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Liquid crystalline elastomers (LCEs) can undergo extremely large reversible shape changes when exposed
to external stimuli, such as mechanical deformations, heating or illumination. The deformation of LCEs
result from a combination of directional reorientation of the nematic director and entropic elasticity.
In this paper, we study the energetics of initially flat, thin LCE membranes by stress driven reorientation
of the nematic director. The energy functional used in the variational formulation includes contributions
depending on the deformation gradient and the second gradient of the deformation. The deformation gra-
dient models the in-plane stretching of the membrane. The second gradient regularises the non-convex
membrane energy functional so that infinitely fine in-plane microstructures and infinitely fine out-
of-plane membrane wrinkling are penalised. For a specific example, our computational results show that
a non-developable surface can be generated from an initially flat sheet at cost of only energy terms result-
ing from the second gradients. That is, Gaussian curvature can be generated in LCE membranes without
the cost of stretch energy in contrast to conventional materials.

� 2013 Elsevier Ltd. All rights reserved.
1. Introduction

1.1. Liquid crystalline elastomers (LCEs)

Elastomers are the base constituent of LCEs and are composed
of long, flexible molecular chains which are sufficiently linked to
each other by permanent chemical bonds (crosslinks) so that they
form a solid. Such rubbery solids are soft in the sense that their
shear moduli are of the order of 10�4 times their compression
moduli, that is they essentially deform at constant volume. Such
disparity in moduli arises because there are few crosslinks and
the long chains between them are free to move as in their liquid
state and in particular can extend enormously from their random
coil conformations before their finite molecular length is sensed
in any way. This freedom means that elastomers are capable of
large macroscopic extensions. By contrast, liquid crystals are true
liquids that are not just fluid-like at the molecular scale (as elasto-
mers are) but which can flow. They have no long range positional
order, but their constituent molecular rods are orientationally or-
dered about a direction called the director n, a unit vector.2

Elastomers and liquid crystals can be combined by chemically
bonding rods to flexible polymer chains so that the chains remain
fluid-like but are anisotropic in shape to an extent depending on
the degree of rod alignment with n. When such long chains are
loosely crosslinked to form elastomers both the local fluidity of
elastomers and the orientational order of liquid crystals and their
consequent properties of soft extensibility and of anisotropy per-
sist, including the freedom to rotate the director to new directions.
However, entirely new properties also emerge in these LCEs. Their
unique properties arise from the rod orientation changing the
chain shapes and when the chains are crosslinked, changes in the
degree of order being reflected in changes of shape of the bulk
material. They can deform dramatically under heat, reversibly
changing their lengths by many times their original length. When
the temperature is high enough, the distribution of molecular
directions is random and the material is in an isotropic liquid
phase. This phase is called the isotropic phase. On the other hand,
when the temperature is lower than the critical value, molecules
quadru-
it sphere
erty of n
of n.
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become locally aligned about the director and start to couple with
macroscopic deformations of the material matrix. This phase is
called the nematic phase. Order can also be changed by light in
many elastomers where the rods are dye molecules and thus light
(including its polarisation) offers subtle control of mechanics.
Recently these properties have been explored in many applica-
tions, e.g. artificial muscles and smart actuators (Bhattacharya
et al., 2001; van Oosten et al., 2008; Corbett and Warner, 2009).

A further remarkable phenomenon in LCEs is the accommodat-
ing of externally prescribed shape changes by re-orienting the
director, that is the direction of order, and hence the direction of
natural elongation of the body. When these redirected elongations
correspond exactly to the imposed distortions of the body, they al-
low deformation to occur at no or low energy cost — nematic soft
elasticity (Warner and Terentjev, 2007). See Fig. 1 for a schematic
illustration of this accommodation at no energy cost. The ellipsoid
in the figure characterises the chain shape distribution and the box
indicates the shape of an initially square specimen. Sometimes
these soft deformations have to be realised via laminates of alter-
nating soft deformations as shown in Fig. 2. Lamination allows
elongation softly in the presence of boundaries, clamps and other
possible constraints that are incompatible, for instance, with any
gross shear, as in Fig. 1(b). This possibility was initially envisaged
by Verwey et al. (1996) and observed by Finkelmann et al.
(1997) for simple strips clamped at their ends and stretched per-
pendicular to an initial transverse director. Stripes of alternating
direction of director rotation and with simple shear occur. Lami-
nates can add then their effect together to overall closely obey
boundary conditions. Because regions individually suffer soft
deformation, together they achieve the imposed macroscopic
deformation while only costing the very soft elastic penalty associ-
ated with the deformations as in Fig. 1. When the macroscopic
deformation exceeds that which can be achieved by realigning
the director in the stretching direction and accommodating stretch
by directing the naturally extended direction of the body along it,
the nematic elastomer deforms with the usual energy cost of a nor-
mal rubber. DeSimone and Dolzmann (2002) have characterised
the overall macroscopic behaviour after the material forms micro-
structure (or the quasiconvex envelope), including all possible
macroscopic soft deformations.

1.2. Liquid crystalline glasses

Closely related to LCEs are liquid crystal glasses. These are also
liquid crystalline solids, but with a high cross-link density to be
glassy. They undergo isotropic to nematic transitions as LCEs. How-
ever, unlike LCEs, the director can not reorient itself relative to the
polymer background and thus do not display soft behaviour. van
Oosten et al. (2008, 2009) have used liquid crystal glasses to make
highly efficient microscale actuators. The idea is to use pre-coded
non-uniform director fields, or non-uniformly absorbed external
Fig. 1. An elongation imposed perpendicular to the initial director n0 (a) causes it and its
natural shape of the body thereby changes, with a suitable component of elongation along
natural chain shapes are not distorted, but only rotated, there is no elastic cost of such s
imposed elongation can now no longer be accommodated by reorientation. The energy
stimuli through the thickness of a solid with a uniform director.
These have been analysed in some detail in Warner and Mahad-
evan (2004), Warner et al. (2010a,b).

In an alternate approach, Modes et al. (2011) demonstrated that
initially flat membranes of liquid crystal glass with director
oriented uniformly through the thickness but containing a topolog-
ical defect can deform into shapes with non-zero Gaussian curva-
ture without any cost of stretching. Since the deformation is
uniform through the thickness, the energy and force available for
actuation through these modes would be proportional to thickness
and thus higher than in bending based actuators.

1.3. Aims and approach

The aims of this paper are two fold. First, we show that the soft
deformation of LCEs can be exploited to create Gaussian curvature
change with very little energy. Specifically, we show that an ini-
tially flat membrane of LCE can be deformed into the shape of a
non-developable surface with no stretch energy. This is in remark-
able contrast with ordinary elastic membranes that resist any
change of Gaussian curvature and thus require significant elastic
energy to be deformed into a non-developable shape. Indeed this
resistance is so strong that it gives rise to wrinkling and other
instabilities. The fact that LCE membranes can change Gaussian
curvature freely points to its potential application as deformable
skins. Further, it also points to its use as actuators: by inducing
the isotropic to nematic transition by light or heat one can trans-
form a membrane between a flexible state (nematic) and a stiff flat
state (isotropic). Such an actuator would again possess high energy
and force proportional to thickness. Second, we develop a numer-
ical method to study large deformations of these nonlinear materi-
als. This requires the careful treatment of higher gradients,
geometric nonlinearity and material non-convexity.

To these ends, we consider the Verwey–Warner–Terentjev
(VWT) nematic elastic energy (Verwey et al., 1996) in the form
introduced by DeSimone and Dolzmann (2002). We show that this
energy can also be phenomenologically motivated by assuming a
multiplicative decomposition of the deformation gradient into an
elastic component and a component representing the reorientation
of the nematic director. Subsequently, we use the fact that the lat-
eral extent of the membrane is much larger than its thickness and
follow Le Dret and Raoult (1995) and Bhattacharya and James
(1999) to derive a model for thin membranes. The derived mem-
brane energy functional has two parts. The first part takes account
of in-plane stretching and depends on the first gradient of the
deformation. The second part is a regularisation term and depends
on the Laplacian, i.e. second gradient, of the deformation (Dondl
et al., 2007; Kohn and Müller, 1992). The membrane energy
functional is discretised with the finite element method using
box-spline basis functions. The same numerical technique had pre-
viously been applied to thin shells Cirak et al., 2000; Cirak and
associated anisotropic distribution of chain shapes (the ellipsoid) to rotate (c). The
the imposed direction, but also with concomitant sympathetic shears (b). Since the

hape change (‘‘soft elasticity’’). When rotation is complete, shear ceases and further
cost then rises to that of conventional rubber elasticity.



Fig. 2. Microstructure in a strip being extended from its initial configuration (dashed line) with director n0 (a). Two soft stripes of alternating shear (symbolically represented
by the parallelograms) with director n add to give extension and decreased macroscopic shear. Experimentally, very fine stripes develop to accommodate the regions where
shear is forbidden (b), image courtesy of Finkelmann et al. (1997).

Fig. 3. The membrane in its reference and deformed configurations. The two coordinate vectors, X and x, indicate the position of the same material point in the two
configurations.
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Ortiz, 2001; Cirak et al., 2003; Cirak and Long, 2011. Informally,
box splines are the generalisation of b-splines to multi-dimen-
sional domains.

The paper is organised as follows. In Section 2 we introduce the
governing equation of the thin membrane. Specifically, we discuss
in Section 2.1 the kinematic description of a surface undergoing fi-
nite deformations. Subsequently, in Section 2.2 the derivation of
the LCE constitutive models with unconstrained and frozen direc-
tor are introduced. The membrane energy functional, which serves
as the starting point for the discretization, is introduced in Sec-
tion 2.3. Its finite element discretization and the implemented
numerical solution approach are discussed in Section 3. In Section 4
the developed numerical scheme is used to compute the deforma-
tion of a rectangular shaped initially flat membrane due to pre-
scribed boundary displacements. In particular, the internal
energy requirements of the different configurations of the LCEs
are compared.
2. Governing equation of thin membranes

In this section, we first briefly review the kinematic description
of the membrane and then introduce the constitutive model used
for the liquid crystalline elastomer membrane.
3 Notation: The Greek indices take values one and two while the Latin indices take
alues one, two and three. Further, summation over repeated indices applies.
2.1. Kinematic description

The membrane occupies in its reference configuration the do-
main X0 ¼ x0 � � t

2 ;
t
2

� �
with the mid-surface x0 � R2 and the

thickness t, see Fig. 3. The loaded membrane occupies after the
deformation the domain X � R3 with the mid-surface x. As com-
mon, we parameterise the membrane with convective (curvilinear)
coordinates so that a material point has throughout the deforma-
tion history the same coordinates ðh1; h2; h3Þ, see also (Cirak et al.,
2000; Cirak and Ortiz, 2001). We take advantage of the geometry
of X0 and assume that ðh1; h2Þ parameterise the mid-surface x0

while h3 parameterises the thickness.
The position vectors of the material points in the reference and

deformed configurations are denoted with X ¼ Xðh1; h2; h3Þ and
x ¼ xðh1; h2; h3Þ, respectively. The covariant basis vectors of the
tangent space to the membrane surface are defined with3

Ai ¼
@X
@hi

; ai ¼
@x
@hi

: ð1Þ

The corresponding contravariant basis vectors Ai and ai follow from
the relations

Ai � Aj ¼ di
j; ai � aj ¼ di

j; ð2Þ

where di
j is the Kronecker delta.

Assuming the mapping from the reference to the deformed con-
figuration is sufficiently smooth we can compute a deformation
gradient

F ¼ @x
@X
¼ @x
@hi
� @h

i

@X
¼ ai � Ai or; xi;j ¼

@xi

@hk

@hk

@Xj

 !
: ð3Þ

The right Cauchy–Green strain tensor is defined as

C ¼ FTF ¼ ai � aj Ai � Aj ¼ aij Ai � Aj
; ð4Þ

where the three-by-three covariant metric tensor aij in the de-
formed configuration is the scalar product of the basis vectors.
The left Cauchy–Green strain tensor is defined as

b ¼ FFT ¼ Ai � Aj ai � aj ¼ Aij ai � aj: ð5Þ
v



4 In the original work Verwey et al. (1996), the energy was described with respect
to a nematic reference configuration with nematic director n0 and l ¼ g2 was referred
to as the step-length tensor.
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Here the scalar product of the basis vectors Aij is the contravari-
ant metric tensor in the reference configuration. For future use, we
introduce the spectral representations of the Cauchy–Green
tensors

C ¼
X3

i¼1

ðkiÞ2 Ei � Ei; ð6aÞ

b ¼
X3

i¼1

ðkiÞ2 ei � ei; ð6bÞ

where Ei and ei are the eigenvectors and k1 P k2 P k3 are the prin-
cipal values of F .

We are interested in the deformation of thin membranes, and
we shall thus be interested in the deformation of the mid-surface
x� f0g. This deformation is described as the mapping
Xðh1; h2;0Þ ! xðh1; h2;0Þ and we may define the tangential defor-
mation gradient as

�F ¼ aa � Aa or; xi;j ¼
@xi

@ha
@ha

@Xj

� �
: ð7Þ

Comparing with (3), we see that F ¼ �F þ a3 � A3. We define the
tangential Cauchy–Green strain tensors to be

�C ¼ �FT�F ¼
X2

a¼1

ð�kaÞ
2 �Ea � �Ea; ð8aÞ

�b ¼ �F�FT ¼
X2

a¼1

ð�kaÞ
2 �ea � �ea; ð8bÞ

where �ka are the principal values of �F. Note that in general the
eigenvectors �Ea may not coincide with the eigenvectors Ei and the
principal values of �F may differ from those of F.

2.2. Constitutive model

As discussed in the Introduction, liquid crystalline elastomer
solids undergo a phase transformation at a critical temperature.
Below the critical temperature, in the nematic phase the liquid
crystalline mesogens order locally along the nematic director n.
The ordering takes place on a scale of nanometers, and we thus re-
gard n as a continuum field. In ideal LCEs, the director can rotate
freely (since the high temperature phase is isotropic). However,
as a result of imperfections or non-idealities, the director has a pre-
ferred direction n0 (which may vary spatially). In a liquid crystal-
line glass, the director is frozen (i.e., unable to rotate freely). In
the following, we begin with Verwey, Warner and Terentjev
(VWT) (Verwey et al., 1996) model for ideal liquid crystal elasto-
mers in a form given in DeSimone and Teresi (2009). We then
modify it for non-ideal elastomers and glasses.

2.2.1. Unconstrained nematic director
We take the isotropic, high temperature state of the nematic

as the reference configuration. The energy density of an ideal
nematic elastomer with the isochoric deformation gradient F
satisfying det F ¼ 1 and nematic director n satisfying jnj ¼ 1 is
given by

f ðF;nÞ ¼ l
2

Tr FTg�2F
� �

; ð9Þ

where

g ¼ a�1=6ðI þ ða1=2 � 1Þn� nÞ ð10Þ

and l is the shear modulus. The isochoric tensor g with det g ¼ 1 is
the spontaneous deformation of the elastomer determined by a
material parameter a > 1.4 It is easily verified that (9) is frame-indif-
ferent and isotropic by recognising that n is an observable (hence
spatial) quantity.

As an aside, since g is the spontaneous deformation, we can de-
fine Fe ¼ g�1F to be the elastic deformation of the polymer net-
work. Then, we observe

f ðF;nÞ ¼ l
2

Tr ðg�1FÞTðg�1FÞ
� �

¼ l
2

Tr FeTFe
� �

: ð11Þ

Indeed the last expression is the most basic, isotropic, Neo-Hookean
energy for cross-linked polymers. The decomposition Fe ¼ g�1F is
similar to the multiplicative decomposition of the deformation gra-
dient common, among others, in elastoplasticity and membrane
wrinkling, see e.g. (Gurtin et al., 2010; Pipkin, 1994; Mosler and
Cirak, 2009).

It is convenient to substitute (10) into (9) and rewrite it as

f ðF;nÞ ¼ la1=3

2
Tr FTF
� �

� ð1� a�1Þn � FFTn
� �

¼ la1=3

2
Tr Cð Þ � ð1� a�1Þn � bn
� �

: ð12Þ

In an non-ideal nematic elastomer, there is a preferred direc-
tional orientation n0 and the material becomes anisotropic. To re-
flect this, we follow Conti et al. (2002) (also Biggins et al., 2008)
and modify the energy density to be

f ðF;nÞ ¼ la1=3

2
TrC � ð1� a�1Þn � bn� bn0 � Cn0
� �

; ð13Þ

where we introduce the non-ideality parameter b. This can be ex-
pressed with principal stretches by recalling the spectral represen-
tation (6),

f ðF;nÞ¼ l
2a1=3 k2

1þk2
2þk2

3�ð1�a�1Þ
X3

i¼1

k2
i ðei �nÞ2�b

X3

i¼1

k2
i ðEi �n0Þ2

 !
ð14Þ

subject to the incompressibility constraint k1k2k3 ¼ 1.
Since the director is allowed to rotate, we obtain the mechanical

energy density of the material to be

WðFÞ ¼min
n

f ðF;nÞ: ð15Þ

Now, since a > 1 and 0 < ð1� a�1Þ 6 1 it is clear from (14) that the
minimum value is attained at n ¼ e1. Therefore,

WðFÞ ¼ la1=3

2
k2

1

a
þ k2

2 þ k2
3 � b

X3

i¼1

k2
i ðEi � n0Þ2

 !
; ð16Þ

again subject to the incompressibility constraint k1k2k3 ¼ 1.

2.2.2. Frozen nematic director
In LCEs with a so-called frozen nematic director, or nematic

glasses, the director field n is not an independent degree of free-
dom. The director n is simply identical to the convected and re-
scaled initial director field n0

n ¼ Fn0

jFn0j
: ð17Þ

Substituting this in (13), we obtain

WðFÞ ¼ la1=3

2
TrC � a� 1

a

� �
jCn0j2

n0 � Cn0
� bn0 � Cn0

 !
: ð18Þ

This can also be expressed with principal stretches by introducing
the spectral representation (6).



Fig. 4. One dimensional domain with four nodes X1;X2;X3 and X4 and the
corresponding qubic b-spline basis functions. In the elements on the domain
boundaries, i.e. elements X1; X2½ � and X3; X4½ �, the interpolation is incomplete and
the computational domain has to be chosen slightly larger than the physical
domain. The dashed elements and b-splines are the so-called guard or ghost
elements.
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2.3. Membrane energy functional

With the constitutive model for bulk solids and the kinematic
description of the membrane at hand we now consider the deriva-
tion of suitable membrane energy functionals. To this end we
follow the work of Bhattacharya and James (1999) who derived
the effective energy of thin membranes made of active materials
starting from theories of bulk materials.

2.3.1. Membrane limit
In Bhattacharya and James (1999) the following energy func-

tional is postulated for a membrane with traction free top and bot-
tom surfaces

EðFÞ ¼
Z

X
cjrFj2 þWðFÞ
� �

dX: ð19Þ

The higher gradientrF ¼ r2x denotes the third order tensor of
the second derivatives of the deformed position vector x and c > 0
is a scalar parameter. Higher gradient terms are common in active
materials that tend to form domains, and introduce a length-scale
that may be interpreted as being related to domain wall width.5 In
Bhattacharya and James (1999) it is rigorously shown that as the
thickness t ! 0, the minimisers of the energy tend to a deformation
that satisfies the property that F is uniform through the thickness
(i.e., F is in independent of h3) and to leading order the energy of
the membrane is given by the minimiser of

EðFÞ ! t
Z

x
c jr�Fj2 þ 2jra3j2
� �

þW �F þ a3 � A3
� �� �

dx: ð20Þ

Here, the integral is over the membrane mid-surface x with
xðh1; h2;0Þ and �F denotes the tangential deformation gradient de-
fined in (7). Le Dret and Raoult (1995) studied the problem with
c ¼ 0 and showed that one obtains a non-convex problem due to
propensity of membranes to wrinkle, and relaxing that gives rise
to a tension-line theory. Shu (2000) has shown that this indeed
happens even with c > 0 if both c and t go to zero.

In uniform isotropic materials, Dondl et al. (2007) have argued
that the first two terms in the membrane energy (20) may be re-
placed by �cjDiv �Fj2 for a modified coefficient �c. With this adapta-
tion, the energy of the membrane may be written as

�ct
Z

x
jDiv �Fj2dxþ t

Z
x

W2Dð�FÞdx; ð21Þ

where

W2D
�F
� �
¼ min

a3
W �F þ a3 � A3
� �

: ð22Þ

For later reference, notice that the higher order first term in (21)
is the Laplacian of the mid-surface deformation, i.e.
jDiv �Fj ¼ jDivðaa � AaÞj ¼ jDxðh1; h2;0Þj.

In the sequel, we subject the membrane to tractions q on the
boundary, and therefore write the potential energy as

Pð�FÞ¼�ct
Z

x
jDiv�Fj2dxþt

Z
x

W2Dð�FÞdx�
Z

C0

q �xdC0 :¼PlapþPintþPext: ð23Þ
2.3.2. Membrane with unconstrained nematic director
We now specialise the two-dimensional energy W2D

�F
� �

(22) to
the three-dimensional energy W Fð Þ of the LCE with the uncon-
strained nematic director (16). We assume that the membrane is
5 In liquid crystal elastomers, domain wall width is governed by Frank elasticity
(Warner and Terentjev, 2007) that depends on the gradient of the director. So the
term here is not strictly correct, but instead serves as a surrogate giving rise to similar
physics.
subjected to extension in at least one direction while the other
direction is compressed nominally. Specifically, we assume that
the tangential principal stretches satisfy

�k1 P �k2 P
1

�k1
�k2
: ð24Þ

This assumption is consistent with the problems we study. The
violation of this condition may lead to wrinkling instabilities that
are beyond the scope of this work. We also assume that the pre-
ferred nematic director orientation is in-plane so that A3 � n0 ¼ 0.
Under these assumptions, it is easy to show that �FT a3kA3 so that
the nematic director remains tangential to the membrane, �Ea coin-
cides with Ea and �ka ¼ ka for a ¼ 1;2 (Cesana and Bhattacharya,
2013).6 Physically, this means that the preferred director remains
tangential to the membrane and therefore the membrane does not
suffer any shear in the thickness direction. Consequently,

W2D
�F
� �
¼ la1=3

2
1
a

�k2
1 þ �k2

2 þ
1

ð�k1
�k2Þ

2 � b
X2

a¼1

�k2
að�Ea � n0Þ

2

 !
: ð25Þ
2.3.3. Membrane with frozen nematic director
We similarly specialise the two-dimensional energy

W2D
�F
� �

(22) to the three-dimensional energy W Fð Þ of the LCE
with the frozen nematic director (18). As before if we assume
that n0 is in-plane so that A3 � n0 ¼ 0, and that the principal val-
ues of the tangential deformation gradient satisfies (24). We
can conclude as before that for the minimising a3, two of the
principal values and directions of F coincide with those of �F.
Therefore, we obtain

W2D
�F
� �
¼ la1=3

2
Tr �C þ 1

det �C
� a� 1

a

� �
j�Cn0j2

n0 � �Cn0
� bn0 � �Cn0

 !
:

ð26Þ
3. Finite element discretization

We discretize the energy functional of the nematic membrane
(23) with finite elements. As basis functions we use quartic box-
splines, which yield C2 continuous surfaces and have finite square
integrable first and second order derivatives. Smooth basis func-
tions are necessary because of the second order derivatives in-
cluded in the Laplacian regularisation term jDiv �Fj.

Without going into details, we assume that the membrane sur-
face is meshed with triangular elements and that the reference and
deformed membrane surfaces can be approximated with
6 This result valid even if we relax (24) except in non-generic cases, but is easily
proved under (24).



Fig. 5. Geometry of the membrane in the reference configuration and the nematic
director vector.

Fig. 6. Prescribed boundaries in the deformed configuration (Up–Up).

Fig. 7. Prescribed boundaries in the deformed configuration (Down–Up).
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X � Xh ¼
XN

i

Biðh1; h2ÞXi; x � xh ¼
XN

i

Biðh1; h2Þxi; ð27Þ

where Biðh1; h2Þ are the box-spline basis functions belonging to
node i, and Xi and xi are the corresponding nodal coordinates in
the reference and deformed configurations, respectively. The total
number of the nodes of the mesh is N. As an example, Fig. 4 shows
the one-dimensional b-spline basis functions over a one-
dimensional domain with four nodes. The depicted cubic b-splines
are equivalent to the quartic box-splines used in the two-
dimensional setting with triangular elements. We refer to Cirak
et al. (2000), Cirak and Ortiz (2001) and Cirak and Long (2011) for
a detailed discussion on basis functions.

The discretised energy functional for the nematic membrane is
obtained by introducing interpolation Eqs. (27) into the energy
functional (23) and subsequent element-by-element numerical
integration in a finite element sense. In order to compute the kine-
matic expressions appearing in the energy functional, such as the
covariant and contravariant base vectors introduced in Section 2.1,
notice that the basis functions Biðh1; h2Þ are defined over the
parameter space with the coordinates ðh1; h2Þ. The discrete equilib-
rium equations follow from the stationarity condition for the dis-
cretized energy functional

@PðxhÞ
@xh

¼ @PlapðDxhÞ
@xh

þ @PintðCðxhÞÞ
@C

@C
@xh|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

f h
int

þ @PextðxhÞ
@xh|fflfflfflfflfflffl{zfflfflfflfflfflffl}
�f h

ext

¼ 0; ð28Þ

where f h
int is the internal force vector and f h

ext is the external force
vector. For more details on computing (28) for the considered mem-
brane energies see A and B.

The solution of the discrete non-linear equations

f h
intðxhÞ � f h

ext ¼ 0; ð29Þ

is the equilibrium configuration of the membrane. Even in case of
convex constitutive models, these discrete equilibrium equations
can have several solutions, for instance, in case of buckling of com-
pressed membranes. The non-uniqueness of the discrete equilib-
rium equations usually manifests itself in non-convergent
solution algorithms. To sidestep the problem of non-uniqueness
in the numerical solution stage we consider a dynamic relaxation
method (Oakley and Knight, 1995; Cirak and Ortiz, 2001). This
means, the steady-state solution is obtained as the long term solu-
tion of a damped dynamic system

m€xh þ c _xh þ f h
intðxhÞ � f h

ext ¼ 0; ð30Þ

where m is the mass matrix and c is a damping matrix. For a mem-
brane with areal density q the mass matrix is defined with

m ¼ q
Z

x0

BiBj dx0: ð31Þ

We choose the damping matrix of the same form as the mass matrix

c ¼ g
Z

x0

BiBj dx0; ð32Þ

where g is a scalar damping parameter. In the numerical computa-
tions, the parameters q and g are chosen such that the semidiscrete
equilibrium Eqs. (30) represent a critically damped system. We
integrate the semidiscrete equilibrium equations with the explicit
Newmark scheme, see e.g. Hughes (1987).

4. Energetics of deformations from flat to non-developable
surfaces

We numerically study the soft behaviour of a rectangular
nematic membrane with the introduced model. The membrane
is flat in its reference configuration, see Fig. 5. The nematic direc-
tor initially points along X2 direction, i.e. n0 ¼ ð0 1ÞT. The mem-
brane is deformed into two different configurations by applying
prescribed displacements to the membrane boundaries. In the
first case, the membrane is deformed into a developable surface
in the form of part of a cylinder, see Fig. 6. In the second case,
the membrane is forced into a non-developable saddle shape by
prescribing at the left boundary a circular arc pointing down-
wards and at the right boundary an arc pointing upwards, see
Fig. 7. In both cases the parameter j is chosen such that the open-
ing angle of the arc is 80� and its length is equal to the side length
l2 of the rectangle. Depending on the form of prescribed boundary
position, the two cases are referred to in the following as Up–Up
and Down–Up.

4.1. Parameters

We take the rectangular nematic membrane to be l1 ¼ 10 mm
� l2 ¼ 4 mm in lateral extent and t ¼ 0:1 mm in thickness in the
reference configuration. We take the parameter a in the step-
length tensor g to be 2:0, c.f. (10), and the non-ideality parameter
to be b ¼ 0:05, c.f. (13), consistent with these materials Warner and
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Terentjev (2007). We take the membrane shear modulus
lt ¼ 7:937 N/m consistent with our chosen thickness and typical
shear moduli of liquid crystal elastomers (� 105 N/m2) (Warner
and Terentjev, 2007). For the chosen energy (21), we expect the
width of the domain wall to be of the order of

ffiffiffiffiffiffiffiffi
�c=l

p
. This is often

termed as the nematic penetration depth, and has been estimated
to be of the order of 10 nm. A slightly larger value may be appro-
priate in our setting since a membrane has some bending stiffness
and this will add a contribution to the first term in the energy. Fur-
ther, a small value poses a problem in computations since the
numerical discretization has to be smaller than this length and
the computation extent has to be of the size of the specimen.
Therefore, we choose this length to be large,

ffiffiffiffiffiffiffiffi
�c=l

p
¼ 0:2806 mm.

We note that this turns out to be conservative in our setting –
choosing a smaller value for this parameter would only make our
conclusions stronger. We discretize our computational domain
with 64561 nodes and 128000 triangular elements of size
h ¼ 0:025 mm. This ensures that we resolve the domain walls, if
Fig. 8. Deformed configurations of the L

Fig. 9. Out-of-plane displacement isolines of

Fig. 10. Convergence histories of the membrane and Laplacian energies o

Fig. 11. Energy contours of the LCE membrane w
any, fully while the domain is large enough for microstructures
to develop. In other words, our choice of parameters satisfy
h	

ffiffiffiffiffiffiffiffi
�c=l

p
	 l1 which is necessary for such computations.

4.2. Membrane with frozen nematic director

In the first set of computations we consider a membrane made
of a LCE with a frozen nematic director described in Section 2.3.3.
The deformed configurations of the two cases with different pre-
scribed boundary conditions are shown in Fig. 8. The correspond-
ing contour plots of the out-of-plane displacements are depicted
in Fig. 9. In the Up–Up case the membrane deforms into an almost
cylindrical shape. It is not an exact cylinder because of the incom-
pressibility of the material and the resulting coupling of the defor-
mations in the longitudinal and circumferential directions. In the
Down–Up case the membrane deforms into a saddle-like shape
which requires substantial straining of the membrane in its longi-
tudinal midsection. In the computations the specific location of the
CE membrane with frozen director.

the LCE membranes with frozen director.

f the LCE membranes with frozen director. All energies in �10�6 Nm.

ith the frozen director in the Down–Up case.



Fig. 12. Out-of-plane displacement isolines of the LCE membrane with unconstrained director.

Fig. 13. Convergence histories of the membrane and Laplacian energies of the LCE membranes with unconstrained director. All energies in �10�6 Nm.
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transition from down deformation into up deformation is enforced
by initial imperfections in form of pressure loading. This pressure
loading is applied during the initial phase of the computations
and is later removed.

In Fig. 10 the iteration histories for the two cases are plotted. As
introduced in Section 3, we use a dynamic relaxation technique for
computing the equilibrium configurations in which each iteration
step corresponds to a pseudo time-step. During the iterations the
membrane as well as the Laplacian energies are monitored. It can
be assumed that an equilibrium configuration is obtained when
both energies converge. It can be seen in Fig. 10 that the converged
membrane energy in the Up–Up case is 1:01� 10�6 Nm and in the
Down–Up case 9:41� 10�6 Nm. The reason for the larger mem-
brane energy in the Down–Up case is the non-developable shape
of the deformed configuration. The Laplacian energy in the Up–
Up case is 3:50� 10�6 Nm and in the Down–Up case is
4:59� 10�6 Nm.
Fig. 14. Energy contours of the LCE membrane with

Fig. 15. Nematic director fields of
The energy contours of the Down–Up case provide a more de-
tailed insight into the partition of the total energy into membrane
and Laplacian components, see Fig. 11. The membrane energy is
localised around the longitudinal middle of the membrane where
it is forced to remain flat and is subjected to vertical compressive
strain. In contrast, due to the flatness of the middle section the
Laplacian energy is negligible. The Laplacian energy is localised
around the regions with non-zero curvature.
4.3. Membrane with unconstrained nematic director

In the second set of computations we consider a membrane
made of a LCE with an unconstrained nematic director. During
the deformations the nematic director is allowed to reorient in or-
der to minimise the total energy. The internal energy density is as
given in (25).
unconstrained director in the Down–Up case.

the deformed LCE membrane.
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In Fig. 12 the out-of-plane displacement isolines for the Up–
Up and Down–Up cases are plotted, which are visually indistin-
guishable from the corresponding plots for the LCE with frozen
director in Fig. 9. Despite the displacements being almost identi-
cal, the internal energies are not the same as in the constrained
director case, see Fig. 13. This is particularly apparent in the
Down–Up case where the membrane energy is 4:30� 10�6 Nm
and the Laplacian energy is 4:76� 10�6 Nm. This means that
the Laplacian energies in the unconstrained and constrained
director cases are almost identical. However, the membrane en-
ergy in the unconstrained case is by a factor � 2:2 smaller than
in the constrained case. As can be seen in Fig. 14, this reduction
in energy occurs primarily in the longitudinal middle section of
the membrane. The energies in the LCE membranes with con-
strained and unconstrained director are very different despite
the macroscopically observed strain in both is very similar (since
the displacements are very similar).

The relative softness of the LCE membrane with the uncon-
strained nematic director can be explained with the rotation of
the director. Pointwise the director can rotate in a configuration
which minimises the membrane energy density. As can be seen
in Fig. 15(b), in the diamond shaped midsection of the membrane
the initial director n0 ¼ ð0 1ÞT becomes after rotation
n ¼ ð1 0ÞT. This rotation reduces pointwise the amount of strain-
ing in the vertical direction according to (10). Note that in the pre-
sented formulation the rapid oscillation of the director field is
prohibited by the Laplacian energy included. Hence the material
is not allowed to form laminates as reported, e.g., in Conti et al.
(2002). In Fig. 15(a) the nematic director field in the Up–Up case
is depicted. Because the deformed cylindrical surface is develop-
able and the membrane strains are small, the nematic director does
not reorient itself.

5. Conclusions

We have presented a computational technique for determining
the equilibrium shapes of LCE membranes. The membrane defor-
mations can be finite and the initial shape of the membrane does
not need to be flat. The included Laplacian energy prohibits the ra-
pid oscillations of the nematic director on a scale smaller than the
spatial resolution of the used finite element mesh. Hence, physi-
cally meaningful results are obtained even in the presence of
non-convex energy functionals. The proposed membrane energy
functional is discretized with finite elements using structured tri-
angular meshes and box-splines. In case of complex domains with
arbitrary connectivity meshes subdivision finite elements can be
used (Cirak et al., 2000; Cirak and Ortiz, 2001; Cirak and Long,
2011; Long et al., 2012).

From an application viewpoint, we numerically demonstrated
that it is possible to obtain from flat sheets surfaces with non-zero
Gaussian curvature with minimal stretch energy. The necessary
change of the surface metric in the transition from flat to non-zero
Gaussian curvature is accomplished by the reorientation of the
nematic director. This can be exploited in designing highly efficient
microscale actuators. It is possible to first deform a flat membrane
into a shape with non-zero Gaussian curvature using only mini-
mum amount of energy. Subsequently, the director orientations
can be selectively reoriented to their reference configuration using,
for example, illumination or heat. The accompanying sudden
deformation of the membrane towards the reference configuration
can be used for performing external work. Here, it is important that
the membrane energy scales linearly with the thickness t and the
bending energy scales with t3. Hence, the mechanical work that
can be extracted with devices operating in a membrane mode, such
as the considered LCE membranes, is larger than with conventional
devices operating in a bending mode.
Appendix A. Derivation of stresses

The stresses corresponding to the liquid crystalline elastomer
models are obtained by differentiating the introduced energy den-
sities. First, we consider the unconstrained nematic director with
the energy density (25). Differentiating it with respect to the right
Cauchy–Green strain tensor yields the second Piola–Kirchhoff
stress tensor

S ¼ 2
@W2D

@�C
¼ 2

@W2D

@�k2
a

@�k2
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@�C

with
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@�k2
1
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2
1
a
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�k4
1
�k2

2
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2
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2
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: ðA:1bÞ

For the derivatives of the stretches with respect to the right
Cauchy–Green strain tensor the following relation is known

@�k2
a

@�C
¼ �Ea � �Ea

which is clear from �k2
a ¼ �C : �Ea � �Ea.

Next, we consider the frozen nematic director with the energy
density (26). The derivatives of this energy density with respect
to the eigenvalues of �C are
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with a ¼ 1� a�1 and the derivatives
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which follow directly from differentiating

j�Cn0j2 ¼ n0 �
X2

I¼1

�k4
I ð�EI � �EIÞ

 !
n0:
Appendix B. Second gradient of the deformation

As introduced in Section 2.3.1 the second gradient of the defor-
mation are considered for regularisation purposes. The Laplacian of
the deformation is defined as,

Dxðh1; h2;0Þ ¼ Div �F ¼ Div ðaa � AaÞ ðB:1Þ

which reads in index notation

Dxðh1; h2;0Þ ¼ @

@Xj

@xi

@ha
@ha

@Xj

� �
¼ @2xi

@ha@hc
@hc

@Xj

@ha

@Xj
þ @xi

@ha
@2ha

@X2
j

: ðB:2Þ

To evaluate this expression recall the following standard relations
from differential geometry

Aa ¼ AabAb; ðB:3aÞ

Aa ¼ AabAb
; ðB:3bÞ
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AabAbc ¼ da
c ; ðB:3cÞ

where Aab ¼ Aa � Ab is the covariant metric tensor in the reference
configuration. The Eqs. (B.3a) and (B.3b) read in index notation

@ha

@Xj
¼ @ha

@Xi

@hb

@Xi

� �
@Xj

@hb ;
@Xj
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� �
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@Xj
: ðB:4Þ

To compute the last derivative appearing in (B.2) we consider
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wherein the derivative of the inverse of the covariant metric tensor
Aab can be obtained by differentiating (B.3c), i.e.

@

@Xj
AabAbc

� �
¼ 0: ðB:6Þ
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