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We discuss a one loop model for neutrino masses which leads to a seesaw-like formula with the
difference that the charged lepton masses replace the unknown Dirac mass matrix present in the usual
seesaw case. This is a considerable reduction of parameters in the neutrino sector and predicts a strong
hierarchical pattern in the right handed neutrino mass matrix that is easily derived from a U (1)H family
symmetry. The model is based on the left–right gauge group with an additional Z4 discrete symmetry
which gives vanishing neutrino Dirac masses and finite Majorana masses arising at the one loop level.
Furthermore, it is one of the few models that naturally allow for large (but not necessarily maximal)
mixing angles in the lepton sector. A generalization of the model to the quark sector requires three iso-
spin singlet vector-like down type quarks, as in E6. The model predicts an inert doublet type scalar dark
matter.

© 2009 Elsevier B.V. Open access under CC BY license. 
1. Introduction

One of the major puzzles in particle physics beyond the stan-
dard model (SM) is to understand the origin of neutrino masses
[1]. A simple paradigm is the seesaw mechanism [2] which intro-
duces three right handed (RH) neutrinos with arbitrary Majorana
masses additionally to the SM with the resulting seesaw formula
for the light neutrino mass matrix given by

Mν = −mT
D M−1

R mD . (1)

The input values of mD and MR are then required to find the
neutrino masses. In the simple seesaw framework, the RH neu-
trino spectrum can therefore not be determined from neutrino
observations. Clearly, the knowledge of the right handed neutrino
spectrum would be of great phenomenological interest for testing
the model. If seesaw is embedded into grand unified theories it
is sometimes possible to predict mD , so that one could get some
idea about the right handed neutrino masses. In this Letter, we
present a bottom-up one loop scheme where we obtain the follow-
ing seesaw-like formula from a left–right symmetric model even
though the Dirac mass matrix vanishes to all orders in perturba-
tion theory:

Mν = λ′

16π2
Mdiag

� M−1
N Mdiag

� , (2)
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where Mdiag
� is the diagonal charged lepton mass matrix: Mdiag

� =
diag(me,mμ,mτ ) and λ′ is a Higgs self coupling. As a result, the
flavor structure of the RH neutrino mass matrix is completely de-
termined. We find a stronger hierarchy in the RH neutrino sector
compared to the charged leptons. Thus the radiative corrections
transmit the charged lepton mass hierarchy into the RH neutrino
sector (radiative transmission of hierarchies). Furthermore the hier-
archy in the RH sector is such that it is easily obtainable from a
simple U (1)H family assignment. This is the main result of the
Letter. As an application, we predict B(μ → e + γ ) in this model.

We also discuss how the quark sector can be made realistic
since the Z4 symmetry leads to vanishing down quark masses at
tree level. Two ways to generate realistic down quark masses and
CKM angles are: (i) introduction of color triplet iso-spin singlet
fields that give radiative masses to down quarks or (ii) the addition
of three iso-spin singlet vector-like down quarks which generate a
tree level mass for the down quarks. We only present the second
scenario here, which also has the property that it leads to an inert
doublet type scalar dark matter.

2. The model

Our model is based on the left–right (LR) symmetric group [3]
SU(2)L × SU(2)R × U (1)B−L supplemented by a discrete symmetry
group Z4. The quarks and leptons are assigned as in the minimal
LR model to left–right symmetric doublets. The symmetry break-
ing is implemented also as in the minimal LR model by the Higgs
fields φ(2,2,0) and 	R(1,3,+2) ⊕ 	L(3,1,+2).
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Table 1

Fields Z4 charge

Q R −i
LR +i
φ +i
φ̃ ≡ τ2φ∗τ2 −i
	R −1

In the leptonic sector of the model, the SU(2)R × U (1)B−L

breaking by the right handed triplet with B − L = 2 gives large
Majorana masses to the RH neutrinos [4]. Unlike in the usual im-
plementation of the seesaw formula however, in our model, the
Dirac mass for neutrinos vanishes to all orders in perturbation the-
ory due to the Z4 symmetry, whose effect on the various fields is
given in Table 1.

All other fields are assumed to be singlets of Z4. The most
general potential for the left–right model has been discussed in
the literature before [5]. The presence of the Z4 symmetry in our
model forbids terms linear in the invariant Tr(φ̃†φ) in the poten-
tial so that the minimum energy configuration corresponds to the
following vev for the φ field (instead of the general one in [3]):

〈φ〉 =
(

κ 0
0 0

)
. (3)

For the 	L,R fields we have

〈
	0

R

〉 = (
0 0

v R 0

)
,

〈
	0

L

〉 = 0. (4)

The gauge invariant Yukawa couplings of the above Z4 supple-
mented LR model are

LY = hq Q̄ LφQ R + hl L̄L φ̃LR

+ [
f
(
LT

R	R LR + LT
L 	L LL

) + h.c.
]
. (5)

By an appropriate choice of the basis, we can choose both hq,l to
be diagonal matrices. There is no loss of generality in this. It is
easy to see that with the above assignment, we get the Dirac neu-
trino mass mD = 0 and the diagonal Yukawa coupling matrix hl is
given by hl = diag(me,mμ,mτ )/v wk . We also note that there is no
type II seesaw [6] contribution to the neutrino masses unlike in
usual left–right models.

The stability of the minimum of the potential under radiative
corrections can be seen as follows: If we write φ ≡ (H, η) where
H and η are two SU(2) Higgs doublets with Y = ∓1, then the
above vev pattern corresponds to 〈H〉 = v wk 
= 0 and 〈η〉 = 0. In
the language of the η and H fields, it is easy to see that the
Lagrangian of the model respects a remnant Z2 symmetry under
which η → −η and NR → −NR and all other fields are singlets, so
that the zero vev for η is protected by this symmetry. Below the
SU(2)R × U (1)B−L breaking scale, the model is a two Higgs exten-
sion of the standard model that allows for small neutrino masses,
similar to one discussed in Ref. [7].

3. Seesaw-like formula for neutrino masses

As noted, at tree level, both neutrino Dirac masses and the
down quark masses vanish. We will address the question of down
quark masses in the next section. As far as neutrinos are con-
cerned, at one loop level they pick up mass from the left diagram
in Fig. 1 with the neutrino mass matrix given by the one loop for-
mula

Mν,i j = 1
2

ml,iΛi j(λ
′, MN,i j)ml, j, (6)
16π
where Λi j is given by

MN,i j

16π2

[
m2(

√
2�η0)

m2(
√

2�η0) − M2
N,i j

log

(
m2(

√
2�η0)

M2
N,i j

)

− m2(
√

2η0)

m2(
√

2η0) − M2
N,i j

log

(
m2(

√
2η0)

M2
N,i j

)]
. (7)

The Higgs masses are given by

m2(√2�φ0) = 2λ1κ
2,

M2(√2�η0) = M2
2 + (λ3 + λ4 + λ5)κ

2,

m2(√2η0) = M2
2 + (λ3 + λ4 − λ5)κ

2, and

m2(η±) = M2
2 + λ3κ

2. (8)

Note that these couplings λi are the effective couplings which we
get at low energies when the left–right symmetry is broken.

We assume that m2(
√

2�η0) � M2
N,i j , Λi j(λ

′, MN,i j) � 2 λ′
M2

N,i j
×

log(
M2

N,i j

m2(
√

2�η0)
), where λ′ is equivalent to λ5 in the Ma-model [7].

Then, the light neutrino mass matrix can then be written as

Mν,i j = 2λ′

16π2
ml,i

(
M−1

N

)
i jml, j log

(
M2

N,i j/m2(√2�η0)). (9)

Note that we can absorb log(
M2

N,i j

m2(
√

2�η0)
) into (M−1

N )i j without loss

of generality.
Since we have a rough idea about the form of the neutrino

mass matrix in the limit of zero CP phase and small reactor an-
gle θ13, we can use it to get an idea about the elements of the
RH neutrino mass matrix. It is interesting that all elements of this
mass matrix can be determined.

3.1. Normal hierarchy

The neutrino mixing observables [8] we use are:

	m2
21 = 7.65 × 10−5 eV2,

∣∣	m2
31

∣∣ = 2.40 × 10−3 eV2,

sin2 θ12 = 0.304, sin2 θ23 = 0.5, and sin2 θ13 = 0.01.

(10)

The charged lepton masses we take from Ref. [9]:

me = 0.511, mμ = 105.658, and mτ = 1776.84 MeV.

(11)

To fit the neutrino oscillation data, we can use

MN = 2λ′

16π2

( 1.83 × 106 −1.76 × 108 2.87 × 109

× 1.80 × 1010 −2.91 × 1011

× × 4.81 × 1012

)
GeV,

(12)

where the mass eigenvalues are given by (MN1, MN2, MN3) =
2λ′

16π2 (9.55 × 104,4.65 × 108,4.83 × 1012) GeV. Note that, in order
to avoid the N detection in the Z -boson decay width, λ′ has to be
larger than 0.0037.

The neutrino masses are given by

m1 = 0.0001, m2 = 0.0087, and m3 = 0.049 eV. (13)
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Fig. 1. The diagrams responsible for neutrino masses and for the rare decay μ → eγ in a Ma-like model, cf. Ref. [7].
3.2. Inverted hierarchy

To fit the neutrino oscillation data, we can use

MN = 2λ′

16π2

(5.57 × 103 −3.80 × 106 6.42 × 107

× 5.59 × 1010 9.37 × 1011

× × 1.58 × 1013

)
GeV,

(14)

where the mass eigenvalues are given by (MN1, MN2, MN3) =
2λ′

16π2 (5.31 × 103,4.48 × 108,1.59 × 1013) GeV, where λ′ now has
to be larger than 0.67.

The neutrino masses are

m1 = 0.049, m2 = 0.050, and m3 = 0.0001 eV. (15)

Note that in both cases, there is a strong hierarchy in the RH
neutrino sector in a way similar to the charged lepton sector. This
is what we label as the radiative transmission of hierarchy from
charged leptons to the RH neutrinos. Note that this mechanism,
given a certain form of MN (with small mixings), naturally allows
for large mixing angles in the SM lepton sector, that are not neces-
sarily maximal. This is different from many other models, where in
most cases only zero or maximal mixing is predicted. Note how-
ever, that there are also exceptions to this: E.g., the size of the
mixing angle could be determined by underlying discrete sym-
metries [10], or it could arise from an anarchical pattern of the
neutrino mass matrix [11].

To see analytically why this happens, let us try to reconstruct
MN from the tri-bimaximal form for the PMNS-matrix [12],

UPMNS =

⎛
⎜⎜⎝

√
2
3

1√
3

0

− 1√
6

1√
3

− 1√
2

− 1√
6

1√
3

1√
2

⎞
⎟⎟⎠ . (16)

Using this and Eq. (6), we can write down MN as function of λ′
and of the light neutrino mass eigenvalues m1,2,3. It is given by

λ′
6m1m2m3

times(
2(m1 + 2m2)m3m2

e 2(m1 − m2)m3memμ 2(m1 − m2)m3memτ

2(m1 − m2)m3memμ (3m1m2 + m2m3 + 2m1m3)m2
μ (−3m1m2 + m2m3 + 2m1m3)mμmτ

2(m1 − m2)m3memτ (−3m1m2 + m2m3 + 2m1m3)mμmμ (3m1m2 + m2m3 + 2m1m3)m2
τ

)
.

(17)

If we assume normal (m1 = p2m0, m2 = pm0, and m3 = m0, with
small p) or inverted hierarchy (m1 = m0, m2 = m0, and m3 = pm0),
the corresponding matrices will roughly look like

(MN )NH = λ′

6p2m0

⎛
⎝ 4m2

e −2memμ −2memτ

−2memμ m2
μ mμmτ

−2memτ mμmτ m2
τ

⎞
⎠ (18)

and

(MN )IH = λ′

2pm0

⎛
⎝2pm2

e 0 0
0 m2

μ −mμmτ
2

⎞
⎠ . (19)
0 −mμmτ mτ
Note that the reconstruction of all matrices (Eqs. (18) and (19))
has led us to heavy neutrino mass matrices which are hierarchical
and stiff. In all cases, having a light neutrino mass close to zero
(p → 0 in Eqs. (18) and (19)) can only increase this hierarchy, but
not destroy it. Especially in Eq. (19) the 11-entry is fixed, which
means that we will generically have one fixed RH neutrino mass
that is not too heavy. A similar situation happens for the quasi-
degenerate case.

These mass matrices for RH neutrinos have a structure that is
easily obtainable from the Froggat–Nielsen (FN) mechanism [13]
with a U (1)H family symmetry with H charges (0,1,2) for the
third, second, and the first generation right handed lepton dou-
blets. The left–right and U (1)H invariant Yukawa couplings in this
case can be written as

LY ,H = hl
3 L̄3,L φ̃L3,R + hl

2 L̄2,L φ̃L2,R
σ

M
+ hl

1 L̄1,L φ̃L1,R

(
σ

M

)2

+
[ ∑

a,b=1,2,3

fab LT
a,R	̃Lb,R

(
σ

M

)6−(a+b)

+ h.c.

]
. (20)

For an appropriate choice of 〈σ 〉
M (roughly 1/20 in the normal hi-

erarchy case), we get the desired hierarchy in both the charged
lepton masses as well as in the RH neutrino sector. This hierarchy
then translates into a structure of the light neutrino mass matrix
that naturally yields large mixing angles, although no values are
excluded a priori.

We can also give a prediction for μ → eγ [14], which is trans-
mitted by the heavy neutrinos (cf. right diagram of Fig. 1): The
Yukawa coupling in the basis where the heavy neutrino mass ma-
trix is diagonal is given by h = U−1 diag(me,mμ,mτ )/v wk , where
U is the matrix that diagonalizes MN . For a charged Higgs mass of
100 GeV and λ′ = 0.7, the prediction for Br(μ → eγ ) is 6 × 10−16

for normal and 8 × 10−16 for inverted ordering, where we have
used Eqs. (12) and (14). If we go to smaller values for λ′ , the
branching ratio increases (3 × 10−12 for λ′ = 0.01 and normal or-
dering), which might be very interesting in light of the upcoming
MEG experiment [15].

4. Extension to quark sector

It is clear from Eq. (4) that at the tree level in our model,
only the up quarks are massive. We present two ways to make
the quark sector realistic by giving mass to the down quarks, (i)
one where the Z2 symmetry, that keeps Dirac mass of the neu-
trino to be zero, is softly broken and (ii) another one by adding
three vector-like down quarks, where we can keep the Z2 symme-
try exact. We only discuss the second option here.

For (ii), we extend the model by adding three SU(2)L,R sin-
glet, color triplet, B − L = 2/3 quarks (denoted by DL,R ) and two
Higgs doublets under the SU(2)L,R groups with B − L = 1 (denoted
by χL,R ). Under the Z4 symmetry, the χL,R and D R are invariant,
whereas DL → −iDL . It is easy to write down a potential for χL,R

with asymmetric mass terms for them so that they have nonzero
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VEVs. Since the discrete symmetry does not allow the term χ
†
L φχR

term in the potential, the additional fields do not destabilize the
φ vev pattern assumed in the bulk of the Letter. The new Yukawa
interaction that is invariant under Z4 and gauge symmetry is given
by

Lnew = f D(Q̄ LχL D R + Q̄ RχR DL) + h.c. (21)

After spontaneous symmetry breaking the down quarks now have
masses where they pair with the new down quarks (rather than
the usual ones of the SM). As a result, the SU(2)R partner of
the up quark is a heavy down quark unlike in the minimal left–
right model [3]. In fact, after symmetry breaking, one could write
the left and right doublets as follows: Q L = (uL,dL) and Q R =
(uR , D R) (D R and dR swap roles), where the mass of D is in the
10 to 100 TeV range. We emphasize that there is no direct mass
term between DL and D R .

To fit the down quark masses and the CKM matrix, the Yukawa
coupling need to be (all matrix elements of Eq. (22) are in MeVs):

f D =
(0.89 24.7 14.1

× 106.5 169.9
× × 4192.9

)
1

v L
, (22)

where v L is the vev of χL . This appears to be a completely viable
way to generate down quark masses. An interesting feature of this
model is that the surviving Z2 remains an exact symmetry, and as
result the neutral member of the second doublet in φ can act as
dark matter [16], since it couples to quarks as φ0

2 d̄L D R , and as long
as mφ0

2
� MD , the φ0

2 is stable with stability guaranteed by the Z2

symmetry [17].

5. Conclusion

In summary, we have shown that a radiative one loop model
for neutrino masses proposed in [7] arises as a low energy limit
of a left–right model which then provides a natural explanation
of the two elements of the [7] proposal: (a) the reason for the
extra doublet with its particular discrete symmetry property and
(b) the origin of the right handed neutrino mass. Furthermore, the
radiative transmission of hierarchies makes large but non-maximal
mixing angles in the leptonic sector plausible. Left–right embed-
ding also reduces the number of parameters in the model, making
it predictive in the hadronic and leptonic flavor sectors.
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