosystem services investigated were found to be
underpinned by different ESPs (Table 2), with certain services
tending to be linked with certain ESPs. The services freshwater
provision, water purification, water flow regulation, mass flow
regulation, atmospheric regulation and landscape aesthetics were
discussed in at least 70% of papers as being facilitated by a
provider at the community level, such as an entire forest, grass-
land, prairie wetland, high-country landscape or hay meadow. In
contrast, the provisioning services of timber production and
freshwater fishing were most often facilitated by two or more
specific species populations, such as particular species of fish for
freshwater fishing or certain tree species for timber production. A
particular functional group was often the provider for the regulat-
ing services of pollination (in 70% of papers, e.g. flower visiting
insects) and pest control (in 30% of papers, e.g. parasitoids). Water
flow regulation was the only ecosystem service in this review for
which a dominant community was identified as the ESP, although
this was mentioned in only two papers.

In general, regulating services were associated with many
different ESPs covering the species, functional group and commu-
nity levels (Table 2). The provisioning services were facilitated by
ESPs covering two levels: the species and community levels for
freshwater fishing and freshwater provision, and the species and
functional group levels for timber production. Not surprisingly, the
cultural services were almost exclusively provided at one level: the
species level for species-based recreation and the community level
for landscape aesthetics.

3.2. Linkages between biodiversity attributes and ecosystem services

A large range of biodiversity attributes (24 out of the 28 listed
in Section 2.1) were cited in the papers reviewed as being
important for the provision of one or more of the 11 ecosystem
services (Fig. 1). The most common were community/habitat area
(31% of papers), species abundance, (27%), species richness (25%)
and community/habitat structure (24%). Second to these were
species size or weight (12% of papers) and community/habitat age
(10%). Biomass, including above- and belowground components,

and litter were also mentioned in a number of papers, as was
species and functional diversity. In contrast, attributes such as

wood density, sapwood amount and leaf N content were men-
tioned in very few papers (less than 2%).

Table 3 provides a breakdown of the important biodiversity
attributes by ecosystem service. Timber production and freshwater
fishing were most frequently linked to species richness and
species abundance, although the latter was also highly related to
species size/weight and to a lesser extent to community/habitat
area. Pollination was also predominately linked to species richness
and abundance, as well as flower-visiting behavioural traits.
Species-based recreation was the only other ecosystem service
that was mainly linked with species level attributes, with species
abundance being the most frequently cited followed by species
richness, species size/weight and species diversity.

Freshwater provision, water purification and water flow reg-
ulation were most frequently linked with community/habitat area,
although community/habitat structure and age were also cited
quite often. Landscape aesthetics was also predominantly asso-
ciated with community level attributes, specifically community/
habitat structure and, to a lesser extent, community/habitat area.
The services of mass flow regulation, atmospheric regulation and
pest regulation show more varied links across different biodiver-
sity attributes. All show the greatest percentage of citations with
community level attributes: above- and belowground biomass and
community/habitat area and structure for mass flow regulation;
community/habitat age and structure and aboveground biomass
for atmospheric regulation; and community/habitat structure and
area for pest regulation. However, linkages with species level
attributes were also found for all three services and with func-
tional group attributes for pest regulation (particularly, functional
richness and predator behavioural traits).

Predominant direction¼∑
Strength of evidence f or

all positive relationships

 !
�∑

Strength of evidence f or

all negative relationships

 !

Total number of papers showing evidence of relationship

Table 2
Percentage of papers citing a linkage between a specific ESP and ecosystem service.
The seven ESP classes are: SP1 – single population; SP2þ – two or more
populations; FG1 – single functional group; FG2þ – two or more functional
groups; DC – dominant community; CH1 – single community/habitat; and CH2þ
– two or more communities/habitats. The ESP cited by the greatest percentage of
papers are indicated as bold values for each ecosystem service.

Ecosystem service SP1 SP2þ FG1 FG2þ DC CH1 CH2þ

Provisioning services:
Timber production 0 80 0 20 0 0 0
Freshwater fishing 27 69 0 0 0 4 0
Freshwater provision 2 8 0 0 0 42 48

Regulating services:
Water purification 6 10 0 2 0 54 28
Water flow regulation (flood
protection)

8 20 0 0 4 50 18

Mass flow regulation (erosion
protection)

4 10 2 10 0 46 28

Atmospheric regulation (carbon
sequestration)

6 4 2 4 0 56 28

Pest regulation (biological control) 20 12 30 14 0 20 4
Pollination 6 16 70 6 0 0 2

Cultural services:
Recreation (species-based) 30 66 0 0 0 4 0
Landscape aesthetics 0 0 0 0 0 84 16
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3.3. Network analysis of linkages between ecosystem services, ESPs,
and biotic and abiotic attributes

Specific relationships between ecosystem services, ESPs and
their biodiversity attributes have been analysed using network
diagrams (see Figs. 2–4 and Online resources). In each network the
node in the centre is the ecosystem service, the first tier of nodes
linked to the ecosystem service represents the ESP, and the second
tier of nodes represents the linkages between the particular ESP
and its biotic and abiotic attributes. The width of the connecting
lines reflects the number of records showing that linkage, while
the colour of the lines reflects the direction of the evidence, i.e.
predominantly positive, negative or unclear. Note that information
on the direction of relationships was only captured for the
biodiversity attributes and not for the ESPs or abiotic factors.

3.3.1. Positive relationships
The majority of relationships between biodiversity attributes

and ecosystem services had a dominant positive direction.
Figs. 2 and 3 illustrate different patterns of linkages for atmo-
spheric regulation and pest regulation, respectively. For atmo-
spheric regulation (Fig. 2), the majority of papers identify the ESP
to be a single or two or more communities. Furthermore, there are
positive relationships from these ESPs to many biodiversity attri-
butes, but those with community/habitat structure, age and
aboveground biomass are based on the largest number of papers
(as also seen in Table 3). For pest regulation (Fig. 3), the pattern of
linkages is more distributed with ESPs identified as functional
groups, single and multiple species populations and communities/
habitats. Most relationships are positive between these ESPs and
the biodiversity attributes. Those most cited from all ESPs are
community/habitat structure and area, species abundance and
richness, functional richness and predator behavioural traits.

Examining the networks for all ecosystem services (see Online
resources) shows that species level attributes, such as abundance,
were found to benefit species-based recreation, pollination and pest
regulation. For example, a higher number of insectivorous birds had a
positive effect on pest control (Koh, 2008). Species richness was

particularly important for timber production and freshwater fishing,
where polycultures were found to be more productive than mono-
cultures (e.g. Erskine et al., 2006 for timber production; and
Papoutsoglou et al., 1992 for freshwater fishing). However, it should
be noted that although the predominant direction for timber produc-
tion was positive, eight papers cited a negative relationship with
species richness compared to 19 which reported a positive relation-
ship. The size and weight of species is another attribute which
positively affected service provision, including freshwater fishing,
atmospheric regulation and species-based recreation. In forest envir-
onments, it was found that larger trees, such as those with a diameter
at breast height (DBH) Z10cm account for over 90% of the above-
ground carbon stocks in forest and agroforest habitats in eastern
Panama (Kirby and Potvin, 2007).

Functional group attributes, such as functional richness and
diversity, also displayed a predominantly positive relationship
across the services, most commonly discussed for atmospheric
regulation, pest regulation and pollination. For the latter two
services, the benefits of behavioural traits such as flower visiting
behaviour for pollination (Biesmeijer et al., 2006; Hoehn et al.,
2008) and natural pest control (Drapela et al., 2011; Lee and
McCracken, 2005) were also noted.

Community level attributes, such as community/habitat area,
were also found to benefit many ecosystem services, including
water purification, water flow regulation, mass flow regulation
and landscape aesthetics. Water flow regulation was significantly
improved as a result of increased forest area through reducing
runoff and providing greater water storage (Farley et al., 2005;
Thomas and Nisbet, 2006). A number of papers also discussed a
positive relationship with stand age. For atmospheric regulation,
larger carbon storage was found in older tree species due to a
combination of (a) the time period over which they have seques-
tered carbon, and (b) the result of tree size increasing with age (e.
g. Hantanaka et al., 2011; Keeton et al., 2010; Kirby and Potvin,
2007; Zhao et al., 2010). Numerous papers cited the importance of
biomass for carbon sequestration. For example, higher levels of
aboveground biomass were linked to increased carbon storage in
an alpine meadow (Sun et al., 2011) and a larger green biomass
was found to increase soil nitrogen content, in turn increasing soil
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Fig. 1. Number of papers citing a linkage between each biodiversity attribute and the 11 ecosystem services investigated. Bars are coded as: species level attributes –

horizontal stripes (blue in web version); functional group level attributes – dots (red in web version); and community or habitat level attributes – diagonal stripes (green in
web version).
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Table 3
Percentage of papers citing a linkage between a specific biodiversity attribute and ecosystem service. The biodiversity attributes cited by the greatest percentage of papers are indicated as bold values for each ecosystem service.
Note that papers may cite more than one biodiversity attribute linked to an ecosystem service.

Ecosystem service Species-level attributes Functional group attributes

Species
abundance

Species
richness

Species
diversity

Species size/
weight

Population
growth rate

Mortality
rate

Natality
rate

Life span/
longevity

Functional
richness

Functional
diversity

Behavioural traits
(pollination)

Behavioural traits
(biocontrol)

Provisioning services:
Timber production 29 89 3 3 0 0 0 0 6 9 0 0
Freshwater fishing 64 29 2 60 4 11 0 7 0 0 0 0
Freshwater provision 0 2 2 2 4 0 0 0 0 0 0 0

Regulating services:
Water purification 2 12 4 4 2 0 0 0 2 0 0 0
Water flow regulation 4 0 0 10 0 0 0 0 0 0 0 0
Mass flow regulation 10 14 2 6 0 0 0 0 0 4 0 0
Atmospheric regulation 4 16 16 14 2 12 0 0 0 10 0 0
Pest regulation 40 18 8 6 6 0 4 0 16 6 0 14
Pollination 70 80 2 2 0 0 0 0 4 6 22 0

Cultural services:
Recreation (species) 72 34 20 30 0 2 4 0 4 8 2 0
Landscape aesthetics 2 6 0 0 0 0 0 0 0 0 0 0

Ecosystem
service

Community attributes

Community/
habitat area

Community/
habitat
structure

Primary
production

Aboveground
biomass

Belowground
biomass

Sapwood
amount

Stem
density

Wood
density

Successional
stage

Community/habitat/
stand age

Litter/crop residue
quality

Leaf N
content

Provisioning services:
Timber production 0 3 3 3 0 0 9 0 6 0 0 9
Freshwater fishing 22 4 13 13 0 0 0 0 0 2 0 0
Freshwater provision 56 12 2 2 6 4 14 0 0 34 0 0

Regulating services:
Water purification 62 16 0 6 2 0 4 0 0 6 2 0
Water flow regulation 78 28 0 2 2 0 2 0 4 26 6 0
Mass flow regulation 26 22 0 26 28 0 4 0 10 2 8 0
Atmospheric regulation 8 28 6 26 16 0 0 4 6 30 12 0
Pest regulation 40 52 6 10 0 0 2 0 2 2 10 2
Pollination 4 6 0 0 0 0 0 0 0 0 0 0

Cultural services:
Recreation (species) 4 2 0 0 0 0 0 0 0 0 0 0
Landscape aesthetics 34 86 0 0 0 0 0 0 2 0 0 0
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carbon, in sub-alpine grasslands (Lavorel and Grigulis, 2012).
Landscape diversity (or complexity) was also found to benefit
landscape aesthetics. For example, van den Berg et al. (1998) found
that beauty ratings were positively related with perceived com-
plexity in The Netherlands, whilst Yao et al. (2012) reported that
perceived visual quality was positively influenced by the variety of
vegetation in China.

3.3.2. Negative relationships
In contrast to the networks for atmospheric regulation (Fig. 2)

and pest regulation (Fig. 3), as well as the networks for all other
ecosystem services (see Online resources), the network for fresh-
water provision (Fig. 4) shows predominantly negative relation-
ships between the main ESPs (a single or two or more
communities) and different biodiversity attributes. In general it
was found that increases in community/habitat area, structure,
stem density, aboveground biomass and age increased water
consumption and, hence, reduced the provision of this ecosystem
service (e.g. Bren and Hopmans, 2007; Farley et al., 2005;
Petheram et al., 2002; Zou et al., 2008). For example, increases
in afforestation were associated with an average water yield
reduction (e.g. Rey Benayas et al., 2007; Sun et al., 2006), as
demonstrated by Buytaert et al. (2007) where afforestation of
natural grasslands with Pinus patula decreased base flow and
reduced the water yield by about 50% in a study site on the
Andean highlands of Ecuador. Furthermore, in a study of a grass-
land catchment afforested with Eucalyptus grandis, a significant

reduction in streamflow was observed with the stream becoming
completely dry after a period of 9 years (Scott and Lesch, 1997).

Negative relationships between biodiversity attributes and other
ecosystem services are apparent in the networks, but these constitute
only a small part of the overall linkages and are generally based on
fewer papers than the positive relationships. Such relationships were
found with mortality rate and species diversity. For example, atmo-
spheric regulation (Fig. 2) was reduced in grassland communities due
to increased mortality of root and rhizome tissues from grazing
(Klumpp et al., 2009). Not surprisingly, mortality rate was also found
to negatively affect species-based recreation and freshwater fishing by
lowering fish stocks (e.g. Lorenzen, 2001). In addition, biodiversity was
found to reduce pest regulation in a number of papers (Fig. 3). Reasons
cited for this were that (a) in species rich systems, alternative prey can
be used as food for predators or parasitoids, decreasing the suppres-
sion of pest species (Oelbermann and Scheu, 2009), and (b) that some
predators can either become prey themselves (Xu et al., 2011) or
protect pests (Mody et al., 2011); both of which decrease the
effectiveness of pest control. Note that these negative relationships
were mainly found with community/habitat area and structure, but
they are not visible in the network for pest regulation (Fig. 3) because
a much greater proportion of papers included evidence of positive
relationships with the same biodiversity attributes, resulting in a
dominant positive direction.

Negative impacts on ecosystem service provision often
involved invasive species. For example, rapid growth rates and
extensive root systems of species such as Tamarisk and Kandelia
candel were found to increase sedimentation rates, raising surface
water elevation and increasing the likelihood of flooding (Foote et

Fig. 2. Network diagram showing the linkages between biotic and abiotic (AF) attributes and atmospheric regulation via various ESPs. The width of the lines reflects the
number of papers showing that linkage. The direction of the evidence is indicated by a (þ) for predominantly positive relationships (green lines in web version) and a (�) for
predominantly negative relationships (red lines in web version) next to the biodiversity attribute. If no direction is indicated the evidence is unclear. The depth of the colour
is used to differentiate the strength of the evidence with lighter shades reflecting weaker positive and negative relationships, and darker shades reflecting stronger ones.
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al., 1996; Lee and Shih, 2004; Zavaleta, 2000). Hence, increases in
the area, size and abundance of habitats containing these species
negatively affected water flow regulation (Erskine and Webb,
2003). Several studies also reported invasive species antagonising
carbon storage and, thus, affecting the service of atmospheric
regulation. This was found in forests as a result of bark beetle (Ips
typographus L.) induced damages (Seidl et al., 2008) and also in
Californian grasslands where non-native species, such as Avena
barbata, were invading native grasses (Koteen et al., 2011). In
addition, high densities of the invasive plant dandelion (Taraxacum
officinale) in the Chilean Andes were found to reduce pollination
(Munoz and Cavieres, 2008). Furthermore, the introduction of
alien fish species in Mediterranean freshwaters was found to
negatively affect native fish populations due to competition for
resources and habitat degradation (Hermoso et al., 2011).

3.3.3. Unclear or unknown relationships
The review found that the relationship between biodiversity

attributes and ecosystem service provision is not always simple
(i.e. predominantly positive or negative). Hence, there were
instances where the relationship between certain attributes and
a given ecosystem service was classified as unclear. This could
occur due to the existence of a threshold after which the direction
of the relationship with the biodiversity attribute changed, such as
was reported in 34% of papers for the effect of species abundance
on freshwater fishing. Often a higher abundance of fish species
increased the provision of this service, however, once a certain
level or ecological carrying capacity was breached, fish yield was
found to decrease (e.g. De Silva et al., 1992; Hasan and
Middendorp, 1998; Lorenzen, 1995; Smith et al., 2012). A similar

effect was observed in a study of mass flow regulation by
Cammeraat et al. (2005) in which root systems of early succes-
sional vegetation on steep slopes were associated with increased
erosion, but this effect was reversed after a period of 40 years
when later successional plant communities with different root
systems had established.

Unclear relationships may also result from conflicting evidence
both within and between papers. This was found for two papers
considering linkages between species diversity and atmospheric
regulation (e.g. Potvin et al., 2011; Sharma et al., 2010) as is
apparent from the network shown in Fig. 2, where this biodiver-
sity attribute has a positive relationship with a single community
ESP and a negative relationship when two or more communities
were identified as the ESP. Interactions between species can also
lead to unclear relationships. For example, bees, particularly
managed honey bees, can have indirect negative effects on
pollination services by competing with wild pollinator species
for flower resources and reducing flower visitations by the latter
(Allsopp et al., 2008; Shavit et al., 2009). This led to 14% and 10% of
relationships for pollination with species abundance and species
richness, respectively, being defined as unclear. The effect of
community/habitat structure on pest regulation was also unclear
in 18% of papers. For example, Bianchi et al. (2010) found that
dispersal and gathering behaviour of predator groups influenced
their performance, although this was in turn influenced by land-
scape structure.

3.3.4. Abiotic factors
The influence of abiotic factors, in addition to biotic attributes,

on ecosystem service provision was also considered in our review

Fig. 3. Network diagram showing the links between biotic and abiotic (AF) attributes and pest regulation via various ESPs. The width of the lines reflects the number of
papers showing that linkage. The direction of the evidence is indicated by a (þ) for predominantly positive relationships (green lines in web version) and a (�) for
predominantly negative relationships (red in web version) next to the biodiversity attribute. If no direction is indicated the evidence is unclear. The depth of the colour is
used to differentiate the strength of the evidence with lighter shades reflecting weaker positive and negative relationships, and darker shades reflecting stronger ones.
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and integrated into the network diagrams (Figs. 2–4). Although the
search strategy was directed towards literature focusing on biotic
attributes affecting the ecosystem services, 22% of papers specifi-
cally mentioned a link between an abiotic factor and service
delivery. They are an integral part of the ESP (Harrington et al.,
2010) and it is hardly surprising that climatic parameters such as
temperature and precipitation were commonly cited, particularly
for the services of atmospheric regulation, mass flow regulation,
water flow regulation, water purification and freshwater provision,
where these abiotic parameters often have direct, clearly obser-
vable influences. Further abiotic factors that were identified in
greater than 10% of papers for at least one ecosystem service were
soil properties such as porosity (cited across many services), water
quality and nutrient availability (particularly cited for freshwater
fishing), and slope (particularly cited for mass flow regulation).

4. Discussion and conclusions

Previous studies have provided valuable information on the
role of biodiversity in ecosystem service delivery from a theore-
tical perspective (Mace et al., 2012), explored the links between
functional traits and ecosystem services (de Bello et al., 2010) or
examined how biodiversity influences the functioning of ecosys-
tems and, thus, their ability to provide ecosystem services
(Cardinale et al., 2012). In this study we have gone a step further
to build up the scientific knowledge base on ESPs, their biodiver-
sity attributes, the direction and strength of evidence for these
relationships, the influence of abiotic factors, and the visualisation
of the linkages using network analysis. The results show an
intricate array of linkages between biodiversity attributes related
to ESPs and ecosystem services. Overall, our results add weight to

the emerging realisation that the relationships between biodiver-
sity and the provision of ecosystem services are highly complex
and involve many uncertainties (Balvanera et al., 2014).

The detailed networks for each of the selected ecosystem services
demonstrate particular hierarchies and the immense complexities of
the relationships between biodiversity and service provision. Never-
theless, some dominant trends emerge. Five biodiversity attributes
stand out as being particularly important with each being cited in
over 50% of papers for at least one ecosystem service. These are
species abundance (freshwater fishing, pollination, species-based
recreation), species richness (timber production, pollination), species
size/weight (freshwater fishing), community/habitat area (freshwater
provision, water purification, water flow regulation) and community/
habitat structure (pest regulation, landscape aesthetics). Three
further biodiversity attributes are notable, being reported in between
25 and 50% of papers for at least one ecosystem service: community/
habitat age (freshwater provision, atmospheric regulation, water flow
regulation), and above- and belowground biomass (mass flow
regulation and atmospheric regulation). These dominant attributes
tend to be at the species and community levels, but functional group
attributes were also frequently cited as being important for pollina-
tion and pest regulation (in 14 to 22% of papers). Some of these
relationships may appear to be commonplace or a matter of trivial
logic, but we believe that this is the first time that such linkages have
been clearly documented in a comparative context.

Although it may be tempting to consider only the “simpler” pattern
of thicker lines, representing the most often cited links in the network
diagrams, it is the inclusion of the less frequently cited linkages of
thinner lines, which may be functionally just as important, that reveals
the full degree of interdependence and complexity across organisa-
tional levels. A summary of the linkages between broad categories of
biodiversity attributes, ESPs and ecosystem services for all the services

Fig. 4. Network diagram showing the linkages between biotic and abiotic (AF) attributes and freshwater provision via various ESPs. The direction of the evidence is indicated
by a (þ) for predominantly positive relationships (green lines in web version) and a (�) for predominantly negative relationships (red lines in web version) next to the
biodiversity attributes. If no direction is indicated the evidence is unclear. The depth of the colour is used to differentiate the strength of the evidence with lighter shades
reflecting weaker positive and negative relationships, and darker shades reflecting stronger ones.
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included in this review is provided in Fig. 5. This emphasises the range
of organisational levels involved in the overall relationship between
biodiversity and ecosystem services with each service being linked to a
number of ESPs and biodiversity attributes that together span multiple
spatial scales. The attributes identified at a particular organisational
level can be of importance to ESPs operating at different levels of
organisation. For example, an attribute of a species population such as
“abundance of individuals” can have important links to ESPs that are
defined at the functional group level (e.g. pollinators) or at entire
community levels (e.g. atmospheric regulation). Similarly, functional
group or community level attributes (e.g. functional richness, com-
munity/habitat area) can be important for ESPs that work on one or
more species' population levels. Note that it is equally valid to view
these links from the opposite direction, so that it may be said that ESPs
operating at any particular scale draw upon biodiversity attributes that
are characteristic of a variety of different organisational levels. The
important point is that there is an interdependence between ESPs and
their attributes that feeds the delivery of the different ecosystem
services via a very complex network that is a consequence of the range
and variety of linkages within the detailed networks associated with
the single services (Figs. 2–4). This is supported by the literature
review of de Bello et al. (2010) who provides a similar diagram to Fig. 5
highlighting the multiple associations between traits and ecosystem
services across different organisational levels.

In addition to identifying the linkages between biodiversity
attributes and ecosystem services, the direction of the relationship
(positive, negative or unclear) was captured wherever possible (as
summarised in Table 4 for relationships cited in at least 10% of
papers). This confirms the strong evidence base supporting a
positive relationship between community/habitat area and water
purification and water flow regulation, between community/
habitat structure and landscape aesthetics, and between species
richness and pollination. It also shows that considerable uncer-
tainties still exist for some relationships with evidence being

spread across different attributes, or evidence being mixed (i.e.
showing both positive and negative trends). This is supported by
Cardinale et al. (2012) who also found that evidence for effects of
biodiversity on ecosystem services was often mixed. In their
review of relationships between different diversity levels (species,
genetic and trait) and a range of provisioning and regulating
ecosystem services, positive trends were found for wood, fisheries,
carbon storage, pollination and freshwater purification and nega-
tive trends for pest control. The results are not directly comparable
with our study, but together they considerably increase the
evidence base and highlight gaps in knowledge.

Although attention is usually focussed on the positive linkages,
and these dominate in the present literature review (Table 4), the
negative relations between biodiversity and ecosystem service provi-
sion are also very important to the overall dynamics. The compo-
nents of biodiversity responsible, the ESAs, can be defined at any
level and may have direct or indirect disruptive effects on service
provision (Harrington et al., 2010). Importantly, what is a provider for
one service (i.e. an ESP) can at the same time act as an ESA for other
services. For example, many links between biodiversity attributes
and the provision of freshwater were predominantly negative (Fig. 4)
because vegetation parameters such as increased stem density,
biomass and age, particularly in relation to trees, have a direct
negative effect by sucking water out of the system. However, these
same vegetation attributes may be important for the provision of
many other services not considered in these studies, such as atmo-
spheric regulation or landscape aesthetics.

We also found that regulating services were often associated with
more ESPs and biodiversity attributes than other categories of ecosys-
tem services as shown in Tables 2 and 3 (based on the 11 services
investigated in this study). This is supported by analysis of the network
diagrams which shows that the linkages were generally more complex
and branched (i.e. each node was associated with a greater number of
connections) for regulating services (as shown in Figs. 2 and 3 for

Ecosystem Service ESP
Important biotic 

attributes

Atmospheric regulation

Water flow regulation

Pollination

Water purification

Species based recreation

Landscape aesthetics

Timber production

Freshwater provision

Mass flow regulation

Pest regulation

Freshwater fishing

Species level

Functional group 
level

Community or 
habitat level

Biomass

Single species population

Two or more specific 
species populations

Single functional group

Single community or 
habitat

Two or more communities 
or habitats

Dominant community

Behavioural traits

Two or more functional 
groups

Fig. 5. Linkages between broad groups of biodiversity attributes, ESPs and ecosystem services for the 11 ecosystem services included in the literature review. Species level
attributes include species richness, diversity, abundance, size and weight; functional group level attributes include functional diversity and functional richness; community
or habitat level attributes include community/habitat area, age, structure and successional stage; behavioural traits include flower visiting behaviour and biocontrol; and
biomass attributes include above and belowground biomass and litter or crop residue. The thickness of the connecting lines reflects the number of papers providing evidence
for that linkage equally divided into three categories with the thickest lines representing the most frequently cited linkages.
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atmospheric regulation and pest regulation) compared to provisioning
services (as shown in Fig. 4 for freshwater provision). This stresses the
significant role that biodiversity plays as a regulator of ecosystem
processes (Mace et al., 2012). It also highlights the importance of
further research to understand how different services interact with
each other and the biodiversity attributes that underpin them, as the
condition of regulating services (often referred to as intermediate
services by some authors; e.g. Fisher et al., 2009) can be critical in
mediating the delivery of other services.

Our review focused on a sample of ecosystem services across
the different service categories and did not consider interrelation-
ships between services. Information on such aspects could be
extracted from the papers which emerged from this review, but a
different approach specifically focused on assessing synergies and
trade-offs between ecosystem services and their relationship to
the underlying biodiversity may reveal new insights. Further
research to expand the search to cover more services and to
explore how the linkages identified differ by ecosystems or
biogeographical region would also be useful for targeting the
management of biodiversity and service provision. The complex
relationships we have reported here are based on only the
frequencies of citation in the literature, which is not necessarily
the same as functional importance. Nevertheless, the results could
be used to guide which biodiversity attributes should be the focus
of future research to advance understanding of the functional
importance of biodiversity for ecosystem service supply. More
specifically, additional research is needed to better understand the
linkages represented by the thin lines in the networks – the
linkages exist, but how strong are their functional roles in joining
the different aspects of biodiversity with the provision of ecosys-
tem services in the amounts required by beneficiaries?

Our review focuses on the links between the biophysical
elements of biodiversity and ecosystem services. However, to
support management and protection strategies, future research
should also take account of effects of socio-economic factors and
land use decisions on different components of biodiversity and, as
a result, ecosystem service delivery. Incorporating traditional
conservation strategies for species and habitat protection within
the broader context of social-ecological systems and ecosystem
service delivery can lead to added benefits for biodiversity through
closer integration of conservation policy with policies in other
sectors (Haslett et al., 2010). This approach usefully extends
conservation effort beyond the borders of protected areas, to
encompass many species with presently widespread distributions
as well as other aspects of biodiversity occurring in non-protected
areas. But the social-ecological system approach also has the
capacity to considerably improve conservation management effec-
tiveness within protected areas (Palomo et al., 2014). Biodiversity
is not (just) a good to be conserved for its intrinsic value, but has a
critical role in ecosystem processes (Mace et al., 2012) that provide
essential services to humans (Cardinale et al., 2012). Improving
understanding of when the goals of biodiversity conservation and
ecosystem service maintenance are compatible or interdependent
(Balvanera et al., 2014) requires a strong knowledge base on
biodiversity–ecosystem service linkages within different socio-
ecological systems. Further expansion of this knowledge base
through closer examination of the less well studied relationships
depicted in this review may help to reveal additional or new
arguments for the need to conserve biodiversity in all its guises.
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