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© 2009 Elsevier B.V. All rights reserved.

1. Introduction

Let K be a knot in a homology 3-sphere and E K the complement of an open tubular neighborhood of K . We denote
by K (p/q) the result of p/q-surgery along K for an irreducible fraction p/q. The aim of the paper is to give a necessary
condition for K (p/q) to be a certain closed 3-manifold, in particular a Seifert manifold, using Reidemeister torsion for linear
representations.

It is known that the Alexander polynomial �K of K has useful information on Dehn surgery. In [1] and [2] Kadokami
used abelian Reidemeister torsion to provide obstructions to lens surgery and Seifert surgery in terms of �K . In [9,10,6]
Ozsváth–Szabó and Kronheimer–Mrowka–Ozsváth–Szabó gave other obstructions for K ⊂ S3 to lens surgery and Seifert
surgery in terms of the Heegaard Floer homology of K (0), the knot Floer homology of K and the Monopole Floer homology
of K (0), which deduce those in terms of �K . It is of interest to investigate information on Dehn surgery that Reidemeister
torsion for linear representations has. Reidemeister torsion of E K coincides with a twisted Alexander invariant of K up to
multiplication of units. See [3,4,7,12] for the definition of twisted Alexander invariants and the relation with Reidemeister
torsion.

We fix orientations of K and the ambient homology sphere. Let M be a closed connected 3-manifold with H1(M) = Z/p
and ϕ: G → GLn(F) a linear representation over a field F of a finite group G . All homology groups and cohomology groups
are with respect to integral coefficients unless specifically noted. First we define an invariant T ϕ

K ([g,h]) of K for [g,h] ∈
G × G/G , where G acts on G × G by

g′ · (g,h) := (
g′gg′−1, g′hg′−1)
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for g′ ∈ G and (g,h) ∈ G × G , and an invariant T ϕ
M,β of M for a surjection β : π1M → 〈ζ 〉, where ζ ∈ F is a primitive p-root

of 1 (Definition 3.3). These invariants are sets which consist of Reidemeister torsion of E K and M respectively for repre-
sentations which pass through G surjectively. The pair [g,h] corresponds with the images of longitudinal and meridional
elements by the representations. It is worth pointing out that for K ⊂ S3, if we know all surjective homomorphisms from
π1 E K to G , T ϕ

K ([g,h]) is combinatorially computable from a presentation of π1 E K as Reidemeister torsion is. We establish
a Dehn surgery formula which computes T ϕ

K (p/q),β from T ϕ
K ([g,h]) with gqhp = 1 (Theorem 3.4). Therefore by this formula

we obtain a necessary condition for K (p/q) to be homeomorphic to M if we have T ϕ
M,β . Next we compute the invariant

T ϕ
M,β for a Seifert manifold M over S2 (Theorem 4.4). Note that every Seifert manifold which is a result of Dehn surgery

along a knot has S2 or RP 2 as its base space. Finally as an application we consider the Kinoshita–Terasaka knot K T , whose
Alexander polynomial is 1. We show that for any integer q, K T (6/q) is not homeomorphic to any Seifert manifold over S2

with three singular fibers. In this case we can check that abelian Reidemeister torsion gives no information.
This paper is organized as follows. In the next section we give a brief exposition of fundamental facts about Reidemeis-

ter torsion. In Section 3 we develop a key lemma of Reidemeister torsion on gluing a solid torus along a torus boundary.
Furthermore we define the invariants T ϕ

K ([g,h]) and T ϕ
M,β and describe a Dehn surgery formula on these invariants. Sec-

tion 4 is devoted to computations of T ϕ
M,β for Seifert manifolds over S2. In the last section we apply these results to the

Kinoshita–Terasaka knot.

2. Reidemeister torsion

We first review the definition of Reidemeister torsion. See [8] and [11] for more details.
For given bases v and w of a vector space, we denote by [v/w] the determinant of the base change matrix from w to v .

Let F be a commutative field and C∗ = (Cm
∂m−−→ Cm−1 → ·· · → C0) an acyclic chain complex of finite dimensional vector

spaces over F. For a basis bi of Im ∂i+1 for i = 0,1, . . . ,m, choosing a lift of bi−1 in Ci and combining it with bi , we obtain
a basis bibi−1 of Ci .

Definition 2.1. For a given basis c = {ci} of C∗ , we choose a basis {bi} of Im ∂∗ and define

τ (C∗, c) :=
m∏

i=0

[bibi−1/ci](−1)i+1 ∈ F∗.

It can be easily checked that τ (C∗, c) does not depend on the choices of bi and bibi−1.
The torsion τ (C∗, c) has the following multiplicative property. Let

0 → C ′∗ → C∗ → C ′′∗ → 0

be a short exact sequence of acyclic chain complexes and c = {ci}, c′ = {c′
i} and c′′ = {c′′

i } bases of C∗ , C ′∗ and C ′′∗ respectively.
Choosing a lift of c′′

i in Ci and combining it with the image of c′
i in Ci , we obtain a basis c′

ic
′′
i of Ci .

Theorem 2.2. ([8, Theorem 3.1], [11, Theorem 1.5]) If [c′
ic

′′
i /ci] = 1 for all i, then

τ (C∗, c) = τ (C ′∗, c′)τ (C ′′∗ , c′′).

Let X be a connected finite CW-complex and ρ : π1 X → GLn(R) a linear representation over a commutative ring R . We
regard Rn as a left Z[π1 X]-module by

γ · v := ρ(γ )v,

where γ ∈ π1 X and v ∈ Rn . Then we define the twisted homology group and the twisted cohomology group of X associated
to ρ as follows:

Hρ
i

(
X; Rn) := Hi

(
C∗( X̃) ⊗Z[π1 X] Rn),

Hi
ρ

(
X; Rn) := Hi(HomZ[π1 X]

(
C∗( X̃), Rn)),

where X̃ is the universal covering of X .

Definition 2.3. For a representation ρ : π1 X → GLn(F) with Hρ∗ (X; F n) = 0, we define the Reidemeister torsion τρ(X) of X
associated to ρ as follows. We choose a lift ẽi in X̃ for each cell ei of X and a basis 〈 f1, . . . , fn〉 of Fn . Then

τρ(X) := [
τ
(
Cρ∗

(
X;Fn)

, c̃
)] ∈ F∗/(±1)n Im det ◦ρ,
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where

c̃ := 〈ẽ1 ⊗ f1, . . . , ẽ1 ⊗ fn, . . . , ẽdim C∗(X) ⊗ f1, . . . , ẽdim C∗(X) ⊗ fn〉.
For a representation ρ : π1 X → GLn(F) with Hρ∗ (X; F n) �= 0, we set τρ(X) = 0.

It is known that τρ(X) does not depend on the choices of ẽi and 〈 f1, . . . , fn〉 and is a simple homotopy invariant.

Remark 2.4. For a link exterior of S3, given a presentation of the link group, Reidemeister torsion can be computed effi-
ciently using Fox calculus (cf. e.g. [3,4]).

3. A surgery formula

3.1. A gluing lemma

In this subsection we discuss a gluing lemma (Proposition 3.1) which we need to establish a surgery theorem (Theo-
rem 3.4) and to compute Reidemeister torsion of Seifert manifolds (Lemma 4.3).

Let E be a compact connected orientable 3-manifold whose boundary consists of tori and M a 3-manifold obtained by
gluing a solid torus Z to E along a component of ∂ E . We take a generator ν ∈ π1 Z and a representation ρ : π1M → GLn(F).
Let us denote by π and i the homomorphisms π1 E → π1M and π1 Z → π1M induced by the inclusion maps respectively.

Proposition 3.1. If there exists γ ∈ π1M such that det(ρ(γ ) − I) �= 0, then

τρ◦π (E) = [
det

(
ρ ◦ i(ν) − I

)]
τρ(M).

To prove this proposition we begin by collecting the following computations.

Lemma 3.2.

(i) The following conditions are equivalent.
(a) Hρ◦i∗ (Z;Fn) vanishes.

(b) Hρ◦i∗ (∂ Z;Fn) vanishes.
(c) det(ρ ◦ i(ν) − I) �= 0.

(ii) If ρ satisfies one of the conditions in (i), then

τρ◦i(Z) = [
det

(
ρ ◦ i(ν) − I

)−1]
,

τρ◦i(∂ Z) = [1].

Proof. We only consider the case of ∂ Z . The proof for the case of Z is very similar. Taking the natural cell structure on ∂ Z
with one 0-cell, two 1-cells and one 2-cell, one can identify Cρ◦i∗ (∂ Z;Fn) with

0 → Fn ∂2−→ F2n ∂1−→ F n → 0,

where

∂1 = (
ρ
(
ν−1) − I 0

)
and ∂2 =

(
0

ρ(ν−1) − I

)
.

Therefore Hρ◦i∗ (∂ Z;Fn) vanishes if and only if det(ρ ◦ i(ν)− I) �= 0 and for appropriate choices of bases {bi} and 〈 f1, . . . , fn〉,

τρ◦i(∂ Z) =
[

det(ρ ◦ i(ν−1) − I)

det(ρ ◦ i(ν−1) − I)

]
= [1]. �

We define a representation ρ† of π1M to be

ρ†(γ ) := ρ
(
γ −1)T

,

where γ ∈ π1M . Then we have an isomorphism

C∗
ρ†

(
M;Fn) ∼= Hom

(
Cρ∗

(
M;Fn),F

)
(3.1)

defined by

ψ → (
c ⊗ v → ψ(c)T v

)
,

where ψ ∈ C∗
† (M;Fn), c ∈ C∗(M̃) and v ∈ Fn .
ρ
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Proof of Proposition 3.1. We first prove that (a) Hρ◦π∗ (E;Fn) vanishes if and only if (b) Hρ∗ (M;Fn) vanishes and
(c) det(ρ ◦ i(ν) − I) �= 0. By Lemma 3.2(i) and the Mayer–Vietoris long exact sequence we check at once that two of the
conditions (a), (b) and (c) deduce the other one. Therefore it suffices to show that (a) deduces (c).

Let us assume that (a) holds and that det(ρ ◦ i(ν) − I) = 0. From the proof of Lemma 3.2 one can see that
Hρ◦i

2 (∂ Z;Fn) �= 0. By the Mayer–Vietoris long exact sequence we obtain Hρ
3 (M;Fn) �= 0. If ∂M �= ∅, then M collapses onto a

2-dimensional subcomplex, which contradicts it. If M is closed, then by Poincaré duality, (3.1) and the universal coefficient
theorem we have

Hρ†

0

(
M;Fn) ∼= H3

ρ†

(
M;Fn)

∼= H3(Hom
(
Cρ∗

(
M;Fn),F

))
∼= Hom

(
Hρ

3

(
M;Fn),F

) �= 0.

However, there exists γ ∈ π1M such that det(ρ†(γ ) − I) �= 0, and so Hρ†

0 (M;Fn) = 0, a contradiction.
Next we assume that Hρ◦π∗ (E;Fn) vanishes. It follows from the above argument that τρ(M) is defined. By Lemma 3.2(i)

τρ◦i(Z) and τρ◦i(∂ Z) are also defined. Considering the exact sequence

0 → Cρ◦i∗
(
∂ Z;Fn) → Cρ◦π∗

(
E;Fn) ⊕ Cρ◦i∗

(
Z;Fn) → Cρ∗

(
M;Fn) → 0,

by the multiplicative property of torsion (Theorem 2.2) we obtain

τρ◦π (E)τρ◦i(Z) = τρ(M)τρ◦i(∂ Z).

Combining it with Lemma 3.2 (ii), we completes the proof. �
3.2. Description of the formula

Fix a finite group G . For a group Π , we denote by S(Π, G) the set of conjugacy classes of surjective homomorphisms
from Π to G . Let K be an oriented smooth knot in an oriented homology 3-sphere. We take a longitude-meridian pair
λ, μ ∈ π1 E K which is compatible with the orientations of K and the ambient space and define the abelianization map
α : π1 E K → 〈t〉 which maps μ to t .

Definition 3.3. Let ϕ : G → GLn(F) be a representation.

(i) For [g,h] ∈ G × G/G , we define T ϕ
K ([g,h]) to be the set of τα⊗(ϕ◦ρ)(E K ) for [ρ] ∈ S(π1 E K , G) such that [ρ(λ),ρ(μ)] =

[g,h], where α ⊗ (ϕ ◦ ρ) is a representation π1 E K → GLn(F(ζ )) which maps γ ∈ π1 E K to α(γ )(ϕ ◦ ρ)(γ ).
(ii) For a closed connected 3-manifold M with H1(M) = Z/p and a surjection β : π1M → 〈ζ 〉, where ζ ∈ F is a primitive

p-root of 1, we define T ϕ
M,β to be the set of τβ⊗(ϕ◦ρ)(M) for [ρ] ∈ S(π1 M, G), where β ⊗(ϕ ◦ρ) is defined as α⊗(φ ◦ρ).

Theorem 3.4. We take integers r and s such that ps −qr = 1. Let β : π1 K (p/q) → 〈ζ 〉 be a surjection which maps the image [μ] to ζ .
If for any [g,h] such that gqhp = 1 and T ϕ

K ([g,h]) is not empty, det(ζϕ(h) − I) �= 0 and det(ζ rϕ(gshr) − I) �= 0, then

T ϕ
K (p/q),β =

{
τ |t=ζ

[det(ζ rϕ(gshr) − I)] ;τ ∈ T ϕ
K

([g,h]) with gqhp = 1

}
.

This theorem easily follows from Proposition 3.1 and the following lemma.

Lemma 3.5. Let α′ : π1 E K → 〈ζ 〉 be a surjection which maps μ to ζ and ρ : π1 E K → GLn(F) a representation. If det(ζρ(μ)− I) �= 0,
then

τα′⊗ρ(E K ) = τα⊗ρ(E K )
∣∣
t=ζ

.

Proof. Choose a triangulation of E K and maximal trees T and T ′ in the 1-skeleton and in the dual 1-skeleton respectively.
Collapsing T and all the 3-cells along T ′ , we have a 2-dimensional CW-complex W which is simple homotopic to E K . Let us
denote the number of 1-cells of W by m, then it follows from χ(E K ) = 0 that there are (m − 1) 2-cells. We can arrange the
chain complex C∗(W̃ ) of the form

0 → C2(W̃ )
∂2−→ C1(W̃ )

∂1−→ C0(W̃ ) → 0,

where

∂1 = ( γ1 − 1 . . . γm − 1 )
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and {γ1, . . . , γm} is a generator set of π1W . If necessary, attaching one 1-cell and one 2-cell along the word of μ in
γ1, . . . , γm , we can assume that γ1 = μ. Let A be the result of deleting 1st row of the matrix of ∂2.

First we assume that Hα′⊗ρ∗ (E K ;F(ζ )n) vanishes. Then Hα′⊗ρ
2 (E K ;F(ζ )n) = 0 and det(ζρ(μ) − I) �= 0 deduce

det(α′ ⊗ ρ(A)) �= 0, and so det(α ⊗ ρ(A)) �= 0, where α′ ⊗ ρ(A) is the (m − 1)n-dimensional matrix with entries in
F(ζ ) which is the result that α′ ⊗ ρ linearly operates all the entries of A and α ⊗ ρ(A) is defined similarly. This gives
Hα⊗ρ

2 (E K ;F(t)n) = 0. Since det(tρ(μ) − I) �= 0, we obtain Hα⊗ρ
0 (E K ;F(t)n) = 0. Considering

2∑
i=0

(−1)i dim Hα⊗ρ
i

(
E K ;F(t)n) = nχ(E K ) = 0,

we can see that Hα⊗ρ∗ (E K ;F(t)n) vanishes. In this case we have

τα⊗ρ(E K )
∣∣
t=ζ

=
[

det(α ⊗ ρ(A))

det(tρ(μ) − I)

∣∣∣∣
t=ζ

]

=
[

det(α′ ⊗ ρ(A))

det(ζρ(μ) − I)

]
= τα′⊗ρ(E K )

∣∣
t=ζ

�= 0.

Now assume that Hα⊗ρ∗ (E K ;F(t)n) vanishes and that τα⊗ρ(E K )|t=ζ �= 0. Then det(α′ ⊗ ρ(A)) �= 0, and so the same

argument as above shows that Hα′⊗ρ∗ (E K ;F(t)n) vanishes. These prove the lemma. �
4. Torsion of Seifert manifolds

In this section we compute the invariant T ϕ
M,β for a Seifert manifold M over S2.

Let L be the link in S3 represented in Fig. 1 and EL the exterior of an open tubular neighborhood of L. We denote by
M(p1/q1, p2/q2, . . . , pm/qm) the 3-manifold which has a surgery description shown in Fig. 1 and take integers ri and si
such that pi si − qiri = 1 for i = 1, . . . ,m. We assume that m � 2 and that pi � 2 for i = 1, . . . ,m.

From the diagram we have presentations of π1 EL and π1M(p1/q1, . . . , pm/qm) as follows:

π1 EL = 〈
x, y1, y2, . . . , ym

∣∣ [x, yi] = 1 for i = 1, . . . ,m
〉
, (4.1)

π1M(p1/q1, . . . , pm/qm) = 〈
x, y1, y2, . . . , ym

∣∣ y1 . . . ym = 1, [x, yi] = xqi ypi
i = 1 for i = 1, . . . ,m

〉
. (4.2)

We fix a finite group G . The group G acts on Gm+1 by

g′ · (g,h1, . . . ,hm) := (
g′gg′−1, g′h1 g′−1, . . . , g′hm g′−1)

for g′ ∈ G and (g,h1, . . . ,hm) ∈ Gm+1.

Definition 4.1. We define SG(p1/q1, . . . , pm/qm) to be the set of [g,h1, . . . ,hm] ∈ Gm+1/G such that

〈g,h1, . . . ,hm〉 = G, g ∈ Z(G), h1 . . .hm = 1 and gqi hpi
i = 1 for i = 1, . . . ,m,

where Z(G) is the center of G .

Lemma 4.2. The map S(π1 M(p1/q1, . . . , pm/qm), G) → SG(p1/q1, . . . , pm/qm) which maps [ρ] to [ρ(x),ρ(y1), . . . , ρ(ym)] is
bijective.

The proof is straightforward from (4.2).

Lemma 4.3. Let ρ : π1M(p1/q1, . . . , pm/qm) → GLn(F) be a representation. If det(ρ(x) − I) �= 0, then

τρ

(
M(p1/q1, . . . , pm/qm)

) =
[

det(ρ(x) − I)m−2∏m
i det(ρ(xsi yri

i ) − I)

]
.

Proof. Let π : π1 EL → π1M(p1/q1, . . . , pm/qm) be the natural surjection. From (4.1) we can directly compute that

τρ◦π (EL) = [
det

(
ρ(x) − I

)m−2]
(Remark 2.4). The details are left to the reader. Now we use Proposition 3.1 repetitiously, and the lemma follows. �

Now we easily obtain the next theorem as a corollary of Lemma 4.2 and Lemma 4.3.
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Fig. 1. The Seifert manifold M(p1/q1, p2/q2, . . . , pm/qm).

Theorem 4.4. Let ϕ : G → GLn(F) be a representation and β : π1M(p1/q1, . . . , pm/qm) → 〈ζ 〉 a surjection, which maps x to ζ a and
yi to ζ bi for i = 1, . . . ,m. If for any [g,h1, . . . ,hm] ∈ SG(p1/q1, . . . , pm/qm), det(ζ aϕ(g) − I) �= 0, then

T ϕ
M(p1/q1,...,pm/qm),β =

{[
det(ζ aϕ(g) − I)m−2∏m

i=1 det(ζ asi+biri ϕ(gsi hri
i ) − I)

]
; [g,h1, . . . ,hm] ∈ SG(p1/q1, . . . , pm/qm)

}
.

Remark 4.5. In [5] Kitano gave a formula which computes τρ(M) for a general Seifert manifold M and an irreducible
representation ρ : π1M → SLn(C) such that Hρ∗ (M;Cn) vanishes.

5. Application

Let K T be the Kinoshita–Terasaka knot illustrated in Fig. 2. It is well known that �K T = 1. As an application we show
that K T (6/q) is not homeomorphic to M(p1/q1, p2/q2, p3/q3) for any integer q and any pair (p1/q1, p2/q2, p3/q3).

For example, let us consider M(3/2,−3,−5), whose 1st homology group is Z/6. We set ζ = e
√−1π

3 . Since we can com-
pute that

τα′(E K T ) = [1]
for any surjection α′ : π1 E K → 〈ζ 〉 (Remark 2.4), it follows from Proposition 3.1 that

τβ

(
K T (6/q)

) = [1]
for any surjection β : π1 K T (6/q) → 〈ζ 〉. Furthermore Lemma 4.3 yields

τβ ′
(
M(3/2,−3,−5)

) = [1]
for any surjection β ′ : π1M → 〈ζ 〉, hence abelian Reidemeister torsion gives no information in this case.

First we have the following data on K T (6/q). By direct computations we obtain

S
(
π1 K T (6/q),A4

) = ∅, (5.1)

�S
(
π1 K T (6/q),A5

) = 2, (5.2)

where An is the alternating group on n letters. Let ϕ : A5 → SL4(C) be the representation induced by the natural action of
the symmetric group S5 on C5/C(1,1,1,1,1). Then we computes that

T ϕ
K T

([g,h]) =
{

{[(t2 + t + 1)(5t6 + 5t5 − 5t4 − 9t3 − 5t2 + 5t + 5)(t − 1)4]}, if [g,h] = [1, (3,4,5)],
∅, otherwise

(Remark 2.4). By Theorem 3.4 we have

T ϕ
K T (6/q),β = {[29]} (5.3)

for any surjection β : π1 K T (6/q) → 〈ζ 〉.
Second we have the following lemma on M(p1/q1, p2/q2, p3/q3).

Lemma 5.1. Let β ′ : π1M(p1/q1, p2/q2, p3/q3) → 〈ζ 〉 be a surjection, which maps x to ζ a. If 6 � a, then for any τ ∈ T ϕ
M,β ′ ,

|τ | = A
,

B1 B2 B3
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Fig. 2. The Kinoshita–Terasaka knot.

where

A = 1,9,16,

Bi = 1,2,4,9,16 for i = 1,2,3.

Proof. By Theorem 4.4 there exist ci ∈ Z and h′
i ∈ A5 for i = 1,2,3 such that

τ =
[

(ζ a − 1)4∏3
i=1 det(ζ ci ϕ(h′

i) − I)

]
.

Note that Z(A5) = 1. The possible values of |(ζ a − 1)4| are 1, 9, 16 and these of |det(ζ ci ϕ(h′
i) − I)| are 1, 2, 4, 9, 16, which

proves the lemma. �
Now let us suppose that K T (6/q) is homeomorphic to M(p1/q1, p2/q2, p3/q3). Since H1(M(p1/q1, p2/q2, p3/q3)) = Z/6

we have

|q1 p2 p3 + p1q2 p3 + p1 p2q3| = 6. (5.4)

From (5.1) and (5.2) we have

SA4(p1/q1, p2/q2, p3/q3) = ∅,

�SA5(p1/q1, p2/q2, p3/q3) = 2.

By direct computations these are equivalent to the conditions that (0) we cannot realize that

2 | p1, 3 | p2, 3 | p3

by permuting the indices and that only one of the following holds:

(i) after possible permuting the indices, 2 | p1, 3 | p2, 5 | p3,

(ii) after possible permuting the indices, 2 | p1, 5 | p2, 5 | p3,

(iii) after possible permuting the indices, 3 | p1, 3 | p2, 5 | p3,

(iv) after possible permuting the indices, 5 | p1, 5 | p2, 5 | p3.

In the case (i) we have 3 | p1 p3 from (5.4). If 3 | p1, then (iii) also holds. If 3 | p3, then (0) does not hold. In the case (ii)
we have 5 | p1 from (5.4), and (iv) also holds. In the case (iv) (5.4) does not hold. Therefore we only have to consider the
case (iii).

Let us assume (iii). If 2 | p1 p2, then (i) also holds, hence 2 � p1, p2. Since

ζ aq1+b1 p1 = ζ aq2+b1 p2 = ζ b1+b2+b3 = 1,

where bi is an integer such that β ′(yi) = ζ bi for i = 1,2,3, if 2 | a, then 2 | bi for all i, and β ′ cannot be surjective.
Therefore 2 � a and, in consequence, the assumption of Lemma 5.1 is satisfied. Comparing (5.3) and Lemma 5.1, we have a
contradiction, and we obtain the desired conclusion.
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