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A compact Hausdorff space T is constructed on which the constant functions are
the only real-valued continuous ones that are locally constant on a dense subset
of T. 1995 Academic Press. Inc.

If X is a compact Hausdorff space and C(X) is the space of all real-
valued continuous functions on X, we associate to each fe C(X) the set
Q(f) consisting of those xe€ X that have neighborhoods on which f is
constant. This is the (obviously open}) set on which f is locally constant.

Following the notation used in [ 1] and [ 2], we define

EoX)={fe C(X): 2(f)is dense in X}.

At a recent conference on Function Spaces, at the University of Southern
Illinois, Alain Bernard and Stuart Sidney gave lectures in which Ey(X)
played a role. When X is compact, metric, and has no isolated points, then
Ey(X) is a first category subspace of C(X) (with respect to the sup-norm
topology) which nevertheless has some of the properties (such as Banach-
Steinhaus and closed graph) which usually occur in spaces of the second
category. The question whether E () (where I=[0,1]) can operate on
some function space was also discussed.

In his lecture, Sidney raised

UESTION 1. Does Ey(X) always separate points on X?
0 ] 94 P

One may of course also ask

QUESTION 2. Does Ey(X) always contain a nonconstant function?

In the present paper we construct two spaces, S and 7, which show that
the answer is no in both cases. Even though it would of course be enough
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to do this for Question 2, it seems best to start with S. That space is much
easier to describe and much easier to visualize than 7. We have arranged
the proofs, as far as possible, to follow the same pattern in the two exam-
ples. The main difference is that S has just two “layers”, whereas T has
infinitely many.

In order to set the stage, we begin with some (very easy) positive results.
The following notations will be used throughout this paper:

I1=10,1] is the closed unit interval.
The letter ¢ denotes the cardinality of the continuum.

A 18 the collection of all Cantor sets K< I.

PROPOSITION.  E( X) separates points on X, hence is dense in C(X), if

(1) X is totally disconnected, or
(1) the set of isolated points of X is dense in X, or

(1)  the set of all pe X at which X is locally connected is dense in X,
or

(iv) X does not contain ¢ pairwise disjoint open sets.

Of these, (i) and (i1) are totally trivial. In fact, Eo(X) = C(X) in case (ii).

(iv) covers all compact metric spaces, as well as all compact groups, of
arbitrary cardinality.

The proofs of (iit) and (1v) use the well-known Cantor functions ¢, that
are associated to Cantor sets K</l These are continuous on I, non-
decreasing, constant on every component of /\K, but nonconstant on every
open interval that intersects K. Clearly, Q(¢p ) =1\K, and E () separates
points on 1.

To prove (iii) and (iv), pick p, ¢ € X, p # ¢, and choose he C(X) so that
Mp)=0, i(g)=1, KX )= I

For (iii), pick some K, put f=¢, k. let x, be a point at which X is
locally connected, and let ¥ be a connected neighborhood of x,. Either £
is constant on V, in which case V <= Q(f), or A(V) contains an open inter-
val J < I\K, in which case f is constant on the open set A7 '(J)<= V. Thus
Q(f) intersects every neighborhood of x,, so that x; 1s a limit point of
(/). -

For (iv), let H <1 be a Cantor set, observe that H is homeomorphic to
H x H and that H is therefore the union of ¢ pairwise disjoint Cantor sets
K. For one of these, # ~!(K) has empty interior, hence h~'(I\K) is dense
in X. With that K, define ' = ¢4 h, and observe that Q(f)>h ~(I\K).
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Finally, f{p)+#/(q) in (iii) and (iv) because @ 4(0) # @4(1).

Our examples will show that these sufficient conditions cannot be
weakened very much: The space S has just one nontrivial connected com-
ponent, namely I, the rest is totally disconnected. Neither S nor 7 contain
more than ¢ pairwise disjoint open sets. To give a negative answer to
Question 2, T must of course be connected; it is, in fact, path-connected.

As regards (iii), [2] contains this, but with a stronger hypothesis,
namely: X should contain a dense open set which is locally connected.
The proof of (iii) shows, in function-algebraic terminology, that Ey([)
“operates” from C{X) to Eq(X).

ExaMpLE 1. There is a compact Hausdorff space S on which Ey(S)
does not separate points.

1.1. Description of S. Let A be an uncountable index set, of cardinality
<e¢. The points of S are:

{a) all xel
(b) all (x, K, x) with xye Ke # and ae 4.
To describe the topology of S, put
Nx,d)y={ryel:|y—x|<9d},

for xeI, & > 0. Use these intervals to help define basic open neighborhoods
of points in §:

(a) If xel, then for every d >0 and every finite set F of pairs (K, a),
with Ke #", a € 4, put

B p(x)=WV(x, ) u{(y, K o) yeKn V(x,d)and (K, x) ¢ F}.
{(b) If p=(x, K, «), then for every § >0
Byp)={(y.K a): ye KnVix, d)}.
We regard (K, 2) as a subset of S, namely
(K,2x)={(x,K, a): xeK}.

1.2. Topological properties of S. The above named sets B; p(x) and
B,(p) form a base for a topology v on X. It is easy to see that 7 has the
following properties:

(i) The restriction of t to / is the standard topology of I.

(1n) Each (K, «) is homeomorphic to K, hence is compact and also
open in S.
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(ii1) If xeland (K, a)e # x A then B; .(x) intersects (K, «) only if
(K,a)¢F.

Hence x has a neighborhood which fails to intersect (K, o). This is all
that is needed to see that t is Hausdorff.

(iv) 7 is compact.

To prove this, let % be an open cover of S. The compactness of I shows
that there are finitely many neighborhoods B; ,.(x), each lying in some
member of %, whose union covers I and therefore covers all but finitely
many of the compact sets (K, «). This proves (iv).

We now fix some f€ Ey(S) and some Ke ¥, and prove:

1.3. There is an open interval J which intersects K, such that f is constant
on KnJ. Foreveryae A, (K, «)is open in S, and ('} is open and dense
in S. Every (K, a} contains therefore an open set on which f is constant.
Thus there are real numbers r(2) and open intervals J(x), with rational
endpoints, which intersect K, such that

Jix, K a)=r(a) (1)

for all xe KnJ(«) and all xe 4.
Since the set of all J(a)'s is countable and A is uncountable, there is an
open interval J such that

Ag={aeAd : Ja)=J} (2)

is uncountable.
Hence (1) holds now for all xe KnJ and all axe 4,.
Since A4, is uncountable, there is a real number r such that the sets

Age)y={aedy: jr(a) —r| <&} (3)

are infinite, for every ¢> 0.

Now pick xe KnJ and some B; (x) with V(x,d)<J, and pick £¢>0.
Since Aq(¢) is infinite, B; (x) intersects some (in fact, infinitely many) sets
(K, a) with a € 4(¢), in points p at which | f(p)—r| <e.

In other words, for every ¢ > 0 every neighborhood of x contains points
p at which | f(p) —r| <e. Since fis continuous at x, it follows that f(x)=r.

Since r was chosen before x, we conclude that

fx)=r forevery xeKnJ. (4)
This proves (1.3).
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1.4. If geC(l) is not constant then g is one-to-one on some Ke X
Assume, without loss of generality, that g(a)=0, g(b)=1, g([a. b]) =1, for
some a <b. If

p(t)=max{xe[a b} g(x)=1}

for te1, then ¢: I — [a, b] is strictly increasing, and is continuous on a set
D such that J\D is at most countable. Hence D contains some He ¢, and
K = ¢@(H) has the desired property.

1.5. Every fe€ Ey(S) is constant on I. This is an immediate consequence
of 1.3 and 1.4.

Note, If p and ¢ are distinct points of S, and if at least one of them is
not in /, then some fe Ey(S) has f(p) #f(g). The points of I are thus the
only ones that are not separated by E,(S).

ExampLE 2. There 1s a compact Hausdorff space T on which the con-
stant functions are the only members of Ey(T).

2.1. Description of T. Let A be an uncountable index set, of cardinality
<c. As usual, N will denote the set of all positive integers. The letters H
and K will denote nonempty compact subsets of a cube I” for some ne N.

For all ne N, 4, denotes the set of all sequences (K,, K, ..., K,,) such
that

(1) K,ext =4
(ii} K,cl'foralli<n
(m) K, ,=K;x(0,1] for all i <n, and
(iv) the projection into K, of any nonempty open subset of X, ,
contains a nonempty open subset of K.
The points of T are

{a) finite strings of the form

(.\’1, Klv Xy, Xa, K?,* Xy oy Xy s anl’ Xy 1 xn)
and

(b) infinite strings of the form
(x). K, 00, x5, Ky, 25, .0)

subject to the following conditions:
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When n =1, (a) reduces to the singleton x, el
When n> 1, neN, then

E:(Kla Kz,.... anl)E-[,;il
¥=(x1 X0 X,) €K, x (0, 1] (+)
K= (o), 0y n &, )EA" L.

The strings in (b) have to satisfy (*) for all ne N.
For brevity, we shall write

(¥, K, &), and (¥, K %),
in place of the strings in (a) and (b). Whenever these symbols appear, it
will be understood that (*) holds.
If 1<n< o, T, is the set of all (X, K, 2),. Thus

r=T,vTl,u - --.uT,.

In order to describe basic open neighborhoods of points in T we need
one further bit of notation:

F,={(K,2): KcI", ane A}.

(a) If p=(%, K, ), and neN, then for every >0 and every finite
set Fe #,, B, ¢(p) is the set of all (3, H, f8),, such that n <m < o0,

(H, B)=(K,,a,) forall i<n, [y,—x;1<d forall i<n,

and, when m > n, either y,,,<d or (K, «a,)¢F.
Note that every neighborhood of every point of T, intersects not only
T, butalso 7, ,,T,.s,... T, .

n»

(by If p=(x, I?_, &) then for every >0 and every ne N, B, ,(p) is
the set of all ( y, H, #),, such that n <m < o and, for all i <n,

(H, B.)=(K,, «;) and [y —x;] <.

2.2. Topological properties of T. The sets B; ,(p) and B, ,(p) form a
base for a topology 7 on T which has the following properties.

(1) T, is homeomorphic to .

(i) If neN and p=(X, K, &), ., then the set of all (7, K, &), is
homeomorphic to K, x (0, 1].

(iii) 7 is a Hausdorfl topology. This is proved as in Example 1,
except that one has to consider a number of cases.

{iv) 7 is compact.
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This is harder than it was in Example 1. Let
Y,=T,vT,u 0T,

Define #,: ¥, ., — Y, as follows. If ge Y, then n,(q)=¢. If g€ T, ., then
m,(q} 1s obtained from

(I:(xl, KI’ Apyoens Kn R R xann*arn-\'n+l)

by dropping the last three entries. Note that =z, is continuous and that
T, . )=T,.

The way in which neighborhoods of points in 7, are defined shows
that 7 is homeomorphic to the inverse limit of the Y,’s, with the =,’s as
bonding maps. It suffices therefore to prove that each Y, is compact.

Since Y, =T, 2.2(i) shows that Y| is compact. Suppose n =1 and Y, is
compact. Let % be an open cover of Y, , ;. There is then a fimite set Pc Y,
and neighborhoods B,=B; .(p) of all points peP (here J=4d(p),
F=F(p)) such that each B, lies in some member of ¥ and their union
covers Y.

Suppose g=(7. A, f),,,€Y,,,\U B,. Then there is a pe P such that
n,(q)€ B,. By the definition of B, .(p), if this p is in T, for some m <n,
then ge B; »(p). So p=(X, K, a),€T,. Note that (H,, 8,)=(K,, «;) for all
i<n (since m,(g)eB,) and that (H,, f,)e F(p) because g¢ B,. For the
same reason, ), ;= d(p). Thus ¢ lies in the set

WAH B) =2 H Buei Zyer 2 0(p))

which, by 2.2 (ii), is homeomorphic to H, x[dJ,, 1] and is thus compact.
Since P is finite and each F(p) is finite, there are only finitely many
possibilities for these W’s. Their union is thus compact., and it covers

Y11+1\U Bp'

(v) Suppose neN and p=(%, K, &),,.,. For 0<r<l, let p,=
(Z, K, 2),,,. where z;,=x, for all i<n and z,,,,=1¢ and let p,=m,(p).
Then {p,:0<t<1} is homeomorphic to I

Every point of T, ., thus lies on a half-open interval (also in T,, ;)
which is glued to T, by its missing end-point, which lies in 7,,. This makes
T path-connected.

23. Wenow fix (K,,..,K,)eH,, &=(x,, ..., ,)eA” ' and put K=
(K,,..K,_;)asin 2.1

Claim. 1f fe C{T) and Q(f) is dense in 7, then there is a nonempty
open set Vin K, such that f'is constant on {(%, K, &),: ¥ V}.
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Let ¥ be a countable base for K,,. For every xe 4, let W, be the set of
all points (w, H, B),, with n <m < oo that satisfy

H =K, forall i<mn, pi=a; forall i<n,

and f,=a.

Then W, is open, and since £2(f) i1s dense in T, W_n£2(f) is a non-
empty open set. Since T, has empty interior, there is an m, n<m < oc, a
point ¢=(w, H, ), in W,nQ(f)n T, and a neighborhood B, ,(¢g) on
which fis constant. Say f = r(a) on this neighborhood.

The intersection of B (g) with T,, is the set

Z,={(z, H f), |z.—w]|<dforalli<m}.
If
U,={ueH, ;: |z;—w]<dforalli<m}
then U, is a nonempty open set in H,,_,. Since (H,,...H,, _\)eX,, _,,

n<m—1, and H,= K, the projection of U, into K, contains a nonempty
V,et (see 2.1 (iv}). So:

If feV,, p=(X, K«x),, and B, .(p) is one of p’s basic
neighborhoods, with (K, x)¢ F, then B; .(p) intersects Z,
in a point p’ at which f(p') = r(a). (%)

Since ¢ is countable and A is uncountable, there i1s a Ve ¥ that the set
Ag={aed:V, =V}
1s uncountable, and there is a real number r such that the sets
Age)={aeAdy: |r(a)—r|<e}

are infinite, for every &£>0.

If eV, p=(X, K, &),. and ¢>0, the fact that A4,(¢) is infinite shows
now, by (=) that every neighborhood of p contains points p’ at which
|f(p'}—r]<e Since f is continuous at p, it follows that f(p)=r. This
proves the claim.

24. Wefix K=(K,,.,K, )and & =(«,, .., ,)asin 2.3, and claim:
If g e C(T), g is not constant, and » is the smallest integer such that g is not
constant on T, then there exists a nonempty K, = K, _, x (0, 1] such that

(a) (Kl,..., Knvan)e')f;n and

(b) if Vis a nonempty open subset of K, then g is not constant on
{(%,K,2),:xe V).
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Note first that if g is not constant on 7, then (because 7', has empty
interior) g fails to be constant on some 7, and hence there is a smallest
n for which this is true.

If n=1, we refer to 1.4.

Suppose n > 1, and, without loss of generality, g=0on Ty u --- U T, _,.
There exists then a point p e T, at which g(p) 0. In view of 2.2 (v), there
is a closed interval I,<=(0, 1] such that g is not constant on {p,: tel,},
because g(p,) =0. Another application of 1.4 gives us a Cantor set C in
{ p.: tel,} such that g is one-to-one on C.

Associate to every open set J < I, the closed set L(J) of all Ze K, _, for
which g is constant on the set

(50, K ), 1]}

(The constant depends on Z and J.)
Let K, be K, _| x /,, minus the union of all sets of the form

(int L{J)) x J.

These are open, hence K, is compact, and K, # & because Cc K. Our
choice of L{J) makes (b) clear.

To check (a) we show that every point of K, has a neighborhood in X,
whose projection into K,,_, has nonempty interior.

Sofix veK,,.e>0, Jo=(y,—¢ y,+¢&)nl,, and put

U={aeK,_,:lu,—y,;| <eforalli<n}.

Then (U x J,) n K, is an open neighborhood of j in K,,.

Since Fe K,,, V'=U\L(Jy) # J, and V is open.

If e V then g is not constant on {#} x J,, hence (using 1.4 one more
time) there is a Cantor set ({¢)< {0} x.J, on which g is one-to-one. So
Civ) is in K, hence C(F) < (UxJy) nK,. Since C(¥) projects to {&}, it
follows that (UxJ,) n K, projects on a set containing V.

25. If fe Ey(T) then [ is constant. This is an immediate consequence of
23 and 24,
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