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Abstract

In this work, using the well-known result that symmetry is equivalent to quasi-symmetry and marginal homogeneity
simultaneously holding, two families of test statistics based on φ-divergence measures are introduced for testing conditional
marginal homogeneity assuming that quasi-symmetry holds.
c© 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Let Ω be a population such that for each element w ∈ Ω we consider two discrete random variables X and Y taking
the values x1, . . . , x I and y1, . . . , yI , respectively. We define pi j = P(X = xi , Y = y j ) > 0, i, j = 1, . . . , I . We
consider from the population Ω a random sample of size n and define Ni j =

∑n
l=1 I{xi ,y j }(Xl , Yl), i, j = 1, . . . , I .

It is well known that the random variable (N11, . . . , NI I ) is obviously sufficient for the statistical model under
consideration and is multinomially distributed with parameters n and (p11, . . . , pI I )

T. We also define p̂i j = Ni j/n
and denote by p̂ = ( p̂11, . . . , p̂I I )

T the vector of relative frequencies. We consider the parameter space

Θ = {θ : θ = (pi j ; i = 1, . . . , I, j = 1, . . . , I, (i, j) 6= (I, I ))T
} (1)

and we denote by p(θ) = (p11, . . . , pI I )
T

= p the probability vector characterizing our model with pI I =

1 −
∑I

i=1
∑I

j=1
(i, j)6=(I,I )

pi j . With this notation the problems of Symmetry, Marginal Homogeneity and Quasi-symmetry

can be characterized by

H0 : pi j = p j i , i, j = 1, . . . , I, (2)
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H0 :

I∑
i=1

p j i =

I∑
i=1

pi j, j = 1, . . . , I − 1 (3)

and

H0 : pi j p j I pI i − pi I pI j p j i = 0, i, j = 1, . . . , I − 1, (4)

respectively.
The problem of symmetry was first discussed by Bowker [9] who gave the maximum likelihood estimator as

well as a large sample chi-squared type test for the null hypothesis of symmetry. In [15] a minimum discrimination
information estimator was proposed and in [24] a minimum chi-squared estimator. On the basis of the maximum
likelihood estimator and on the family of φ-divergence measures, in [20] a new family of test statistics was introduced.
This family contains as a particular case the test statistic given by [9] as well as the likelihood ratio test. The state-of-
the-art in relation to the symmetry problem can be seen in [8,2,4,25] and references therein. The problem of marginal
homogeneity was first discussed by Stuart (in 1955), who defined a test statistic which is a quadratic form in the
differences of the corresponding marginal values, whose matrix is the inverse of a consistent estimate of the covariance
matrix of the differences under the null hypothesis, and its asymptotic distribution is chi squared with I − 1 degrees
of freedom under the null hypothesis of marginal homogeneity. This hypothesis has been discussed by several authors
(e.g. [5,6,15,8,1,7,17]). Finally, the hypothesis of quasi-symmetry was introduced by Caussinus [10] who gave a
maximum likelihood estimator for quasi-symmetry as well as a chi-squared type statistic for the test of this hypothesis.
For additional discussion of quasi-symmetry, see [12,13,19,14,2,25]. Recently, Matthews and Crowther [18] studied
quasi-symmetry and independence for cross-classified data in a two-way contingency table.

It is well known that the maximum likelihood estimators, θ̂
S

(Symmetry), θ̂
MH

(Marginal Homogeneity) and θ̂
QS

(Quasi-symmetry) are given by

DKull(p̂, p(θ̂
S
)) = inf

{θ∈Θ :pi j −p j i =0,i< j,i, j=1,...,I }
DKull(p̂, p(θ)) (5)

DKull(p̂, p(θ̂
MH

)) = inf
{θ∈Θ :

I∑
i=1

p j i −
I∑

i=1
pi j =0, j=1,...,I−1}

DKull(p̂, p(θ)) (6)

DKull(p̂, p(θ̂
QS

)) = inf
{θ∈Θ :pi j p j I pI i −pi I pI j p j i =0,i, j=1,...,I−1}

DKull(p̂, p(θ)), (7)

where DKull(pq) is the Kullback–Leibler measure of divergence, see [16], between the probability vectors p =

(p11, . . . , pI I )
T and q = (q11, . . . , qI I )

T, defined by

DKull(p, q) =

I∑
i=1

I∑
j=1

pi j log
pi j

qi j
. (8)

In [21] the three problems were studied using the restricted minimum φ-divergence estimator. This estimator is
based on the φ-divergence measure defined independently by [11] and [3],

Dφ(p, q) =

I∑
i=1

I∑
j=1

qi jφ

(
pi j

qi j

)
; φ ∈ Φ∗ (9)

where Φ∗ is the class of all convex functions φ(x), x > 0, such that at x = 1, φ(1) = φ′(1) = 0, φ′′(1) > 0, and at
x = 0, 0φ(0/0) = 0 and 0φ(p/0) = limu→∞ φ(u)/u. For more details about φ-divergence measures, see [23].

The restricted minimum φ-divergence estimators for the problems considered in (2)–(4) could be obtained as the

values θ̂
S,φ

(Symmetry), θ̂
MH,φ

(Marginal Homogeneity), and θ̂
QS,φ

(Quasi-symmetry) verifying

Dφ(p̂, p(θ̂
S,φ

)) = inf
{θ∈Θ :pi j −p j i =0,i< j,i, j=1,...,I }

Dφ(p̂, p(θ)) (10)
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Dφ(p̂, p(θ̂
MH,φ

)) = inf{
θ∈Θ :

I∑
i=1

p j i −
I∑

i=1
pi j =0, j=1,...,I−1

} Dφ(p̂, p(θ)), (11)

and

D(p̂, p(θ̂
QS,φ

)) = inf
{θ∈Θ :pi j p j I pI i −pi I pI j p j i =0, i, j=1,...,I−1}

Dφ(p̂, p(θ)), (12)

respectively. They represent the natural extensions of the restricted maximum likelihood estimator given in (5)–(7),
because if we consider in (9), φ(x) = x log x − x + 1 we obtain the Kullback–Leibler divergence given in (8). In this
sense, the Kullback–Leibler divergence measure is a particular case of the φ-divergence measure and it is very natural
to extend the concept of the restricted maximum likelihood estimator using the φ-divergence measure. The estimator
obtained as a generalization of the restricted maximum likelihood estimator using the φ-divergence measure is called
the restricted minimum φ-divergence estimator. More details about the restricted minimum φ-divergence estimator
can be seen in [22]. Caussinus [10] showed that symmetry, (2), is equivalent to quasi-symmetry, (4), and marginal
homogeneity, (3), simultaneously holding; thus we have

Quasi-Symmetry + Marginal homogeneity = Symmetry. (13)

Thus for conditional quasi-symmetry, testing marginal homogeneity is equivalent to testing symmetry. In this work
we present two new families of test statistics, based on φ-divergences, to define two conditional tests for marginal
homogeneity taking into account relation (13). In Section 2 we present the two new families of test statistics and we
obtain the asymptotic distribution.

2. Phi-divergence test statistics for testing marginal homogeneity

Menéndez et al. [21] obtained the following asymptotic expressions for the estimators θ̂
S,φ

and θ̂
QS,φ

of θ0. For

θ̂
QS,φ

,

θ̂
QS,φ

= θ0 + HQS(θ0)Σ θ0A(θ0)
Tdiag (p(θ0)

−1/2) (p̂ − p(θ0)) + op(n
−1/2) (14)

where Σ θ0 = diag(θ0) − θ0θ
T
0 , A(θ0) = diag(p(θ0)

−1/2)(
∂p(θ)
∂θ

)θ=θ0 ,

HQS(θ0) = I(I 2−1)×(I 2−1) − Σ θ0 BQS(θ0)
T(BQS(θ0)Σ θ0 BQS(θ0)

T)−1BQS(θ0),

BQS(θ0) =

(
∂hQS

i j (θ0)

∂θ

)
(I−1)(I−2)/2×(I 2−1)

and hQS
i j (θ) = pi j p j I pI i − pi I pI j p j i , i, j = 1, . . . , I − 1. For θ̂

S,φ
,

θ̂
S,φ

= θ0 + HS(θ0)Σ θ0 A (θ0)
T diag ( p(θ0)

−1/2) ( p̂ − p(θ0)) + op(n
−1/2) (15)

where

HS(θ0) = I(I 2−1)×(I 2−1) − Σ θ0 BS(θ0)
T(BS(θ0)Σ θ0 BS(θ0)

T)−1BS(θ0),

BS(θ0) =

(
∂hS

i j (θ0)

∂θi j

)
I (I−1)

2 ×(I 2−1)

and hS
i j (θ) = pi j − p j i , i, j = 1, . . . , I .

A similar asymptotic decomposition can be obtained for θ̂
MH,φ

. We do not present it because it is not necessary
in our study, but it is possible to find it in [21]. It is important to observe that the asymptotic decomposition of the

estimators θ̂
S,φ

and θ̂
QS,φ

(the same happens for θ̂
MH,φ

) is independent of the function φ considered. Then all of
them have the same asymptotic properties and, of course, the same ones as the corresponding maximum likelihood

estimators θ̂
S

and θ̂
QS

because they are obtained from φ(x) = x log x − x + 1.
On the basis of (13) it is possible to test conditional marginal homogeneity by comparing the model under the

assumption of quasi-symmetry and the model under the assumption of symmetry. We will consider the two following
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families of φ-divergence test statistics:

W MH
ϕ,φ =

2n

ϕ′′(1)

(
Dϕ(p̂, p(θ̂

S,φ
)) − Dϕ(p̂, p(θ̂

QS,φ
))

)
(16)

and

SMH
ϕ,φ =

2n

ϕ′′(1)
Dϕ

(
p(θ̂

QS,φ
), p(θ̂

S,φ
)
)

. (17)

The family W MH
ϕ,φ is a natural extension of the likelihood ratio test for this problem because

L R = 2n
(

DKullback(p̂, p(θ̂
S
)) − DKullback(p̂, p(θ̂

QS
))

)
. (18)

The second family, SMH
ϕ,φ , is based on the following idea:

L R = 2nDKullback(p(θ̂
QS

), p(θ̂
S
)) + op(1). (19)

The expression given in (16) is a natural extension of the expression given in (18) and the expression given in (17) is
a natural extension of the expression given in (19). It is also interesting to observe that the classical chi-squared test
statistic can be obtained from (17) with ϕ(x) =

1
2 (x − 1)2 and φ(x) = x log x − x + 1.

In the following theorem we present the asymptotic distribution.

Theorem 1. For testing hypotheses,

H0 : Symmetry versus H1 : Quasi-Symmetry,

the asymptotic null distribution of the φ-divergence test statistics W MH
ϕ,φ and SMH

ϕ,φ given in (16) and (17) respectively
is chi squared with I − 1 degrees of freedom.

Proof. Firstly, we shall obtain the asymptotic distribution of the φ-divergence test statistic SMH
ϕ,φ .

The second-order Taylor expansion of Dϕ(p(θ̂
QS,φ

), p(θ̂
S,φ

)) around (p(θ0), p(θ0)) is given by

2n

ϕ′′ (1)
Dϕ(p(θ̂

QS,φ
), p(θ̂

S,φ
)) = XTX + op(1)

where X is a random vector defined by

X =
√

ndiag (p(θ0)
−1/2) (p(θ̂

QS,φ
) − p(θ̂

S,φ
)).

Then the φ-divergence test statistic SMH
ϕ,φ and the quadratic form XTX have the same asymptotic distribution.

The first-order Taylor expansions of p(θ̂
QS,φ

) and p(θ̂
S,φ

) at θ0 are given by

p(θ̂
QS,φ

) − p(θ0) =
∂p(θ0)

∂θ
(θ̂

QS,φ
− θ0) + op(‖θ̂

QS,φ
− θ0‖)

and

p(θ̂
S,φ

) − p(θ0) =
∂p(θ0)

∂θ
(θ̂

S,φ
− θ0) + op(‖θ̂

S,φ
− θ0‖).

But, taking in account (14) and (15), we have

p(θ̂
QS,φ

) − p(θ0) =
∂p(θ0)

∂θ
HQS(θ0)Σ θ0 A(θ0)

Tdiag (p(θ0)
−1/2) (p̂ − p(θ0)) + op(n

−1/2),

and

p(θ̂
S,φ

) − p(θ0) =
∂p(θ0)

∂θ
HS(θ0)Σ θ0 A(θ0)

Tdiag (p(θ0)
−1/2) (p̂ − p(θ0)) + op(n

−1/2).
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Hence,

X =
√

n(LQS(θ0) − LS(θ0))diag (p(θ0)
−1/2) (p̂ − p(θ0)) + op(1)

where, LQS(θ0) = A(θ0)HQS(θ0)Σ θ0 A(θ0)
T and LS(θ0) = A(θ0)HS(θ0)Σ θ0 A(θ0)

T.

Therefore, X
L

−→
n→∞

N (0,Σ1) where

Σ1 = (LQS(θ0) − LS(θ0))diag(p(θ0)
−1/2)Σ θ0 diag(p(θ0)

−1/2)(LQS(θ0) − LS(θ0))
T.

But, diag(p(θ0)
−1/2)Σθ0 diag(p(θ0)

−1/2) = I −
√

p(θ0)
√

p(θ0)
T

and
√

p(θ0)
T

A(θ0) = 0, and thus

Σ1 = (LQS(θ0) − LS(θ0))(LQS(θ0) − LS(θ0))
T.

It is not difficult to establish that Σ1 = (LQS(θ0) − LS(θ0)) and this matrix is idempotent and its trace is I − 1.
Therefore, the asymptotic distribution of XTX is chi squared with I − 1 degrees of freedom.
In a similar way we can obtain the asymptotic distribution of the statistic W MH

ϕ,φ . �

Remark 2. If we use the φ-divergence test statistics W MH
ϕ,φ (SMH

ϕ,φ ) for testing the conditional marginal homogeneity

we must reject the null hypothesis, i.e., the hypothesis of marginal homogeneity if W MH
ϕ,φ (SMH

ϕ,φ ) is too large. When

W MH
ϕ,φ > c1 (SMH

ϕ,φ > c2) we must reject the null hypothesis of marginal homogeneity, where c1 (c2) is specified so
that the size of the test is α:

Pr(W MH
ϕ,φ ≥ c1 (SMH

ϕ,φ,h ≥ c2)/H0) = α; α ∈ (0, 1).

On the basis of Theorem 1, the values c1 (c2) could be chosen as the (1 − α)-th quantile of a chi-squared distribution
with I − 1 degrees of freedom: c1 (c2) = χ2

I−1,1−α , where Pr(χ2
f ≥ χ2

f,p) = p.
For these tests to be valid, the quasi-symmetry model must hold true. In cases when the quasi-symmetry model is

not true then the unconditional test for marginal homogeneity should be used. For more details about unconditional
tests for marginal homogeneity based on φ-divergence test statistics see [21].
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