>

View metadata, citation and similar papers at_core.ac.uk brought to you by ;i CORE

provided by Elsevier - Publisher Connector

Topology, Vol. 8, pp. 151-166. Pergamon Press, 1969. Printed in Great Britain

COMMENTS ON THE FUNCTOR EXT¥

MAURICE AUSLANDER
(Received 1 September 1967)

LET % be an abelian category with enough projective objects and C an object in €. Suppose
the functor F is a direct summand of the functor Ext'(C, .). P. Freyd has shown in [4] that

THEOREM 1. If € has denumerable sums, then F =~ Ext'(D, .) for some D in €.
In the same publication [1], I established

THEOREM 1. If the projective dimension of C is finite, then F ~ Ext'(D, .) for some D in &,
regardless of whether € contains denumerable sums or not.

The first section of this note is devoted to giving a unified proof of these results. This is
followed by showing that there exist abelian categories with an object C such that Ext!(C,.)
has proper direct summands none of which is isomorphic to Ext!(D,.) for any D in %. The
rest of the note is devoted to a preliminary investigation of the following question: Suppose
M and C are modules over the commutative ring R. What sorts of modules can be sub-
modules of Ext!(a, C)? It is shown that if M is a finitely generated module and P is a
projective submodule of Ext!(M, C), then P = 0. As a consequence we show that if R is
noetherian and ¥ is a finitely generated module of finite projective dimension, then A is
isomorphic to a submodule of Ext'(M, C) for some finitely generated module M if and only
if Homg(¥, R) = 0.

§1. DIRECT SUMMANDS OF EXT(C,.)

We assume throughout this section that € is an abelian category with enough projective
objects. Given two objects C and D in % we shall denote the abelian group of maps from C
to D by (C, D) and the functor X'+—(C, X) by (C,.). It is well known that each fe (C, D)
gives rise to a map Ext'(D,.) - Ext'(C,.) and that the induced map (C, D) — (Ext!(D, ),
Ext!(C,.)) is an epimorphism whose kernel consists of those maps which can be factored
through a projective object (see [5] for instance). Given an fe (C, D) we shall denote its
image in (Ext!(D,.), Ext!(C,.)) by the same symbol 1.

Suppose F is a direct summand of the functor Ext!(C,.). Then there is a map f: C — C
such that F = Ker(Ext'(C,.) - Ext!(C,.)). If we let P~ C be an epimorphism with P a
projective object then the induced map on the direct sum P+ C — C is an epimorphism
which restricted to C gives f. Thus the map Ext'(C,.) - Ext!(P + C, .) = Ext!(C, .) is our
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original map f. If we denote the Ker(P + C— C) by A, then we obtain from the exact
sequence 0 - A - P + C— C— 0, the long exact sequence

(1.1) 0 — F - Ext)(C,.) > Ext!(C,.) > Bxt!'(4,.) » Ext}(C,.) > - -

Now in [1, see sections 3 and 4] it is shown that there exists a full subcategory ‘%0 of the
category € of all additive covariant functors from € to abelian groups with the following
properties: a)Ext!(C,.) e %, for all C € ¥; b) If G, —» G, is in €, then the kernel and cokernel
of the map are in €,. Thus ‘%0 is an abelian category; ¢) Ge ‘20 is injective in "ﬁo if and
only if G is half exact. Since F is the Ker(Ext'(C,.) —» Extl(C .)) we have that Fe (50 Since
the Ext'(C..) and Ext'(4,.) are half exact functors in (Ko, they are injective objects in (60
Thus the exact sequence (1.1) is an injective resolution of F in (go_ But F being a direct
summand of Ext!(C,.) is half exact and thus an injective object in €, . Therefore (1.1) is an
injective resolution of an injective object and thus must split. Applying the following lemma
to this long split sequence we obtain the formula:
(1.2) TIExt(C,)+ [l Ext(4,)=F + []Ext(C,.)+ T[] Ext(4,.)

i1 i

i=2n+1 i1 i=2n+2
wheren=0,1,,
and IT stands for direct product.

LeEMMA 1.3 Let @ be an abelian category with denumerable products and let 0 > Aq — A,
—-+— A, > be an exact sequence in 9 which splits. Then || A, = [] A; where

i=2n+1 i=2n
n=0,1,2,....

Proof. Let B; =Im(4; — A;,,) for i > 0. Then

Ao X LBy~ (4o X By) X (By X B3) X *+* X (B X Bypyq) X **
zAlesx e XA2n+1 XKoo,

But arranging the terms differently, we obtain that

Ao XTI By~ Ag X (By X By) X (B3 X By) X = +(Byyq X Byy) X -+
Ay X Ay X Ay X 200 X Ay, X

which gives our desired resuit.

Now let X and Y be projective resolutions of C and A respectively. Suppose we denote
the coker (X;,; — X;) by C; for i =0, ... and the coker (Y;,; — Y;) by A;fori =0,
Then Ext/*!(C,.) ~ Ext'(C;,.) and Ext/*(4,.) = Ext'(4;,.) for j=0, 1, .... Assume now
that the direct sums of the C; and A4; for i even and for i odd are in ¥. Then using the fact
that Ext'(}. X;,.) ~ I1 Ext'(X;,.), the formula (1.2) becomes

(1.4) Extl(ZC+ 2A,,.)=F+Ext1(2c,.+ y A,.,.).
i=0 i=2n+1

i=2n i=2
n=o =

A;— 0 is exact with P projective,
+9

From this it follows from [5] thatif P— ), C,+
i=o i

i=

s ¥PM18

a0
then F ~ Ext'(B,.) where B is a direct summand of Y. C;+ Y. 4;+P.
i=0 i=2n
n=0
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Clearly if ¢ has denumerable direct sums then the direct sums of the C; and 4, for i
even and odd will always exist in %.

Thus we have that if Fis a direct summand of Ext!(C,.) with C in €, and % has de-
numerable direct sums then F ~ Ext'(B,.) for some B € %, the result of P. Freyd cited in the
introduction. On the other hand suppose that the pdC = n < oco. Then it follows from the
exact sequence 0 > 4 —» P + C— C — 0, that the pd4 < n < oo. Thus we may choose in this
case projective resolutions X and Y for C and A4 such that only a finite number of C; and
A; are different from zero. Hence the direct sums of the C; and A, for i even and for i odd
also will exist in %. Therefore if the pdC < n, then we have that F ~ Ext!(B,.) for some B €%
regardless of whether ¥ has denumerable sums or not. Thus our proof of Theorems I and II
is completed.

§2. CATEGORIES OF MODULES

The main object of this section is to examine for certain types of rings the following
refinement of the problem considered in the previous section: If M is a finitely generated
module, then is a direct summand of Ext'(2f,.) necessarily isomorphic to an Ext'(N,.) with
N a finitely generated module? It will be shown that even for noetherian rings, the answer to
the above question can be no, thus supplying an example of an abelian category with enough
projectives such that a direct summand of an Ext!(C,.) need not be isomorphic to an
Ext!(D,.) for some D in the category. Our discussion of the ring situation will be based on the
following general observations.

Let € be an abelian category with enough projective objects. Let €* be the full sub-
category consisting of those objects C such that f: C — C is an isomorphism if and only if
the induced map Ext'(C,.) — Ext!(C,.) is an isomorphism.

LEMMA 2.1. The category €* has the following properties:
a) If C ¢ €*, then every direct summand of C is in €*.

b) If V € €*, then zero is the only projective direct summand of C.

c) Ce%* ifand only if a(C) is in the radical of End(C), where a(C) is the two sided ideal
in the endomorphismring of C consisting of those endomorphisms which factor through projective
objects.

Proof. a) Suppose the direct sum C; + C, is in ¥* and f: C; - C, induces an isomor-
phism on Ext'(C;,.) —» Ext!(Cy,.). Then extending f to C; + C, by defining the map on C,
to be the identity on C,, we have that Ext'(Cy,.) + Ext!(C,.) — Ext}(C,,.) + Ext(C,,.)
is an isomorphism, from which it follows that C; + C, - C, + C, is an isomorphism. Thus
fis an isomorphism.

b) Clearly (0) is the only projective object in €*. Thus b) follows from a).

c) It is well known that the natural map End(C) — End(Ext'(C,.)) is an anti-epimor-
phism (reverses multiplication) with kernel a(C). Thus End(C)/a(C) is isomorphic to the
opposite ring of End(Ext'(C, .)). Suppose C € ¥* and f € a(C). Then 1 +f: C - Cinduces the
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identity on Ext!(C,.). Thus 1 + fis an isomorphism or a unit in End(C). Therefore we
have that a(C) < rad(End(C)).

()n the other hand suppose a(C) < rad(End(C)). If /: C — C induces an isomorphism
((‘ .), then the image of f in End(C)/a(C) is a unit. But since a(C) = rad(End(C)), it

it i BEndlie 1 a an igamaornhic
L Dy, 1L.C, dil IsOMOIpiil Sin.

3
o
E:
=9

iSa
The main point of this preliminary discussion is

PROPOSITION 2.2. Let @ be a full subcategory of € satisfying a) a direct sum C; + C,
ising if and only if each C,is in € and b) for each C in 9 there exists an object C* € 9* such

Pl TN

that Ext}(C,.) ~ Ext'(C¥*,.). Then an object X in 9 has the property that each direct summand
of Ext!'(X,.) is isomorphic to Ext'(Y,.) for some Y in D if and only if every idempotent in

End( X\ al( X is the image of an 1/Iomn()fpln1‘ in End( Y\ Thus. in case su

End(X)/a(X) is the image of an ide: End(X). Thus, in case such a Y exists it canbe
chosen to be a direct summand of X.

Dynaf Clanvly
P Fooj. acariy i

"
direct summand of Ext!(X,.

Suppose now that each direct summand o Extl(A, ) is isomorphic to Ext!(¥,.) with
Y in 2. Suppose ¢ is an idempotent in End(X)/a(X). Then the kernel F of the induced map
Extl( X, \—-> Exti( X \15 direct summand of Ext!(X.. \ Therefore we know that F ~ Exti( Y. )

ALAL N2 4,

for some Y € & which, in view of the hypothesis on 2, we can assume to be in 2*. Thus we
have maps Ext'(Y,.)> Ext'(X,.) and Ext!(X,.)> Ext!(Y,.) such that vu = identity and
uv =e. Now let f: X — Y and g: Y— X be maps which induce » and v respectively. Then
fg: Y- Y is an isomorphism since Y is in £* and the induced map vu is the identity on
Ext!(Y,.). Let z = fg. Then z~'finduces u on Ext!(Y,.) - Ext!(X, .) since zinduces the iden-
tity on Ext!(Y,.). Since (gz"*f)Ngz"f) = gz 1(fg)z"'f =gz~ 'f, and the image of gz~'f
in End(X)/a(X) is e, we have found our desired idempotent. The last part of the proposition
follows trivially.

AL 1

We now turn our attention to the following situation. A is a ring with radical ¥ such
that the semi-simple ring A/r has minimum condition. 4 is to be the category of (left)

Tag nnd tha Antagangy ~AF Huitals, Fad samndial N H H P
A-modules and & the catcgory o1 fini ch_y gene erated modules. Our first aim is to show that

if every idempotent in A/r is the image of an idempotent in A, then 2 satisfies the hypothesis
of Proposition 2.2. From now on we shall assume that all our rings A have the property that
A/t has minimum condition where v is the radical of A and that all A-modules are finitely
generated. We begin with a sketch of essentially well known results, stated in a form partic-
ularly well suited to our present purposes.

LemMa 2.3. Let P, and P, be projective A-modules. A map f: Py — P, obviously induces
a map f:P,[tP; — P,[tP,. The homomorphism Hom,(Py, P;) - Homy,,(P,/tP; P,[tP,)
defined by f — f has the following properties:

a) It is an epimorphism;
b) If f: PP, — P,/xP, is an epimorphism, then f. P, — P, is an epimorphism, which
splits, i.e. the exact sequence 0 —» Kerf - P, 5 P, — 0 splits;

¢) If f: Pyj/tP, — P,[tP, is an isomorphism, then f . P, — P, is an isomorphism;
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d) If f: P,[/tP, — P,/tP, is a monomorphism, then f: Py — P, is a monomorphism which
splits, i.e. the exact sequence 0 — P, EX P, — Cokf— 0 splits.

Proof. a) Trivial consequence of P; being projective.

b) and c) Since f: P,/tP; — P,/tP, is an epimorphism, we have that the composite
P, - P, — P,/tP, is an epimorphism. Since P, is finitely generated, it follows by Nakayama’s
lemma that P, — P, is an epimorphism. Since P, is projective, we have that the exact
sequence 0 - K — P, ER P, — 0 splits where K = Kerf. Thus K is a finitely generated projec-
tive module and the sequence 0 —» K/rK — P,/tP, i»PZ/rPZ — 0 is exact. Thus if fis an
isomorphism, then K/tK = 0. Since X is finitely generated we have by Nakayama’s lemma
that K = 0. Thus if f is an isomorphism we have that fis an isomorphism.

d) Suppose f: P, — P, has the property that f: P,/tP, —» P,/tP, is a monomorphism.
Since A/t is a semi-simple artin ring, the monomorphism f splits, i.e. there isa map 4 : P,/tP,
— P, /tP; such that 4f = identity. By a) we know there is a map g : P; — P, such that g = A.
Thus by ¢) we have that the composite gf : P, — P, is an isomorphism, since gf =gf is the
identity on P/tP. Thus the map f: P, - P, is 2 monomorphism which splits.

PRrOPOSITION 2.4. The following are equivalent statements about A.
a) Every idempotent in Afx is the image of an idempotent in A .
b) Given any Ajr-module M, there is a projective A-module P such that P/tP =~ M.

¢) Let P be a projective A-module and M a submodule of P such that M & tP. Then M
contains a non-zero projective module P’ which is a direct summand of P and thus of M.

d) A projective module P has no proper direct summands if and only if P|tP is a simple
module.

Proof. a) = b). Essentially a) implies that given any simple A/t-module M, there is a
projective module P such that P/rP ~ M, since the simple modules are of the form (A/r) e for
some idempotent e in A/r and e can be lifted to an idempotent in A. But all A/r-modules
are direct sums of simple modules, so we are done.

b) =>c¢). Since M & tP we know that M/tP nM < P/rP is a nontrivial semisimple
module. Thus there is a projective module P’ such that P'/tP’ &~ M/tP n M. Since P’ is
projective, there is a map P’ — M such that the induced map P'/rP’ - M[tP n M is our
given isomorphism. Now the induced map P'/tP’ — P/tP of the composite map P’ - M — P
is the composition of the monomorphisms P’/tP’— M/tP n M — P/tP. Thus P'[tP’ — P/tP
is a monomorphism. Therefore the map P’ — P is a monomorphism which splits (see Lemma
2.3 part c¢)), which gives us our desired result.

¢)=>d) Suppose P is a projective module with no proper direct summands. Let
x € P— tP. Then let M = Ax.

Since M & rP, we know that M contains a nontrivial projective module P’ which is a
direct summand of P. Thus P’ = M = P, since P contains no proper direct summands. There-
fore we have that P is generated by any x € P — rP. Thus P/rP is generated by any non-zero
element which means that P/xP is simple.
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d) =>a). We first observe that if a module M is the direct sum M, + M, +--- + M,
then each M, is finitely generated and thus the number of non-zero M; is at most equal
to the length of the finitely generated semi-simple module M/tM. Thus M satisfies both
chain conditions for submodules which are direct summands. Therefore M can be written as
a direct sum of modules with no proper direct summands.

Suppose M, + -+ + M, is a direct sum decomposition of A where each M, has no
proper direct summands. Then by d) we know that each M,/tM,; is a simple module.
Thus M, /tM, + - + M,/tM, is a direct sum decomposition of A/ into simple modules.
Since, up to isomorphism, such a decomposition is unique, we know that given any simple
module it is isomorphic to M /rM; for some i. From this it follows that given any semi-
simple module N there is a projective A-module P such that P/tP ~ N (see a)=b)).

Suppose now that e is an idempotent in A/r. Then A/t =(A/r)(1 — e) +(A/r)e. Let P,
and P, be projective modules such that we have isomorphisms P;/tP, ~(A/r)e and P,/tP,
~(A/t)(1 — e). Then there exists an isomorphism (see Lemma 2.3) P, + P, &~ A such that the
induced map P,/rP, + P,/tP, ~(Afr)e +(A/r)(1 — e) is the direct sum of our original iso-
morphisms. If we denote by J; and J, the images of P, and P, in A, then we have that A =
J,+ Jyand JfrJ; =(Ajr)e and J, /v, =(A/r)(l — e). Let 1 = f, + f, with the f; € J;. Then
the f; are idempotent elements. Since 1 = f; + f, mod t (where, f; are the images of fe A/r)
and fie(A/r)eand f, e (A/r)(1 — e),itfollows that f; = e and f, = 1 — e in A/, which finishes
the proof.

We shall say that a ring A is an S.B.L. ring (suitable for building idempotents) if A
satisfies any of the conditions given in Proposition 2.4.

Given a module M we shall denote by (M), the trace ideal of M, the two sided ideal in
A consisting of the image of all maps f: M — A. Then we have

PrOPOSITION 2.5. Suppose A is a S.B.1. ring. For a A-module M, the following statements
are equivalent:

aytM)ctr

b) a(M) = rad(End(M)), where a(M) is the two sided ideal consisting of all endomorphisms
which factor through projectives.

¢) M has no non-trivial projective direct summands.

Proof. a) =>b). Let fe€ a(M). Thenif F 2 M-0isan epimorphism with F free, we know
that there is a g : M — F such that f = hg. But the image of g must be contained in tF since
t(M) < r. Therefore the image of fis contained in M. Thus 1 + f : M — M is an epimor-

phism, since 1 + f: M/tM — M/tM is the identity (by Nakayama’s lemma). From the

exact sequence 0 —+ K M2 Mo 0, we deduce the exact sequence of functors 0 —

(M, )— (M,.)~(K,.)—> Ext'(M,.) - Ext' (M, )—---.

Since f : M — M factors through a projective module, we have that 1 + f : Exti(M, )
— Ext/(M, .) is the identity for i > 0. Thus Ext'(X,.) = 0 and the map (M, .) - (X, .) is an
epimorphism. From this it follows that the sequence 0 - K — M — M — 0 splits and K is
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projective. If K # 0, then K/rK 5 0 since K is finitely generated (being a direct summand of
M). Thus we have a non-trivial map K/tK — A/r which can be lifted to a map of K — A whose

o oar

lmage will not be in r. Since K is a direct summand of M, this map K — A can be extended to

M — A, which would contradict the fact that t(M) < r. Thus K=0 or 1 + fis an isomor-
nhiem SQinca thic holds for aanf e afl AN we have th (M\ < rad(En “

Plllolll- WIIVY LY LIVIMID LWL QL MALVE 5 VTV LI YW L xuv by At
b)=>c) See Lemma 2.1

A s 2) Qersen hova o am £ o NA L A vt
C)=>aj oupposc wc navc a xuay_/ < IVI 7 /Wi

we know there exists a non-trivial projective direct summand P of f(M). Thus we have that
there is an epimorphism M — P — 0, which means that M contains P as a direct summand.

Thus if M contains no non-trivial projective direct summands, then #{M) < r.

el

Note. In the proofs that a) = b) = c) we did not use the fact that A was an S.R.L ring
In the proof c) => a) something slightly weaker than A being an S.B.I. ring was used, namely
if Jis an ideal in A not contained in t, then J contains a non-trivial projective direct summand
rather than A contains a non-trivial direct summand in J. This condition is satisfied auto-
matically if every ideal in A is projective (i.e. gl. dim A < 1) even if A is not an S.B.L. ring.
It would be interesting to know if there are examples of rings satisfying this weaker condition

other than those already given.

Suppose that A is an S.B.I. ring, € the category of all A-modules (finitely generated or
not) and 2 the category of all finitely generated A-modules. Clearly 9 satisfies the first condi-
tion of Proposition 2.2, namely M, + M, isin @ if and only if M, and M, are in &. Suppose
Me 2. Since M satisfies the descending chain on direct summands, we see that M = M* + P

ja o mendinla with avit amer man_treigyial meaiantiy a diract crrmmandg and D ig nraian,

where M* is a module without any non-trivial p pr uJuuuvu direct summands and P is pr UJCD'

tive. Thus we have that Ext!(M, .) ~ Ext'(M*,.). But by Proposition 2.5 it follows that since
M has no non-trivial projective direct summands, M € 2* (i.e. a(M) < rad(End(M))). Thus

9 satisfies the hypothesis of Proposition 2.2. We therefore obtain the following reform-
ulation of Proposition 2.2.

THEOREM 2.6. Let A be an S.B.I. ring. Then a(finitely generated) module M has the property
that each direct summand of Ext*(M, .) is isomorphic to Ext'(N,.) for some finitely generated
module N if and only if every idempotent in End(M)/a(M) is the image of an idempotent in
End(M). In case such an N exists, it can be chosen to be a direct summand of M.

An important class of rings A which have the property that A/r satisfies the minimum
condition can be constructed as follows. Suppose that R is a commutative, noetherian
semi-local ring (only a finite number of maximal ideals), then every R-algebra which is a
finitely generated R-module will have this property. Further, if R is complete in its radical-
topology and A is an R-aigebra which is a finitely generated R-module, then A is compiete in
its r-adic topology and thus an S.B.I. ring. Finally it should be observed that if M is a

finitaly cenaratad A_maoadule then End. (A ic a finitely ocenerated R-madula ginca End (AN

111101y SVALE AU [A=1IUU ULV, WIVIE SIEUALVE J 10 & LWL Y sUILCIAIUU ATV G WL, DI SIIGA 2 §

is an R-submodule of the finitely generated R-module Endg(#). From now on we will
assume that R is a commutative, semi-local, noetherian ring and all R-algebras are finitely
generated R-modules.
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As an easy consequence of Theorem 2.6, we have

PROPOSITION 2.7. Suppose A is an R-algebra and R is complete. If M is a A-module( finitely
generated of course), and a functor F is a direct summand of Ext'(M,.), then F ~ Ext'(N,.)
Jfor some direct summand N of M.

Progf. Without any loss in generality we may assume that M has no non-trivial pro-
jective direct summands. Since M is a finitely generated A-module, we know by our previous
remarks, that End,(M) is an R-algebra which is a finitely generated R-module and thus an
S.B.L ring since R is assumed complete. Thus every idempotent in End,(M)/a(M) can be
lifted to Enp,(M) since a(M) < rad End,(M). Applying Theorem 2.6 gives us the desired
conclusion.

When R is not complete, things are not quite so simple as can be seen from the following
result.

ProOPOSITION 2.8. Suppose A is an R-algebra with R local which is an S.B.1. ring. Let
M be an A-module with the property that M, = M®y R, be A-projective for all non-maximal
prime ideals p in R and has no proper projective direct summands. Then the following are
equivalent

a) M has no proper A direct summands where M and A are the completions of M and A.
b) End(M)/rad(End(M)) is a division ring.
c) ExtY(M,.) has no proper direct summands.

Proof. If M is projective, then it is well known (and follows easily from Proposition
2.4) that M =~ Ae with e a primitive idempotent since Ae/tAe is simple. Under these circum-
stances it is well known that End(M) & eAe and that eAe modulo its radical is a division
ring (see [7, p. 57] for example). Assume now that M is not projective.

Since all modules are finitely generated over noetherian rings, one can see, using
standard localization arguments, that M, is A -projective for p not maximal if and only if
End(M)/a(M) has minimum condition. Thus we know that End(M)/a(M) is an S.B.I. ring.
Since End,(M)/a(M) is isomorphic to the opposite ring of End(Ext'(M, .)), we know that
Ext!(M, .) has no proper direct summands if and only if End,(M)/a(M) has no non-trivial
idempotents. Since M has no non-trivial projective direct summands, we know that a(M)
< rad(End(M)). Since End ,(M)/a(M) has minimum condition, it follows that End,(M)/a(M)
has no non-trivial idempotents if and only if Enf,(M)/rad (End(M)) is a division ring. Thus
we have established the equivalence of b) and c).

Since End (M)/a(M) has minimum condition we know that End (M)/a(M) ~ End,(M)/
a(M). Since End;(M) is an S.B.1. ring, it follows that M has no proper direct summands if
and only if Endi(M)/a(M) has no proper idempotents. Thus M has no proper A direct
summands if and only if End,(M)/a(M) has no proper idempotents, thus establishing the
equivalence of a) and b).

Suppose now that R is a one-dimensional local ring whose integral closure S is a finite
R-module and S is not local. For example, the local ring of a branch point, on an algebraic
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curve. Since § is in the field of quotients of R, we know that S contains no proper direct
summands. On the other hand S is the direct sum of local rings, one for each maximal ideal.
Since (0) is the only non-maximal prime ideal in R, we have that S, is R, free for all non-
maximal prime ideals p. Thus we have by the above proposition that Extz'(S, .) has direct
summands even though S has no proper direct summands. Since R is local, it is an S.B.I.
ring. Thus by theorem 2.6, none of the direct summands of Extp'(S,.) are isomorphic to
an Extg!(¥,.) with N finitely generated. Therefore the category of finitely generated R-
modules is an example of an abelian category with the property that there are direct sum-
mands of Ext'(C, .) for some object C in the category which are not isomorphic to Ext'(D, .)
for any D in the category.

We now end this section with the following generalization of a result of Horrock [6].

PrOPOSITION 2.9. Let R be a local ring and A an R-algebra which is an S.B.1. ring. Let &
be the full subcategory of the category of (finitely generated) A-modules which satisfy a) M,
is A-projective for each non-maximal prime ideal p in R and b) every direct summand of
Ext!(M, ) is isomorphic to Ext'(N,.) for some finitely generated A-module N. Then & has
the following properties.

1) If the pd M < o and M satisfies condition a) above then M is in &. In particular if M
is projective, then M is in &.

2) If M, + M, is in & then each of the M, is in E.

3) If M in & has no proper direct summands then End(M)/rad(End(M)) is a divison ring.

4) The Krull-Schmidt theorem holds in &, i.e. each M in & can be written as a direct
sum of modules M, + -+ + M, where each M, has no proper direct summands and if
Ny + -+ + N is another such representation, then s = n and there is an automorphism o
of M and a permutation © of [1,. .., n] such that 6(M;) & N, foralliin[1,..., n].

Proof. 1) By Theorem 11, we know that if the pd, M < oo then M satisfies condition b)
since the category of finitely generated A-modules has enough projective objects.

2) Follows trivially from the fact that localization permutes with direct sums and
that a direct summand of Ext!(M;, ) is also direct summand of Ext!(M,.).

3) Consequence of Proposition 2.8.

4) Since M has the descending chain condition on direct summands, we know that
M=~ M, + -+ + M, with the M; having no proper direct summands. It is classical that 3)
implies the rest of the proposition (see [7, p. 58]).

§3. SUBMODULES OF EXT,'(M, A).

Throughout this section we assume A is a ring which is noetherian on both the left
and right. Also, unless otherwise specified, we assume that all modules are finitely generated.
Our aim is to look at the problem of which modules can be submodules of Ext'(M, A) for
some M. The main result is that for a certain type of ring A, if a projective module P is a
submodule of Ext}(M, A), then P = 0.
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If M is a left module, then we know that the right operation of A on A makes Ext'(#, A)
a right A-module. Similarly if M is a right module, then Ext!(M, A) has a left module struc-

+ 7, hall A ta W 728 d g th ta 1 3
ture. We shall denote by ,7 and 7, the categories A left and right modules which are

LN

submodules of Ext!(M, A) for some module M. We begin by developing some of the
formal properties of .4 and I~

Let F, - F, = M — 0 be an exact sequence of left modules with the F; free R-modules.
Denoting the Coker(Fy* — F,*) by D(M) (where X* = Hom(X, A)), we have by [2] that
there is an exact sequence 0 — Ext!(D(M), R) > M — M** where M — M** is the usual
map ¢ given by o(m)(f) = f(m) for all me M and fe M*. On the other hand, applying
the functor Hom( , A) to the sequence Fy* — F;* - D(M)— 0, we obtain our original
sequence F; — Fy — M. Thus we have an exact sequence 0 — Ext'(M, A) — D(M) — D(M)**.

Thus ,7 consists of submodules of the Ker(M — M*¥) as M runs through ail finitely
generated left A-modules. We shall denote the Ker(M — M**) by (M) and we shall denote

by M, the image of M in M**. Thus M/t{(M) =~ M,. We sh

if (M) = 0.

N *
Now the map M — M** gives

aavy that AL ig tarcion free
Sdy ulat 41 15 1O0I610n 1ICC,

1t a man Af¥Ek Rl* and wa
v —> ¥ G

n
U oa liap ivi Qaill Wy Q.

M* - M***_ Tt is well known and easily seen that the composite M* — M **%  M* is the
identity. Thus in particular we have that M** — M* is an epimorphism. This yields

LemMA 3.1. The epimorphism M — My, — 0 induces an isomorphism My* — M*, or
equivalently the map M* — t((M)* induced by the inclusion map t(M)— M is the zero map.
Also M is torsion free.

prnnl' The exact se

i 11T UA

uence 0 — (M) - M — M, — 0 gives the exact sequenc
— M* — t(M)*. Since M — M** factors as M - My, — M**, we have that the map M***
— M* factors as M*** — (M,)* — M*. Since M*** — M* is an epimorphism, it follows that
the monomorphism (M,)* — M* is also an epimorphism and thus an isomorphism. The

fact that the map M* — ((M)* is the zero map follows trivially.

From the fact that My* — M* is an isomorphism we have that M** - (M,)** is also
an isomorphism. Now the composite map M, — M** — M ** is the same as the natural
map My — (My)**. Since M, — M** is a monomorphism it follows that M, — (M,)**
is a monomorphism, i.e. M, is torsion free.

We now establish our main criterion for when a module is in , 7.

ProPOSITION 3.2. Let N be a left module. Then

a) N e \7 if and only if there is an exact sequence 0 — N — M with M* — N* the zero
map. If 0 = N — M is such that M* — N* is zero, then the Im(N — M) < t(M).

b) N =~ Ext (X, A) for some X if and only if there exists an exact sequence 0 - N - M
such that M* — N* is the zero map andM|N is torsion free. If such a sequence 0 - N —» M
exists, then Im(N - M) = t(M).

Proof. a) If N is in .7, then we know there is a module M such that there exists a
monomorphism N — t(M). Since by Lemma 3.1, the map M* — #(M)* is the zero map, it
follows that the map M* — N* induced by the monomorphism N — M is the zero map.
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Suppose we have an exact sequence 0 - N - M — L — 0 such that M* —» N* is the
zero map. Then L* — M* is an isomorphism. Thus we obtain the commutative diagram

- " . . . "
&) 0— N— M—L—0
M** L*"‘,
Laomcnn weslaiole 24 £ollasen ¢hand d¢hhn feennan AL AT 330 AL Ja0 e smad i #AMN
11011 WILCH 1L TUILLUWD Lilal LG it EC UL Uy 1 Vl lb bUl.l INCa in i\ivi }-
b) I Ext!(X, A). Then there exists a module M such that N = t(M). Since 0 — (M)
. AL . AX N 28 mwrond v '6-1. AL dmmcninim Fonn ned ALK 4 AANK thn nwn manse s hava ol Avrre
= VL IVIO » U 18 XAt wiul lVlo LULDIVIL 10O alllu vl - l\lVl} LU LOLV 11 P, WU LIAYU DliUWILL
b) holds in one direction.
Qurinnnca wa ava an avart 0 v A s Rl_\ T _\n el that T ic f 1on free and tha
QA V¥Ww Qll vAGWL VWV "7 UAY 7 dirx L &3 v OuUWwllL LLIGL 1y 10 AVAL liWwWw Qliu iaw

wuppUse wu il

induced map M* — N* the zero map. Then the diagram (*) holds w1th he added feature
that the map L — L** is a monomorphism. It then follows that N = t(M). This finishes the
proof since #(M) = Ext(D(M), A) where D(M) is as defined above.

PROPOSITION 3.3. The category ,7 has the following properties:
a) If M, and M, arein .7, then My + M, is in ,J .

1\\ If A = 07— thow svprv

o«
Af VD T A then every su

c) If M e \J is isomorphic to Ext'(X, A), then each factor module of M is isomorphic
A £

ExtUY A forsome Y. Thus if M= M, 1+ thon M ~ Extlf AY for como Y if and
nl \1 l‘l _/UI UFnC « A TiAD U ivVE 17‘1 1 .l'.lz EY [ZEAT A IVLd e S 7, 4 9 \ﬂ, ll/ Ju’ DUINC ey U “iite
only if each M; ~ Ext'(Y;, A) for some Y;.
d) fMisa module and M., ..., M, are a finite family of submodules of M such that each
IfMisamoduleand M;, ..., M, g Jamily of submodules of such that each

M;is in \F, then the submodule of M generated by the M, is in ,J . Further if each of the
M; ~ Ext'(X;,A), then the submodule generated by them is isomorphic to Ext! (Y, A) for
some Y.

e) If Me T, then M* € T 5 and thus M** € \ T

Proof. a) We know that there are exact sequences 0 - M; - L; with L* > M* the
zero map. Then 0> M; + M, > L, + L, is exact and (L, + L,)* > (M, + M,)* is the
zero map since that functor ( )* commutes with finite direct sums.

b) and c¢) Clearly if M € ,7, then every submodule of M € ,7". Suppose M’ is a sub-
module of M and we have an exact sequence 0 - M — L - K — 0 chosen in such a way that
L* —» M* is zero and K is torsion free if M = Ext!(X, A) for some X (by Proposition 3.2

PR PR, | (S——— PR S o mwrm dlan O Mo e al _ o _
we know this can always be done). Then we have the following commutative dia agram with

exact rows and columns

=)
<
|

0———»M7fll —-»L/,M' —K— 0.
I

0 0
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Then we have the commutative diagram with exact columns

0 0
! !

(LIM'Y ———(M/M)*

L*———— M*.

Since L* — M* is the zero map, it follows that (L/M")* — (M/M’)* is the zero map. Thus the
exact sequence 0 >M/M’ — L/M’ — K — 0 has all the properties to show that M/M' € ,7
and that M/M’ ~ Ext'(Y, A) for some Y if M ~ Ext'(X, A) for some X.

The last part of c) follows trivially from a) and what has already been established.

d) Since the submodule generated by the M, is a homomorphic image of the direct
sum M, + -+ M,, part d) follows from a), b) and c¢) trivially.

e) Since M is in ., we know there is an exact sequence 0 > M — L — K— 0 such
that the exact sequence 0 — K* — L* — M* — Ext'(K, A) has the property that 0 — M* —
Ext! (K, A) is exact. This shows that M* is in 7 ,. By symmetry, it then follows that
M**e T

Remark. 1t would be interesting to know if each M e .7 is isomorphic to Ext!(X, A)
for some X.

Our first non-formal result concerning ,7 is

LeMMA 3.4. Let A be a ring with minimum condition and radical v such that Al is simple.
If P is a projective module in , 7, then P = 0.

Proof. Suppose P is a non-zero projective module in 7. Since all the simple A modules

are isomorphic, we have that for » sufficiently large the projective module Q = 7 P; where

i=1
each P, = P has the property that Q/rQ contains A/t as a direct summand It then follows
from Lemma 2.3 that Q contains A as a direct summand. Since Pe ,7, wehavethat Q € ,

and thus that A € .7 (see Proposition 3.3a) and b)). Therefore to prove the Iemma, it
suffices to show that A is notin ,7 .

If A is semi-simple, then the lemma is trivially true. Suppose that A is not semi-simple
and that » is the smallest integer 7 such that t' = 0. If a module M contains A, then A is not
contained in rM. For if A were contained in tM we would have that "~ '(tM) = 0 and thus
that "~ *A = 0, which is a contradiction since # > 0 (remember 1 5 0 since A is not semi-
simple). Thus we have that A is not contained in M. Therefore A/rtM N A < M/rM is not
zero and is a direct summand of the semi-simple module M/tM. Since all the simple A-

Aila AT in AA L Aiti
moauies arc 13011101p111u and A has minimum COﬁuxuOﬁ, it follows that A contains a copy

of the unique simple A-module. Thus there exists a map M/rtM — A which is not zero on
A/tM n A. The composite M — M/tM — A gives us a map of M — A which is not zero
on the submodule A of M. Thus if A = M, then M* — A* is not zero, which shows by
Proposition 3.2, that A is not in ,7 .
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Assume now that A is a ring whose center C is a noetherian ring such that A is a
finitely generated C-module. Then if p is a prime ideal in C, we have that C, c A, and A, i
a umu:ly gen erated \/p module. Thus pu ?1\ \uy naﬁayama 5 }emma;, merefore it fuﬂuws
that pA # A Consequently, we have that the map from the prime ideals in A into the prime
ideals in R given by B —PB n Cis onto. Also it is not difficult to see that P in A is maximal

if and only if ¢ n C is maximal in C. We can now state and prove the main result of this
section.

PROPOSITION 3.5. Let A be a ring whose center C is a noetherian ring such that A is a
Sinitely generated C-module. Suppose further, that the map B —B N C of the prime ideals in
A to the prime ideals in C is one to one as well as onto. Then if P is a projective A-module in
AT, then P = 0.

Proof. Let m be a maximal ideal in C, then Pm is a projective Am-module. Suppose
Pm # 0. Since there existed only one maximal ideal (two-sided ideal) in A lying over m,
we have that the r = rad(Am)is a maximal two-sided ideal in Ant. Thus Am/r is a simple ring.
Therefore all the simple A-modules are isomorphic. Consequently, as in Lemma 3.4, we
know that a direct sum of copies of Pnt contains Am as a direct summand. Now the usual
localization arguments show that if M e ,7, then Mse 4 7 for any multiplicative set S
in C. Thus Pm is in ,mJ and therefore so is Am.

Now let p be a minimal prime ideal in C contained in m. Then A, is contained in
apZ since Amis in ,mZ . Since C, has minimum chain condition, it follows that A, also has
minimum chain condition since it is finitely generated over C,. Since there exists only one

prlmc ideal in A 1y1ng over p, it follows that 1\ modulo its radical is a sunple I'lIlg Thus Dy
Lemma 3.4 it follows that A, isnotin 4,7, Wthh is a contradiction. Therefore we have that

P — 0 for all maximal Iripal m in C. Thus we have that P =0, our desired result

Ag a
Py for all maximal ideal m in C. Thus we have that J our d ult. As an
immediate consequence of Proposition 3.5 we have
MNAancrr amvr 2 £
CUKULLAKY J.0.

P=0.

TS A :- OFViTTTi s}
] {x Ly COmiin iive rlny unu Fa

Remark. A. Zaks and D. Zelinsky have communicated examples of finite dimensionali
algebras over arbitrary fields for which Corollary 3.6 is false.

As a consequence of Corollary 3.6 we have

PROPOSITION 3.7. If A is a commutative ring and M a A-module of finite projective dimen-
sion, then M € ,7 ifand only if M* =0

Proof. Suppose M e 7 with pd, M < . Let p be a prime ideal in Ass(A). Then all
the units in A, are zero divisors. But it is well known that if the pd,, M, < oo, then M, is a
A, free module. Thus we must have by Corollary 3.6, that M, = 0 for each prime ideal p
in Ass(A), since M, € ,, for all prime ideals p in A. Thus we have that if p € Ass(A), then
p ¢ Supp(M). Therefore if M # 0, then the annihilator of M contains a non-zero divisor.

From this it follows easily that M* = 0, which is our desired result.

We end this section with the following generalization of Corollary 3.6



164 MAURICE AUSLANDER

ProPOSITION 3.8. Let A be a commutative ring and M a A-moduie. If M is in \7, then
t(M) is nilpotent.

Proof. Let p be a minimal prime ideal in A. Since M is in 7, we know that M, is in
a7 . Now t(M) is the image of the map (p : M*® M — R given byf® x> f(x). Thus
locahzmg we have that #(M), = t(M,). Thus if {M) is not contained in p, then we have
that t(M,) = A, . Since A, is a local ring, it follows that there is an epimorphism M, —» A,
and thus M, contains a copy of A,. Thus A, is in ,,7, which is impossible in view of

Corollary 3.6 Therefore we have that t(M) < p for a]l minimal prime ideals p in A. Thus
t(M) is nilpotent.

§4. SUBMODULES OF EXTR'(M, C).

Throughout this section we assume that R is an arbitrary commutative ring unless
stated to the contrary. Our main results here are the following generalizations of Corollary
3.6 and Proposition 3.7.

THEOREM 4.1. Let M be a finitely generated R-module and C an arbitrary module (not
necessarily finitely generated). If P is a projective submodule of Extg!(M, C), then P = 0.

Proof. Let 0 » C — E(C) » D — 0 be exact with E(C) an injective envelope of C. Then
we have the exact sequence

0 - Homg(M, C) - Homg(M, E(C)) - Homg(M, D) - Ext'(M, C)—~0

Suppose P is a projective submodule of Ext!(M, C). Since Homg(M, D) —» Ext!(M, C) -0
is exact, there is a submodule of Homg(M, D) which gets mapped onto P. But since P is
projective, this submodule of Homgz(M, D) which gets mapped onto P will contain P as a
direct summand. Thus Homg(M, D) contains a submodule isomorphic to P.

Since M is finitely generated, we can find an epimorphism F— M with F a finitely
generated free R-module. This map gives us a monomorphism 0 - Hom(M, D) -+ Homg
(F, D). Thus Homg(F, D) contains a copy of P. Now the sequence 0 - Homg(F, C) — Homg
(F, E(C)) -» Homg(F, D) — 0 is exact since F is a free module. Letting ¥ be the preimage of
Pin HomR(F E(C)), we have that N = Homg(F, C)+ P (direct sum). Now Homg(F, C)

~ N (r ey oV whara tha arimmg ave Sn Aivant arima and tha man of

=, C and IlUlllR\I‘ LWL ))&}, 14\\.,) where the sums are finite direct sums and the map Oi
Y. € - Y E(C) corresponding to the map Homg(F, C) » Homg(F, E(C)) is the obvious map
given by the inclusion map C — E(C). Since the finite direct sum of essential extensions is
essential, we have that Homg(F, E(C)) is an essential extension of Homg(F, C). But the
submodule N of Homg(F, C) is the direct sum Homg(F, C) + P. Thus P must be zero, or
else Homg(F, E(C)) would not be an essential extension of Homg(F, C) which completes
the proof.

THEOREM 4.2. Let R be a noetherian ring and N a finitely generated module of finite projec-
tive dimension. Then N is isomorphic to a submodule of Ext'(M, C) for some finitely generated
module M and some (arbitrary) C if and only if N* =0

Proof. If N* =0, then by the results of §3 we know that N is a submodule of
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Ext'(M, R) for some finitely generated R-module M. The proof in the other direction is the
same argument given in Proposition 3.7.

We also have the following generalization of Proposition 3.8.

COROLLARY 4.2. Let M be a finitely presented R-module and C an arbitrary module. If
N is a submodule of Ext'(M, C), then H{(N) is a nil ideal (i.e. every element is nilpotent).
Proof. Let0 — K — F— M — 0 be exact with F a finitely generated free module. Suppose
p is a prime ideal in R. Then we have the following commutative diagram with exact rows
0 — Hom(M, C), — Hom(F, C), — Hom(K, C), — Ext'(M, C),— 0
l \\
v ¥ ¥ ~
0—> Homg,(M,, C,)— Homg,(M,, C,)— Homg,(K,, C,)— Extz,(M,, C,)
Counting from the left, we know that the first two vertical maps are isomorphisms since
M and F are finitely presented. The third vertical map is a monomorphism since X is
finitely generated (remember that M is finitely presented). Then it follows from diagram
chasing, that the last vertical map is a monomorphism. Thus if N is a submodule of Ext’
(M, C), then N, is a submodule of Extg,'(M,, C,). Now suppose there existsa mapf : N — R
such that f(n) ¢ p for some n € N. Then the induced map f, : N, = R, defined by f,(n/s)
= f (n)/s has the property that fp(n/f (n) = 1. Thus fp : N, = R, is onto. Thus N, contains a

aaaaa wxrla? | N, Ig mmmacoil o anale cantofone il smciiann

Lupy Ul J\p, wuu.,u Uy 1llCUIClll ‘I’ 1 15 uupuamuw lllub 101 Calll ullllillldl plhuc 1ucal 4|J

we have that each map f : N — R has its image in p. Thus t(M ) = p for all prime ideals in

p in R. But the intersection of all the prime ideals in R consists precisely of all the nilpotent
elements. Thus t(#) is a nil ideal.
We end this paper by showing that the conclusion of Theorem 4.1 need not hold if M

is not finitely generated. Before presenting such an example we need the following observa-
tion concerning commutative, noetherian local rings which are complete.

Suppose R is a commutative, noetherian local ring which is complete and E is an
injective envelope of R/m where m is the maximal ideal of R. Then it is a result of Matlis
[8] that if M is a finitely generated R-module, then the natural map M — Homy(Homy
(M, E), E) is an isomorphism.

PROPOSITION 4.3. Let R be as above and M a finitely generated R-module. Then we have

an isomorphism of functors Bxtg'( , M)~ Homg(Tor,R( , Hom(M, E)), E) (for alli).
If {A}, is a direct limit system of modules then the natural map Extg(lim 4,, M) - lim

Exti(4,, M) is an isomorphism (for all i).

Proof. Since F is injective we know by [3, V, Prop. 5.1] that there is an isomorphism
of functors Extg’( , Homg(Homg(M, E), E))=s Homg(TorX( , Homg(M, E)), E). The
fact that M is finitely generated implies that M ~ Homgz(Homg(M, E), E). Thus we obtain
the first result.

Now let {4,} be a direct limit system. Since the functor Tor commutes with direct
limits, we have that Tor®(lim 4,, Homg(M, E)) ~ lim TorX(4,, Homg(M, E)). Since
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oo

nomulm X, By~ nmu(k, B) for any direct limit family {X,} and any B, we have that
Hom(Tor®(lim A,, Homg(M, E)E) ~ lim Hom(Tor;R(4,, Homg(M, E)), E). Applying
the isomorphism established, gives the desired result.

Suppose R is a commutative domain which is a complete, noetherian local ring with
field of quotients K # R. Then K is a direct limit of free modules, so we have that Extg’
(K, R)=0 for all { >0 by Proposition 4.3. Also since R # K, R contains no non-trivial
divisible submodules. Thus Hom(K, R) = 0, since K is divisible and every homorphic image
of a divisible module is divisible. Now from the short exact sequence 0 - R— K — K/R
— 0, we deduce the exact sequence

Homg(K, R) - Homg(R, R) — Extg'(K/R, R) — Extz'(K, R)

which, in view of our remarks above, shows us that R ~ Extg'(K/R, R). Thus K/R is an
example of a module such that Extg'(K/R, R) is projective.
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