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Multiple-Burst-Error Correction by Threshold 
Decoding* 
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A class of cyclic product codes capable of correcting mtfltiple-burst 
errors is studied. A code of dimension p is constructed by forming 
the cyclic product of p one-dimensional single-parity-check codes 
of relatively prime block lengths. A consideration of the parity-check 
matrix shows that there are p orthogonal parity checks on each 
digit, and a burst of length b can corrupt at most one of the parity 
checks. The maximum allowable value of b can be easily calculated. 
The codes are completely orthagonal and [p/2] bursts of length b or 
less can be corrected by onehstep threshold decoding. 

These codes have a very interesting geometric structure which 
is also discussed. Using the geometric structure, we show that the 
codes can also correct 2~ -2 bursts of relatively short lengths. How- 
ever, in this case the errors cannot be corrected by threshold decoding. 

1. INTRODUCTION 

Cyclic codes capable of correcting multiple bursts of errors have been 
constructed by Corr [5], Reed and Solomon [10], Stone [12], [13]), and 
Burton and Weldon [3]. The major problem in implementing any of these 
codes is that error correction requires complicated decoders. Of all the 
decoding methods available today, one-step threshold decoding (1V~assey, 
[8], Rudolph, [11] ) is one of the easiest to implement. A class of multiple 
burs t  error correct ing codes which is decodable by  one-step threshold de- 
coding is presented in  this  paper.  

For  an  in t roduc t ion  to cyclic codes, the  reader is referred to Pe te rson  

[9]. A codeword of block length  n will be represented b y  the  n tuple  
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= (v0, vl, - "  , v, , -1) ,  where v~ ~ G F ( q ) .  A single-parity-check code 
consists of all n tuples which satisfy (1). 

n - - 1  

vi = 0. (1) 
i ~ 0  

A single-parity-check code can be considered as a cyclic code having the 
generator polynomial g (x) = (x - 1). 

The  codes presented in this paper are cyclic product codes whose con- 
sti tuent subcodes are single-parity-check codes. Properties of cyclic prod- 
uct codes have been studied by Elias [6], Kautz  [7], Burton and Weldon 
[8], Weng [14], Abramson [I], [2] and Calabi and Haefeli [~]. 

Let nl, n2 • • • n~ be integers which are pairwise relatively prime and 
nl < n2 ... < n~. Let CI, C2, ... C, be p single-parity-check codes 
having block lengths nl, n2 ... n, respectively. The code C of length 
n = l-I~=1 n~ is constructed by forming the product of CI, C~ • • • C~. It 
follows from the results of Burton and Weldon [3] and Abramson [I] that 
C is a cyclic code with k = i[I~=i (n,: - i) information symbols per 
block, whose generator polynomial gp (x) is given by (2). 

g p ( x )  = l.c.m. (21  -- 1, x ~ -- 1, . . .  x ~p -- 1) (2) 

where m i  = n i n e ,  i = 1, 2, . .  • p .  

A pari ty check matrix H~ for this code is given by (3) 

I,~, I,~= I.,~ 
H~ = , (3) 

where I ~  is the identi ty matrix of size m~ X m~. The matrix H~ has 
~-~=1 mi rows and n columns. The rows of H~ are not independent and 
since the code has £ = ~[~=~ (m - 1) information symbols per block, 
H~ has rank n -- II~=1 (n~ - 1). 

2. MULTIPLE BURST ERROR CORRECTION 

Let  ~ be a codeword of C. From H~ we see tha t  there are p pari ty checks 
involving v0. These can be represented b y  (4). 

n j - - 1  

v~.~ = 0, j = 1, 2, . . .  p. (4) 
~--o 

A set of pari ty check equations are called orthogonal on v0 if the digit 
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v0 is checked by  each of these equations, but  no other digit is checked by  
more than one of these equations. (Massey [8]) 

LEMMA 1. The set of p parity check equations given by (4 ) are orthogonal 
O ~  V o  • 

Proof. Assume tha t  v~, 0 < k < n, is a digit which is checked by  two 
or more of the pari ty check equations. 

Let  
nr--1 

Vo + ~ v i . ~ ,  = 0 (5a) 
i= l  

and 
n s--1 

v0 + ~ v~.~o = 0 (5b) 
j = l  

be two pari ty check equations, both of which check vk. Then for some i 
and j,  k = i .mr and k = j -ms .  So k is divisible by  mr and m~. Since 
1.c.m (mr, m~) = n, n [ k .  But  k < n, so k must be 0. This is a contra- 
diction to our assumption k > 0. 

Hence, there  is no digit vk, k > 0, which is checked by  more than one 
of the par i ty  check equations given by  (4). Q.E.D. 

A burst error of length b is a set of errors confined to b consecutive digit 
position in the codeword. Since the codes discussed here are cyclic, digits 
in positions n - i and 0 are considered to be consecutive. So if a burst 
B of length b introduces errors in positions k and l, then these positions 
are at most b apart,  i . e . , l -  k ~  s m o d n w h e r e 0 _ - <  Is[ < b - -  1. 

Let  t = [p/2], i.e., the integer part  of p/2, and 

bt = rain [g.c.d. (mi,  mj)] = n/n, .nv_l  = nl.n2 . . .  n,_~ . 

TttEOREM 1. The code C corrects any t bursts of length bt or less. 

Pro@ Let  ~ = (vo, vl, . . .  v~_l) be a codeword of C and 

= (Co, el ,  • • • e~_l) 

be an error pat tern  consisting of t or fewer bursts of length bt. The re- 
c e i v e d n t u p l e i s ~  = ( r o , r l , . . . r ~ _ ~ )  = ~ - [ -Qwhere r~  = v~-~-e~. 

Using ~ and the p orthogonal pari ty checks on v0 (Lemma 1), we can 
form p -~- I independent estimates of Vo, i.e., 

v~ °) = to, (6) 
ns'-- I  

v~ ~; = ~ r , .~j ,  j = 1, 2, - - .  p. (7) 
i=I  
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We now show tha t  at  most t of these estimates can be wrong. 
Let  B0 be a burst  of length bt or less which introduces an error in 

position 0. Since none of the digits rk, 

k = n - b~ -~ 1, n - bt ~- 2, . . .  n - 1, 1 ,  2 ,  . . .  b t  - 1 

are involved in the equations reprcsented by (7); any error introduced 
by  B0 cannot  affect the p estimates given by  (7). 

Let  B1 be a burst  of length b~ or less which does not include the digit 
in position 0 as one of its errors. Assume tha t  B~ introduces errors in 
positions k and I = k -[- s, 0 < s < b~ - 1, and tha t  rk and r~ are involved 
in two different estimates of v0 given by  (7). Then k = i l . m j  1 for some 
is and jl  and 1 = i l .m i~  for some is and j~ ~ j l .  Now 

g.c.d. (mjl ,  mj2)  = n /n j~n]~ >= b~, 

and 

g . c . d . ( m s ~ , m j 2 ) [ ( l -  /c). ' .  ( l - / c )  => b~, i.e., s >  bt ,  

which is a contradiction. Therefore, errors introduced by  B~ can affect at  
a t  most  one of the p ~- 1 estimates of v0. 

We have shown tha t  an error burst  of length b~ or less can affect at  
most  one of the estimates of v0. So if the error pa t te rn  ~ consists of t or 
fewer bursts  of length bt,  a t  most t of the estimates of v0 can be incorrect, 
hence there will be a t  least t + 1 estimates which are correct and v0 can 
be recovered correctly by  a major i ty  vote. 

Since the code is cyclic, this is true for all the digits vi, i = 0, 1, • • • n - 1. 
Q.E.D. 

I t  follows directly f rom Theorem 1 tha t  the code C can be one-step 
threshold decoded. (Massey [8]) 

EXAMPLE 1. Consider the cove with parameters  n~ = 5, n2 = 6, n3 = 7 
and n4 = 11. Then n -- 2310,/~ = 1200, t = 2, and b2 -- 30, i.e., the code 
corrects any 2 bursts  of length 30 or less. 

In  the discussion above, b2 is the maximum allowable length of a burst  
tha t  affects at  most  one of the estimates of v0 given by  Eqs. (6) and (7). 
I t  is evident tha t  if t ~ bursts occurs, where t ' < t, then the code is capable 
of correcting longer bursts, i.e., bursts of length bt, > bt.  A generaliza- 
tion of some of the ideas of Theorem 1 is presented here. 

There are p orthogonal par i ty  checks on each digit position. I f  a burst  
of length b,~, affects a t  most  s '  estimates then the code can correct 
t ' = [p/2s ']  bursts of length b~, by  one-step threshold decoding. I f  we 
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take s' = 1, then the results of Theorem 1 follow. I t  is not  possible in 
general to write down an explicit formula for bt, when s' > 1. However, a 
simple algorithm is developer here for calculating bt, for any t r < t. 

In  equation (7), let Tj be the digit positions involved in the estimate 
v~ i). Then 

T j  = { a . m j ]  a = 1, 2,  . . .  n~ - -  1} j = 1, 2, . . .  p. 

Let  B be a burst of length b starting in position al  and ending in position 
a2 = al -k b -- 1. If  B affects more than s r estimate of v0, then there must 
exist at  least s '  -t- I integers tj such that  tj E Tj and al -<_ tj =<_ a2. Define 

= [gl, d~] to be the smallest interval such that  51 _-< tj =< 52 for s' -t- 1 
of the j 's. Then no burst of length bt, = d2 - dl or less can affect more 
than s '  estimates since this would imply the existence of an interval 
shorter than T satisfying the same conditions as ~P, which is a contra- 
diction. 

The problem is now to find the shortest interval T = [gl, ~] for differ- 
ent value of s r. If  s t = 1, then this interval is of length bt = n / n ~ n ~ _ l  a s  

proved in Theorem 1. For  s '  > 1, the value of bt, can be obtained by a 
simple computer  program. The T f s  can be generated quite easily and a 
simple search procedure will find T for all values of J .  

EXAMPL~ 2. Using the same n l ,  n2, n~ and n~ as in Example 1, one ob- 
tains b~ = 77, i.e., the code can correct a single burst of length 77 by  
threshold decoding. This of course exceeds 2. b2 = 60 which is guaranteed 
from the results of Example 1. 

3. GEOMETRIC STRUCTURE OF THE CODES 

The code C is the cyclic product  of single-parity-check codes. Using 
this fact, one can construct a geometric model of this code. Kautz  [7] and 
Calabi and Haefeli [4] have investigated the geometric structure of such 
codes extensively and determined their random error and single burst 
error correction capabilities. In this section, we study the multiple burst 
correction properties of these codes using their geometric structure. 

Consider a set of n = II~=l nj digits arranged in a p-dimensional array 
of size nl X n2 • • : X n~. The array corresponds to a lattice in the shape 
of a rectangular parallelopiped in p-dimensional Euclidean space with 
the lattice points having integral coordinates (/1, i2, . . .  i~) such that  
0 =< ij < n~. The/c = II~=l (hi - 1 ) data digits are placed at the ]~ttice 
points with coordinates (i~, i : ,  • • • i~) with 0 < i~ < j~ - 1. The digit in 
position (/1, / : ,  . . .  ip) is denoted by u(~.~,...,~). We complete the 
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lattice by inserting parity check digits at  the remaining r = n - k po- 
sitions in such a manner tha t  the parity along any line parallel to a co- 
ordinate axis is even. The resultant lattice L is then a codeword of the 
p-dimensional product code C' whose constituent subcodes are single- 
parity-check codes of block lengths n~, n2, • • • n~. 

Using the approach of Burton and Weldon [3], one can define a map- 
ping F from the lattice L to the n tuple ~. The mapping F is derived in 
the following manner. 

Since g.c.d. (m~-,n~) = 1, j = 1, 2 , . . .  p, there exist integers tl, t~, . . .  t~ 
such that  

Then 

tj.m~ -- 1 modn~,  j = 1, 2, . . .  p. (8) 

!a 

i = F( i l ,  i ~ , . . . i ~ )  = ~ ts .ms.i~modn. (9) 
j f f i l  

The digit u(il.~...%) in L is mapped to v~ in ~ where i is given by (9). 
This mapping is 1-1 and the inverse mapping G is given by 

G(i)  = ( i l , i 2 , . . . i p )  where i ) =  i m o d n j .  (10) 

(Residue classes are represented by the smallest nonnegative integer in 
tha t  class). 

Under the mapping F the p-dimensional code C ~ is equivalent to the 
cyclic code C whose generator polynomial is given by (2). (Burton and 
Weldon, [3]) 

I t  is known tha t  the minimum distance of the code C ~ is 2 ~ and tha t  
the codewords of weight exactly 2 ~ are those patterns having nonzero 
digits at  the corners of a p-dimensional rectangular parallelopiped sub- 
lattice of L, [7]. 

Each p'-dimensional hyperplane of L parallel to the coordinate axes is 
a p'-dimensional subeode having a structure similar to C'. Each such 
hyperplane can be considered as a p'-dimensional product code having 
minimum distance 2p ~. 

LE~IMA 2. I f  ek and e~ , k ~ 1 are errors belonging to the same burst of 
length nl , then the points corresponding to k and l in L cannot both lie on 
any p~-dimensional hyperplane of L for pt ~ P. 

Proof. Since ek and e~ belong to a burst of length n~, either 
(i) l - -  k ~ a m o d n o r  (ii) l -  lc-~ - a m o d n f o r s o m e O  < a < n l .  
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Le t  G ( k )  = (k l ,  k2, . . .  k~) and  G( l )  = (l l ,  12, - . .  l~). 

I n  case (i),  li - kj - a m o d  n j .  ( l l a )  

I n  ease (ii), lj - kj ~ a rood n~- ~ (ns - a )  m o d  n i .  (1 l b )  

for  j = 1, 2, • • • p, since nl is the  smallest  of the  ni 's .  
Fo r  U(kl,k~,..%) and  U(Zl,~,...z~) to be  on the  same (p - 1) -d imensional  

hyperp lane  we m u s t  h a v e  

ks~- -  li~ for  some j l ,  i.e., l s l -  k ~ - l - = 0 m o d n ~ .  

B u t  f rom ( l l a )  and  ( l l b )  we see t h a t  lj - k~ ~ 0 m o d n j  for  a n y j .  
Therefore ,  the  points  corresponding to  k and  1 in L canno t  bo th  lie on the  
same  (p - 1) -d imensional  hyperp lane ,  and  consequent ly  on a n y  p' -di -  

mensional  hyperp lane  of L for p'  < p. Q.E.D.  

LEMM2~ 3. Let  ek and  ez be errors belonging to the same burst  of  length n l  

w i th  G ( k )  = (k~ , k2 ,  . . .  k~) and G(1)  = (11,12 , . . .  lp). 

/ f  (lj~ - -  kj 1) --  a '  modnj~  and  (lj~ - kj~) - -  a' modnj2  for  some 

0 < a' < n l , j l  ~ j 2 ,  then (lj - k~) ~ a' m o d n ~ f o r  a I l j  = 1, 2, . . .  p.  

Proof .  As in L e m m a  2, e i ther  (i) l - k ~ a mod  n or (ii) l - /~ 
- a m o d n .  I n c a s e  (ii) (lj - k i )  - n~ - a m o d n j , j  = 1, 2 , . . .  p and  
since nil ~ n~.~ for all j~ ~ j2 ,  we need no t  consider this case. 

I n  case (i), l j -  k ~ . -  a m o d n ~ . ,  j = 1, 2 , - - . p .  Therefore ,  if 
! t 

(li~ --  /%) ---- a rood nj~,  and  (l~.~ - k~.~) -- a '  mod  nj~ then  a = a and  
I 

(l~ - -  lc¢) - -  a ~ a m o d  n i  , j = 1, 2, . . .  p. Q.E.D.  

THEORE~ 2. For  p >= 3, the code C can correct all burst  pat terns  consis t ing 

o f  2 ~-2 or less bursts  o f  length n~ . 

Proof .  T o  p rove  this  theorem,  we need to show t h a t  there  is no nonzero 
codeword in C which is a p a t t e r n  of 2 .2  p-2 or fewer bursss  of length n~. 
This  is p roved  b y  contradic t ion.  

Le t  ~ be  a nonzero codeword of C which is a p a t t e r n  of 2 ~-1 or fewer  
burs t s  of length  n~. Since the  code is cyclic, we m a y  assume,  wi thou t  loss 
of general i ty ,  t h a t  one of the  burs ts ,  call i t  B~, s ta r t s  in posi t ion 0. Using 
the  m a p p i n g  G we cons t ruc t  the  la t t ice  L which is the  equiva len t  of ~. 
T h e n  L m u s t  be  a codeword of C'. 

N o w  vo ~ 0, therefore ,  u(0,0....0) ~ 0. Consider  the  p --  1 d imensional  
hyperp l~ne  of L which contains  ~11 poin ts  ( i ~ , / 2 ,  . . .  i~) wi th  i~ = 0. 
Th is  hyperp l~ne  contains  ~ nonzero digit  u(0,0,...0) • and  corresponds to a 
(p - 1) -d imensional  code hav ing  m i n i m u m  dis tance  2 ~-~, ~herefore i t  
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must contain at  least 2 v-1 nonzero digits. I t  cannot contain more than 
2 p-1 nonzero digits, since a burst of length nl can contribute a t  most 1 
nonzero digit to a (p - 1)-dimensional hyperplane (Lemma 2). This 
hyperplane, therefore, contains exactly 2 T-I nonzero digits and ~ must 
be a pat tern of exactly 2 T-~ bursts. The  2 T-~ nonzero points in the hyper- 
plane must lie on the corners of a (p - 1)-dimensional rectangular 
parallelopiped, which can be represented by the set 

T,,=o = { ( / 1 , / 2 , - . . i p )  Ill = 0, ij = 0 or aj for j = 2 , 3 , . . . p }  

where a2, a s , - . ,  aT are p - 1 integers with 0 < a~. < n j .  Then 

u(0,o,...o) E B1, u(0,~2,0,...0) E Bs ,  u(0,0.~,0,...o) E B3, etc., 

where B1, B2, - . .  B2 (p -- 1) are different bursts of length n l .  
Considering other hyperplanes of dimension p - 1 and using the con- 

dition tha t  each hypel~plane is a codeword of minimum distance 2 T-~, 
it follows that  there are nonzero digits at the 2 T points which are repre- 
sented by  the set 

T =  { ( i l , i ~ , . . . i T ) l i ~ = O  or a ~ , j =  1 , 2 , . . . p } .  

(i). Now consider the nonzero digit in position ( i l ,  i s , . . ,  i p ) ,  

is = a~- for a l l j  = 1, 2, . .  • p. This point is coplanar (i.e., lies on the same 
(p -- 1)-dimensional hyperplane) with all points belonging to T~=0, 
except the point (0, 0, . . -  0). By  Lemma 2, u(0,o,...o) and u(~,,~,...~,) 
must both belong to B~. Since B~ starts in position vo, the only digits 
tha t  can belong to B1 are v~ , v2 , • • • v,q_~ . Therefore (al  , a2 ,  • • • aT)  = 

G ( a )  = (a,  a, . .  . a ) ,  w h e r e  O < a < n l -  1. 

a;. = a, j = 1, 2, . . .  p. (12) 

(ii). Now consider the point ( i i , / 2 ,  ---  ip) with is = 0 and ij = aj 
for j ~ 2. This point is coplanar with all points belonging to Tq=0 except 
the point (i1', i~', 

Now 

and 

By Lemma 3 

• . .  iv '  ) with i2' = as and i /  = 0 for j ~ 2. 

ij- - ij, - as - a mod h i ,  j ~ 2, (13a) 

i ~  - -  i 2 ,  =-- - -a2  =-- ns  - -  a m o d  n2.  (13b) 

n2 - -  a - -  a m o d n ~ ,  (14) 

since 0 < a < n2 n2 = 2a. 
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(iii) .  N o w  consider the point ( i l , / 2 ,  . . '  i~) with i3 = 0 and ij = ai 
for j ~ 3. This point is coplanar with all points of T~l=o except the point 

. I t  . f !  . f !  . t !  . P !  
(91 , ~  , " "  ~ ) with ~3 = a3 and ,~- = 0 f o r j  # 3. Then as in (ii), we 
have 

n3 = 2a. (15 )  

From Eq. (15) and (16) n~ = n8 which is a contradiction. 
Therefore, our assumption t h a t  ~ is a codeword of C, consisting of 2 p-~ 

or fewer bursts  of length nl must  be false. Q.E.D. 

EXAMeLE 3. Consider the code of example 1 with n~ = 5, n~ = 6, na = 7 
and n4 = 11. Then by  Theorem 2, this code corrects 4 bursts  of length 5. 

We can consider the code C' as the interlace of n~ codewords of a code 
C" of block length n" = H ~ 2  n~ which has dimension p - 1 and 
minimum distance 2 v-~. Then from the burst  error correcting capabili ty 
of interlace codes (Corr, [5], Burton and Weldon, [3] ) we know tha t  C' 
can correct 2 p-2 - 1 bursts  of length n~. Theorem 2 proves tha t  the code 
is capable of correcting at  least one more burst  than  is indicated by  the 
interlace code bound. However,  there does not seem to be any simple 
decoding algorithm for correcting 2 ~-2 bursts  of length n~. 

4. CONCLUSIONS 

We have studied the multiple burst  correcting properties of a class of 
cyclic product  codes. Kautz  [7] investigated the random error and single 
burst  correction capabilities of these codes. Theorem 1 shows tha t  a 
p-dimensional code of block length n = n~ × n~ × . . .  n~ can correct 
[p/2] bursts of length nl × n~ × • • • nr_~, and tha t  such error correction 
can be achieved in a very simple way. Theorem 2, based on the geometric 
structure of the code, shows tha t  the code is also capable of correcting 
2 p-2 bursts  of length n~, which is one burst  more than  is indicated by  the 
interlace code bound. 
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