Multiple-Burst-Error Correction by Threshold Decoding*

L. R. Bahl \dagger and R. T. Chien
Coordinated Science Laboratory, University of Illinois, Urbana, Illinois 46990

Abstract

A class of cyclic product codes capable of correcting multiple-burst errors is studied. A code of dimension p is constructed by forming the cyclic product of p one-dimensional single-parity-check codes of relatively prime block lengths. A consideration of the parity-check matrix shows that there are p orthogonal parity checks on each digit, and a burst of length b can corrupt at most one of the parity checks. The maximum allowable value of b can be easily caiculated. The codes are completely orthogonal and [$p / 2$] bursts of length b or less can be corrected by one-step threshold decoding.

These codes have a very interesting geometric structure which is also discussed. Using the geometric structure, we show that the codes can also correct 2^{p-2} bursts of relatively short lengths. However, in this case the errors cannot be corrected by threshold decoding.

1. INTRODUCTION

Cyclic codes capable of correcting multiple bursts of errors have been constructed by Corr [5], Reed and Solomon [10], Stone [12], [18]), and Burton and Weldon [8]. The major problem in implementing any of these codes is that error correction requires complicated decoders. Of all the decoding methods available today, one-step threshold decoding (Massey, [8], Rudolph, [11]) is one of the easiest to implement. A class of multiple burst error correcting codes which is decodable by one-step threshold decoding is presented in this paper.

For an introduction to cyclic codes, the reader is referred to Peterson [9]. A codeword of block length n will be represented by the n tuple

[^0]$\bar{v}=\left(v_{0}, v_{1}, \cdots, v_{n-1}\right)$, where $v_{i} \in G F(q)$. A single-parity-check code consists of all n tuples which satisfy (1).
\[

$$
\begin{equation*}
\sum_{i=0}^{n-1} v_{i}=0 \tag{1}
\end{equation*}
$$

\]

A single-parity-check code can be considered as a cyclic code having the generator polynomial $g(x)=(x-1)$.

The codes presented in this paper are cyclic product codes whose constituent subcodes are single-parity-check codes. Properties of cyclic product codes have been studied by Elias [6], Kautz [7], Burton and Weldon [3], Weng [14], Abramson [1], [2] and Calabi and Haefeli [4].

Let $n_{1}, n_{2} \cdots n_{z}$ be integers which are pairwise relatively prime and $n_{1}<n_{2} \cdots<n_{p}$. Let $C_{1}, C_{2}, \cdots C_{v}$ be p single-parity-check codes having block lengths $n_{1}, n_{2} \cdots n_{p}$ respectively. The code C of length $n=\prod_{i=1}^{p} n_{i}$ is constructed by forming the product of $C_{1}, C_{2} \cdots C_{p}$. It follows from the results of Burton and Weldon [3] and Abramson [1] that C is a cyclic code with $k=\prod_{i=1}^{p}\left(n_{i}-1\right)$ information symbols per block, whose generator polynomial $g_{p}(x)$ is given by (2).

$$
\begin{equation*}
g_{p}(x)=\text { l.c.m. }\left(x^{m_{1}}-1, x^{m_{2}}-1, \cdots x^{m_{p}}-1\right) \tag{2}
\end{equation*}
$$

where $m_{i}=n / n_{i}, i=1,2, \cdots p$.
A parity check matrix H_{p} for this code is given by (3)

$$
H_{p}=\left[\begin{array}{cccc}
I_{m_{1}} & I_{m_{1}} & I_{m_{1}} & \cdots \tag{3}\\
I_{m_{2}} & I_{m_{2}} & I_{m_{2}} & \cdots \\
\vdots & & & \\
I_{m_{p}} & I_{m_{p}} & I_{m_{p}} & \cdots
\end{array}\right]
$$

where $I_{m_{i}}$ is the identity matrix of size $m_{i} \times m_{i}$. The matrix H_{p} has $\sum_{i=1}^{p} m_{i}$ rows and n columns. The rows of H_{p} are not independent and since the code has $k=\prod_{i=1}^{p}\left(n_{i}-1\right)$ information symbols per block, H_{p} has rank $n-\prod_{i=1}^{p}\left(n_{i}-1\right)$.

2. MULTIPLE BURST ERROR CORRECTION

Let \bar{v} be a codeword of C. From H_{p} we see that there are p parity checks involving v_{0}. These can be represented by (4).

$$
\begin{equation*}
\sum_{i=0}^{n_{j}-1} v_{i \cdot m_{j}}=0, \quad j=1,2, \cdots p \tag{4}
\end{equation*}
$$

A set of parity check equations are called orthogonal on v_{0} if the digit
v_{0} is checked by each of these equations, but no other digit is checked by more than one of these equations. (Massey [8])

Lemma 1. The set of p parity check equations given by (4) are orthogonal on v_{0}.

Proof. Assume that $v_{k}, 0<k<n$, is a digit which is checked by two or more of the parity check equations.

Let

$$
\begin{equation*}
v_{0}+\sum_{i=1}^{n_{r}-1} v_{i \cdot m_{r}}=0 \tag{5a}
\end{equation*}
$$

and

$$
\begin{equation*}
v_{0}+\sum_{j=1}^{n_{s}-1} v_{j \cdot m_{s}}=0 \tag{5b}
\end{equation*}
$$

be two parity check equations, both of which check v_{k}. Then for some i and $j, k=i \cdot m_{r}$ and $k=j \cdot m_{s}$. So k is divisible by m_{r} and m_{s}. Since $l \cdot c \cdot m\left(m_{r}, m_{s}\right)=n, n \mid k$. But $k<n$, so k must be 0 . This is a contradiction to our assumption $k>0$.

Hence, there is no $\operatorname{digit} v_{k}, k>0$, which is checked by more than one of the parity check equations given by (4).
Q.E.D.

A burst error of length b is a set of errors confined to b consecutive digit position in the codeword. Since the codes discussed here are cyclic, digits in positions $n-1$ and 0 are considered to be consecutive. So if a burst B of length b introduces errors in positions k and l, then these positions are at most b apart, i.e., $l-k \equiv s \bmod n$ where $0 \leqq|s|<b-1$.

Let $t=[p / 2]$, i.e., the integer part of $p / 2$, and

$$
b_{t}=\min _{i \neq j}\left[\text { g.c.d. }\left(m_{i}, m_{j}\right)\right]=n / n_{p} \cdot n_{p-1}=n_{1} \cdot n_{2} \cdots n_{p-2} .
$$

Theorem 1. The code C corrects any t bursts of length b_{t} or less.
Proof. Let $\bar{v}=\left(v_{0}, v_{1}, \cdots v_{n-1}\right)$ be a codeword of C and

$$
\bar{e}=\left(e_{0}, e_{1}, \cdots e_{n-1}\right)
$$

be an error pattern consisting of t or fewer bursts of length b_{t}. The received n tuple is $\bar{r}=\left(r_{0}, r_{1}, \cdots r_{n-1}\right)=\bar{v}+\bar{e}$, where $r_{i}=v_{i}+e_{i}$.

Using \bar{r} and the p orthogonal parity checks on v_{0} (Lemma 1), we can form $p+1$ independent estimates of v_{0}, i.e.,

$$
\begin{align*}
& v_{0}^{(0)}=r_{0}, \tag{6}\\
& v_{0}^{(j)}=\sum_{i=1}^{n_{j}-1} r_{i \cdot m_{j}}, \quad j=1,2, \cdots p . \tag{7}
\end{align*}
$$

We now show that at most t of these estimates can be wrong.
Let B_{0} be a burst of length b_{t} or less which introduces an error in position 0 . Since none of the digits r_{k},

$$
k=n-b_{t}+1, \quad n-b_{t}+2, \cdots n-1, \quad 1,2, \cdots b_{t}-1
$$

are involved in the equations represented by (7); any error introduced by B_{0} cannot affect the p estimates given by (7).
Let B_{1} be a burst of length b_{c} or less which does not include the digit in position 0 as one of its errors. Assume that B_{1} introduces errors in positions k and $l=k+s, 0<s<b_{l}-1$, and that r_{k} and r_{l} are involved in two different estimates of v_{0} given by (7). Then $k=i_{1} \cdot m_{j_{1}}$ for some i_{1} and j_{1} and $l=i_{1} \cdot m_{j_{2}}$ for some i_{2} and $j_{2} \neq j_{1}$. Now

$$
\text { g.c.d. }\left(m_{j_{1}}, m_{j_{2}}\right)=n / n_{j_{1}} n_{j_{2}} \geqq b_{t},
$$

and

$$
\text { g.c.d. }\left(m_{j_{1}}, m_{j_{2}}\right) \mid(l-k) \therefore(l-k) \geqq b_{t} \text {, i.e., } s>b_{t} \text {, }
$$

which is a contradiction. Therefore, errors introduced by B_{1} can affect at at most one of the $p+1$ estimates of v_{0}.

We have shown that an error burst of length b_{t} or less can affect at most one of the estimates of v_{0}. So if the error pattern \bar{e} consists of t or fewer bursts of length b_{t}, at most t of the estimates of v_{0} can be incorrect, hence there will be at least $t+1$ estimates which are correct and v_{0} can be recovered correctly by a majority vote.

Since the code is cyclic, this is true for all the digits $v_{i}, i=0,1, \cdots n-1$. Q.E.D.

It follows directly from Theorem 1 that the code C can be one-step threshold decoded. (Massey [8])
Example 1. Consider the cove with parameters $n_{1}=5, n_{2}=6, n_{3}=7$ and $n_{4}=11$. Then $n=2310, k=1200, t=2$, and $b_{2}=30$, i.e., the code corrects any 2 bursts of length 30 or less.
In the discussion above, b_{2} is the maximum allowable length of a burst that affects at most one of the estimates of v_{0} given by Eqs. (6) and (7). It is evident that if t^{\prime} bursts occurs, where $t^{\prime}<t$, then the code is capable of correcting longer bursts, i.e., bursts of length $b_{t^{\prime}}>b_{i}$. A generalization of some of the ideas of Theorem 1 is presented here.

There are p orthogonal parity checks on each digit position. If a burst of length b_{b}, affects at most s^{\prime} estimates then the code can correct $t^{\prime}=\left[p / 2 s^{\prime}\right]$ bursts of length $b_{i^{\prime}}$ by one-step threshold decoding. If we
take $s^{\prime}=1$, then the results of Theorem 1 follow. It is not possible in general to write down an explicit formula for $b_{\iota^{\prime}}$ when $s^{\prime}>1$. However, a simple algorithm is developev here for calculating $b_{t^{\prime}}$ for any $t^{\prime}<t$.
In equation (7), let T_{j} be the digit positions involved in the estimate $v_{0}^{(j)}$. Then

$$
T_{j}=\left\{a \cdot m_{j} \mid a=1,2, \cdots n_{j}-1\right\} \quad j=1,2, \cdots p .
$$

Let B be a burst of length b starting in position a_{1} and ending in position $a_{2}=a_{1}+b-1$. If B affects more than s^{\prime} estimate of v_{0}, then there must exist at least $s^{\prime}+1$ integers t_{j} such that $t_{j} \in T_{j}$ and $a_{1} \leqq t_{j} \leqq a_{2}$. Define $\bar{T}=\left[\bar{a}_{1}, \bar{a}_{2}\right]$ to be the smallest interval such that $\bar{a}_{1} \leqq t_{j} \leqq \bar{a}_{2}$ for $s^{\prime}+1$ of the j^{\prime} 's. Then no burst of length $b_{i^{\prime}}=\bar{a}_{2}-\bar{a}_{1}$ or less can affect more than s^{\prime} estimates since this would imply the existence of an interval shorter than \bar{T} satisfying the same conditions as \bar{T}, which is a contradiction.

The problem is now to find the shortest interval $\bar{T}=\left[\bar{a}_{1}, \bar{a}_{2}\right]$ for different value of s^{\prime}. If $s^{\prime}=1$, then this interval is of length $b_{t}=n / n_{p} n_{p-1}$ as proved in Theorem 1. For $s^{\prime}>1$, the value of $b_{\prime^{\prime}}$ can be obtained by a simple computer program. The T, 's can be generated quite easily and a simple search procedure will find \bar{T} for all values of s^{\prime}.

Example 2. Using the same n_{1}, n_{2}, n_{3} and n_{4} as in Example 1, one obtains $b_{1}=77$, i.e., the code can correct a single burst of length 77 by threshold decoding. This of course exceeds $2 \cdot b_{2}=60$ which is guaranteed from the results of Example 1.

3. GEOMETRIC STRUCTURE OF THE CODES

The code C is the cyclic product of single-parity-check codes. Using this fact, one can construct a geometric model of this code. Kautz [y] and Calabi and Haefeli [4] have investigated the geometric structure of such codes extensively and determined their random error and single burst error correction capabilities. In this section, we study the multiple burst correction properties of these codes using their geometric structure.
Consider a set of $n=\prod_{j=1}^{p} n_{j}$ digits arranged in a p-dimensional array of size $n_{1} \times n_{2} \cdots \times n_{p}$. The array corresponds to a lattice in the shape of a rectangular parallelopiped in p-dimensional Euclidean space with the lattice points having integral coordinates ($i_{1}, i_{2}, \cdots i_{p}$) such that $0 \leqq i_{j}<n_{j}$. The $k=\prod_{j=1}^{p}\left(n_{j}-1\right)$ data digits are placed at the lattice points with coordinates ($i_{1}, i_{2}, \cdots i_{p}$) with $0 \leqq i_{j}<j_{n}-1$. The digit in position ($i_{1}, i_{2}, \cdots i_{p}$) is denoted by $u_{\left(i_{1}, i_{2}, \cdots, i_{p}\right)}$. We complete the
lattice by inserting parity check digits at the remaining $r=n-k$ positions in such a manner that the parity along any line parallel to a coordinate axis is even. The resultant lattice L is then a codeword of the p-dimensional product code C^{\prime} whose constituent subcodes are single-parity-check codes of block lengths $n_{1}, n_{2}, \cdots n_{p}$.

Using the approach of Burton and Weldon [8], one can define a mapping F from the lattice L to the n tuple \bar{v}. The mapping F is derived in the following manner.

Since g.c.d. $\left(m_{j}, n_{j}\right)=1, j=1,2, \cdots p$, there exist integers $t_{1}, t_{2}, \cdots t_{p}$ such that

$$
\begin{equation*}
t_{j} \cdot m_{j} \equiv 1 \bmod n_{j}, \quad j=1,2, \cdots p \tag{8}
\end{equation*}
$$

Then

$$
\begin{equation*}
i=F\left(i_{1}, i_{2}, \cdots i_{p}\right)=\sum_{j=1}^{p} t_{j} \cdot m_{j} \cdot i_{j} \bmod n \tag{9}
\end{equation*}
$$

The digit $u_{\left(i_{1}, i_{2}, \cdots i_{p}\right)}$ in L is mapped to v_{i} in \bar{v} where i is given by (9). This mapping is $1-1$ and the inverse mapping G is given by

$$
\begin{equation*}
G(i)=\left(i_{1}, i_{2}, \cdots i_{p}\right) \text { where } i_{j}=i \bmod n_{j} \tag{10}
\end{equation*}
$$

(Residue classes are represented by the smallest nonnegative integer in that class).

Under the mapping F the p-dimensional code C^{\prime} is equivalent to the cyclic code C whose generator polynomial is given by (2). (Burton and Weldon, [8])

It is known that the minimum distance of the code C^{\prime} is 2^{p} and that the codewords of weight exactly 2^{p} are those patterns having nonzero digits at the corners of a p-dimensional rectangular parallelopiped sublattice of L, [7$]$.
Each p^{\prime}-dimensional hyperplane of L parallel to the coordinate axes is a p^{\prime}-dimensional subcode having a structure similar to C^{\prime}. Each such hyperplane can be considered as a p^{\prime}-dimensional product code having minimum distance $2 p^{\prime}$.

Lemma 2. If e_{k} and $e_{l}, k \neq l$ are errors belonging to the same burst of length n_{1}, then the points corresponding to k and l in L cannot both lie on any p^{\prime}-dimensional hyperplane of L for $p^{\prime}<p$.

Proof. Since e_{k} and e_{l} belong to a burst of length n_{1}, either (i) $l-k \equiv a \bmod n$ or (ii) $l-k \equiv-a \bmod n$ for some $0<a<n_{1}$.

Let $G(k)=\left(k_{1}, k_{2}, \cdots k_{p}\right)$ and $G(l)=\left(l_{1}, l_{2}, \cdots l_{p}\right)$.
In case (i),

$$
\begin{equation*}
l_{j}-k_{j} \equiv a \bmod n_{j} \tag{11a}
\end{equation*}
$$

In case (ii), $\quad l_{j}-k_{j} \equiv a \bmod n_{j} \equiv\left(n_{j}-a\right) \bmod n_{j}$.
for $j=1,2, \cdots p$, since n_{1} is the smallest of the n_{j} 's.
For $u_{\left(k_{1}, k_{2}, \cdots k_{p}\right)}$ and $u_{\left(l_{1}, l_{2}, \cdots l_{p}\right)}$ to be on the same ($p-1$)-dimensional hyperplane we must have

$$
k_{j_{1}}=l_{j_{1}} \quad \text { for some } \quad j_{1}, \quad \text { i.e., } \quad l_{j_{1}}-k_{j_{1}} \equiv 0 \bmod n_{j_{1}}
$$

But from (11a) and (11b) we see that $l_{j}-k_{j} \neq 0 \bmod n_{j}$ for any j. Therefore, the points corresponding to k and l in L cannot both lie on the same $(p-1)$-dimensional hyperplane, and consequently on any p^{\prime}-dimensional hyperplane of L for $p^{\prime}<p$.
Q.E.D.

Lemma 3. Let e_{k} and e_{l} be errors belonging to the same burst of length n_{1} with $G(k)=\left(k_{1}, k_{2}, \cdots k_{p}\right)$ and $G(l)=\left(l_{1}, l_{2}, \cdots l_{p}\right)$.

If $\left(l_{j_{1}}-k_{j_{1}}\right) \equiv a^{\prime} \bmod n_{j_{1}}$ and $\left(l_{j_{2}}-k_{j_{2}}\right) \equiv a^{\prime} \bmod n_{j_{2}}$ for some $0<a^{\prime}<n_{1}, j_{1} \neq j_{2}$, then $\left(l_{j}-k_{j}\right) \equiv a^{\prime} \bmod n_{j}$ for all $j=1,2, \cdots p$.

Proof. As in Lemma 2, either (i) $l-k \equiv a \bmod n$ or (ii) $l-k \equiv$ $-a \bmod n$. In case (ii) $\left(l_{j}-k_{j}\right) \equiv n_{j}-a \bmod n_{j}, j=1,2, \cdots p$ and since $n_{j_{1}} \neq n_{j_{2}}$ for all $j_{1} \neq j_{2}$, we need not consider this case.

In case (i), $l_{j}-k_{j} \equiv a \bmod n_{j}, j=1,2, \cdots p$. Therefore, if $\left(l_{j_{1}}-k_{j_{1}}\right) \equiv a^{\prime} \bmod n_{j_{1}}$, and $\left(l_{j_{2}}-k_{j_{2}}\right) \equiv a^{\prime} \bmod n_{j_{2}}$ then $a^{\prime}=a$ and $\left(l_{j}-k_{j}\right) \equiv a^{\prime} \equiv a \bmod n_{j}, j=1,2, \cdots p . \quad$ Q.E.D.

Theorem 2. For $p \geqq 3$, the code C can correct all burst patterns consisting of 2^{p-2} or less bursts of length n_{1}.

Proof. To prove this theorem, we need to show that there is no nonzero codeword in C which is a pattern of $2 \cdot 2^{p-2}$ or fewer bursss of length n_{1}. This is proved by contradiction.

Let \bar{v} be a nonzero codeword of C which is a pattern of 2^{p-1} or fewer bursts of length n_{1}. Since the code is cyclic, we may assume, without loss of generality, that one of the bursts, call it B_{1}, starts in position 0 . Using the mapping G we construct the lattice L which is the equivalent of \bar{v}. Then L must be a codeword of C^{\prime}.

Now $\bar{v}_{0} \neq 0$, therefore, $u_{(0,0, \cdots 0)} \neq 0$. Consider the $p-1$ dimensional hyperplane of L which contains all points ($i_{1}, i_{2}, \cdots i_{p}$) with $i_{1}=0$. This hyperplane contains a nonzero digit $u_{(0,0, \cdots)}$. and corresponds to a ($p-1$)-dimensional code having minimum distance 2^{p-1}, therefore it
must contain at least 2^{p-1} nonzero digits. It cannot contain more than 2^{p-1} nonzero digits, since a burst of length n_{1} can contribute at most 1 nonzero digit to a ($p-1$)-dimensional hyperplane (Lemma 2). This hyperplane, therefore, contains exactly 2^{p-1} nonzero digits and \bar{v} must be a pattern of exactly 2^{p-1} bursts. The 2^{p-1} nonzero points in the hyperplane must lie on the corners of a ($p-1$)-dimensional rectangular parallelopiped, which can be represented by the set
$T_{i_{1}=0}=\left\{\left(i_{1}, i_{2}, \cdots i_{p}\right) \mid i_{1}=0, i_{j}=0 \quad\right.$ or a_{i} for $\left.j=2,3, \cdots p\right\}$
where $a_{2}, a_{3}, \cdots a_{p}$ are $p-1$ integers with $0<a_{j}<n_{j}$. Then

$$
u_{(0,0, \cdots, \cdots)} \in B_{1}, u_{\left(0, a_{2}, 0, \cdots\right)} \in B_{2}, u_{\left(0,0, a_{3}, 0, \cdots 0\right)} \in B_{3}, \quad \text { etc. }
$$

where $B_{1}, B_{2}, \cdots B_{2}(p-1)$ are different bursts of length n_{1}.
Considering other hyperplanes of dimension $p-1$ and using the condition that each hyperplane is a codeword of minimum distance 2^{p-1}, it follows that there are nonzero digits at the 2^{p} points which are represented by the set

$$
T=\left\{\left(i_{1}, i_{2}, \cdots i_{p}\right) \mid \dot{i_{j}}=0 \quad \text { or } \quad a_{j}, j=1,2, \cdots p\right\}
$$

(i). Now consider the nonzero digit in position ($i_{1}, i_{2}, \cdots i_{p}$), $i_{j}=a_{j}$ for all $j=1,2, \cdots p$. This point is coplanar (i.e., lies on the same ($p-1$)-dimensional hyperplane) with all points belonging to $T_{i_{1}=0}$, except the point $(0,0, \cdots 0)$. By Lemma 2, $u_{(0,0, \cdots 0)}$ and $u_{\left(a_{1}, a_{2}, \cdots a_{p}\right)}$ must both belong to B_{1}. Since B_{1} starts in position v_{0}, the only digits that can belong to B_{1} are $v_{1}, v_{2}, \cdots v_{n_{1}-1}$. Therefore ($a_{1}, a_{2}, \cdots a_{p}$) $=$ $G(a)=(a, a, \cdots a)$, where $0<a<n_{1}-1$.

$$
\begin{equation*}
a_{j}=a, \quad j=1,2, \cdots p \tag{12}
\end{equation*}
$$

(ii). Now consider the point ($i_{1}, i_{2}, \cdots i_{p}$) with $i_{2}=0$ and $i_{j}=a_{j}$ for $j \neq 2$. This point is coplanar with all points belonging to $T_{i_{1}=0}$ except the point ($i_{1}^{\prime}, i_{2}^{\prime}, \cdots i_{p}^{\prime}$) with $i_{2}^{\prime}=a_{2}$ and $i_{j}^{\prime}=0$ for $j \neq 2$.

Now

$$
\begin{equation*}
i_{j}-i_{j^{\prime}} \equiv a_{j} \equiv a \bmod n_{j}, \quad j \neq 2 \tag{13a}
\end{equation*}
$$

and

$$
\begin{equation*}
i_{2}-i_{2^{\prime}} \equiv-a_{2} \equiv n_{2}-a \bmod n_{2} \tag{13b}
\end{equation*}
$$

By Lemma 3

$$
\begin{equation*}
n_{2}-a \equiv a \bmod n_{2} \tag{14}
\end{equation*}
$$

since $0<a<n_{2} \quad n_{2}=2 a$.
(iii). Now consider the point ($i_{1}, i_{2}, \cdots i_{p}$) with $i_{3}=0$ and $i_{j}=a_{j}$ for $j \neq 3$. This point is coplanar with all points of $T_{i_{1}=0}$ except the point $\left(i_{1}^{\prime \prime}, i_{2}{ }^{\prime \prime}, \cdots i_{k}^{\prime \prime}\right)$ with $i_{3}^{\prime \prime}=a_{3}$ and $i_{j}^{\prime \prime}=0$ for $j \neq 3$. Then as in (ii), we have

$$
\begin{equation*}
n_{3}=2 a \tag{15}
\end{equation*}
$$

From Eq. (15) and (16) $n_{2}=n_{3}$ which is a contradiction.
Therefore, our assumption that \bar{v} is a codeword of C, consisting of 2^{p-2} or fewer bursts of length n_{1} must be false.
Q.E.D.

Example 3. Consider the code of example 1 with $n_{1}=5, n_{2}=6, n_{3}=7$ and $n_{4}=11$. Then by Theorem 2 , this code corrects 4 bursts of length 5 .

We can consider the code C^{\prime} as the interlace of n_{1} codewords of a code $C^{\prime \prime}$ of block length $n^{\prime \prime}=\prod_{i=2}^{p} n_{i}$ which has dimension $p-1$ and minimum distance 2^{p-1}. Then from the burst error correcting capability of interlace codes (Corr, [5], Burton and Weldon, [3]) we know that C^{\prime} can correct $2^{p-2}-1$ bursts of length n_{1}. Theorem 2 proves that the code is capable of correcting at least one more burst than is indicated by the interlace code bound. However, there does not seem to be any simple decoding algorithm for correcting 2^{p-2} bursts of length n_{1}.

4. CONCLUSIONS

We have studied the multiple burst correcting properties of a class of cyclic product codes. Kautz [7] investigated the random error and single burst correction capabilities of these codes. Theorem 1 shows that a p-dimensional code of block length $n=n_{1} \times n_{2} \times \cdots n_{p}$ can correct [$p / 2$] bursts of length $n_{1} \times n_{2} \times \cdots n_{x-2}$, and that such error correction can be achieved in a very simple way. Theorem 2, based on the geometric structure of the code, shows that the code is also capable of correcting 2^{p-2} bursts of length n_{1}, which is one burst more than is indicated by the interlace code bound.

Received: March 14, 1969; Revised: August 14, 1969

REFERENCES

1. N. M. Abramson, "Encoding and decoding cyclic code groups," University of Hawaii, Report, 1967.
2. N. M. Abramson, Cascade decoding of cyclic product codes, IEEE Trans. Commun. Tech. 16 (1969), 398-402.
3. H. O. Burton and E. J. Weldon, Cyclic product codes, IEEE Trans. Information Theory 11 (1965), 433-439.
4. L. Calabi and H. G. Hagfeli, A class of binary systematic codes correcting
errors at random and in bursts, IRE Trans. Circuit Theory (special supplement), 6 (1959), 79-94.
5. F. Corr, Multiple burst detection, IRE Proc. 49 (1961), 1337.
6. P. Elias, Error free coding, IRE Trans. Information Theory 4 (1954), 29-37.
7. W. H. Kautz, A class of multiple error correcting codes for data transmission and recording, Stanford Research Institute, Menlo Park, California, Technical Rept. 5, 1959.
8. J. L. Massey, "Threshold decoding," M. I. T. Press, Cambridge, Mass., 1963.
9. W. W. Peterson, "Error correcting codes," M. I. T. Press, Cambridge, Mass., 1961.
10. I. S. Reed and G. Solomon, Polynomial codes over certain finite fields, J. SIAM 8 (1960), 300-304.
11. L. D. Rudolph, A class of majority logic decodable codes, IEEE Trans. Information Theory 13 (1967), 305-307.
12. J. J. Stone, Multiple burst error correction, Information and Conirol 4 (1961), 324-331.
13. J. J. Stone, Multiple burst error correction with the Chinese Remainder Theorem, J. SIAM 11 (1963), 74-81.
14. L. J. Weng, On linear product codes and their duals, Northeastern University Scientific Rept. No. 4, 1966.

[^0]: * This work was supported by the National Science Foundation under Grant No. GK-2339; auxiliary support was provided by the Joint Services Electronics Program (U. S. Army, U. S. Navy, and U. S. Air Force) under contract DAAB 07-67-C-0199.
 \dagger L. R. Bahl is now at the T. J. Watson Research Center, IBM, Yorktown Heights, N.Y.

