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Abstract 

The double chain condition is described. A number of bounds on the length and weight hier- 
archy of codes satisfying the double chain condition are given. Constructions of codes satisfying 
the double chain condition and with trellis complexity 1 or 2 are given. 

1. Introduction and notations 

We consider binary linear codes. The support of  a vector x=(x l ,  x2 . . . . .  x,)  in GF(2)" 
is defined by 

Z(X) = {ilx i ~k 0}, 

and the support of  a subset S C GF(2)" is defined by 

z(s)  = U z(x). 
xES 

The support weight of  S is defined by 

ws(S) : Iz(s)l. 

Hence, ws(S) is the number o f  positions where at least one vector in S is non-zero. 

The weight hierarchy of  an In, k] code C is the sequence (d l ,dz , . . . ,d , ) ,  where 

dr = dr(C)= min{ws(D)]D is an In, r] subcode of  C}. 

In particular, d l =  d, the minimum distance of  C. The parameters d l , d z , . . . , d k  of  a 
code were first introduced by Helleseth et al. [4]. A simple, but important property is 
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the following, first proved by Helleseth et al. [4, Theorem 6.1]: 

0 < d l  < d 2  < . . .  < d k .  

Fomey  [2] called (dl ,d2 . . . .  ,dk)  the length~dimension profile. The inverse was first 
studied by Kasami et al. [8] and Vardy and Be 'e ry  [12]. In the notation of  Forney [2], 

the dimension~length profile (ko, kl . . . . .  kn) is defined by 

k / = r  f o r d r  ~ i < d r + l .  

In particular, ki = 0 for i < d and k, = k. 
Forney [3] introduced the double chain condition which can be rephrased as follows. 

An [n, k] code C is called a DCC (double chain condition) code if it has the following 
property: there exist two chains of  subcodes of  C, the left chain 

D E CD E C ' - "  CD  E = C, 

and the right chain 

D R CD2 R C ' "  c D ~  = C, 

where, for 1 ~< r ~< k, we have 

dim(DE) = d im(D~)  = r, 

z(D~)---- {1,2 . . . . .  dr}, 

z(Dff ) = {n - dr + 1,n - dr + 2 , . . .  ,n}. 

A code is said to satisfy the double chain condition if  it is equivalent to a DCC 
code. The same concept in a different notation was first studied by Kasami et al. [8]. 
They showed that the Reed-Muller  codes satisfy the double chain condition. Forney 
[2,3] proved that several other classes of  codes have this property. 

Forney [2] defined the state complexi ty  profile (s0,sl . . . . .  s , )  o f  an In, k] code and 
gave a lower bound on the si in terms of  the dimension/length profile and what he 
called the inverse dimension/length profile. Codes satisfying the double chain condition 
are optimal with respect to this bound in the sense that the hound is satisfied with 
equality for all i, and this is our reason to studying these codes. For these codes the 

si are given by 

si = k - k i  - & - i  

for 0 ~< i ~< k. Further, the state complexi ty  is 

s = m a x { s i ] 0  ~< i ~< n}. 

Sometimes we will include s and d in the  notation for an [n,k] code C, and refer to 
C as an [n, k, d] and In, k,s, d] code. Further, if  C is a DCC code, we will also refer 
to it as an In, k] Dcc, [n,k,d] Dcc, and [n,k,s,d] Dcc code. 
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The main part o f  this paper is a determination of  the parameters n, k, d for which 
there exist [n, k, 1, d] Dcc and [n, k, 2, d] Dcc codes. Further, we give some general bounds 

on the parameters o f  DCC codes. 

An [n,k] Dcc code C has a basis f¢ = {91 ,92 , . . . ,9~}  such that 

(gl,g2 . . . . .  g r ) = D Y  for 1 ~ r ~ k .  (1) 

Here {91,92 . . . .  ,gr) denotes the vector space spanned by {91,92 . . . . .  9r}" Similarly, for 
a vector space D and a vector x we will use the notation (D, x) to denote the space 

spanned by D and x, etc. In the following, when we consider an [n, k] Dcc code C we 

will assume that a basis ~ has been chosen such that ( l )  is satisfied. We note that such 

a basis is not unique since we may substitute 9i + ~--~1 ~jgj for 9i without affecting 

(1). We as usual write 9r = (grl,gr2 . . . . .  grn), and we will refer to these elements 

without further comments. We note that 

grd, =1;  gr i=O for dr < i ~ < n .  

Similarly, C has a basis W = {h l ,h2 , . . . , h , }  such that 

(h~,h2 . . . . .  £ ) = D  R for 1 <~r<.k.  (2) 

For any vector x E C\{0},  let 

l ( x )  = minx(x)  and u(x)  = max X(x), 

that is, l ( x )  and u(x)  are the positions of  the leftmost and rightmost 1 in x, respectively. 

Lemma 1. Let  C be an [n,k,d] DCC code. For all x E  C\{0}  we have 

(i) u(x)  = dr f o r  some r, and 

(ii) l ( x )  = n + 1 - dr, f o r  some r'. 

Proof.  Since ff is a basis, there exist al ,a2 . . . . .  ar for some r, 1 ~< r ~< k such that 

r 

X ~ E aigi' 
i=1 

and ar = 1. By the definition of  the chain condition, we have 

g i j = O  if 1 ~<i~<r and dr < j ~ < n ,  

and 

gid, ~ -  0 if 1 ~< i < r, 

grd, = 1. 

Hence u ( x ) =  dr. A similar argument, using the basis ~ gives (ii). Z] 
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Corollary 1. Let  C be an In, k, d] Dcc code. Then there exists a basis ~ and a per- 

mutation ~ o f  {1,2 . . . . .  k}  such that 

( 9 1 , g z , ' " , g r )  -- DrL fo r  1 <~ r <~ k, 

and 

(9~(1),9~(2) . . . . .  g.(~)) = D R  f o r  1 <~ r <~ k. 

That is, we can choose ~ f  as a permutation o f  ~. 

Proof.  Let N be a basis for C satisfying (1). I f  i < j are such that l(g i) = l(gj) ,  then 

we can replace 9j by gi + 9). This will not affect the property (1). Repeating these 
substitutions if necessary, we see that we may assume that l(9 i) ¢ l (gj )  for all i ¢ j .  

From Lemma l(ii) we see that 

{ l (gr) l l  ~< r ~< k} = {n + 1 - dr, I1 ~< r '  ~< k}, 

and the corollary follows. 

In a vector or matrix, a block of  a consecutive zeros will sometimes be denoted by 
a 

0 , and similarly for a block of  ones. 

2. Some basic results 

Theorem 1. I f  C is an [n, k]DCC code, then dk = n. 

Proof. Suppose that dk < n. By the left chain condition n ~ z(C).  By the right chain 

condition n E z(C), a contradiction. [] 

Lemma 2. I f  C is an [n, k, d] code with k > 2 which contains two codewords 

a b a a b a 

x = (  1 1 0 ) and y = (  0 1 1 ), 

where a + b = d, then b = O. 

Proof.  Write the codewords c o f  C as 

c - (cl 1c21c3) 

where cl and c3 have length a and ce has length b. Let 

z = x + y =  (llOI1). 
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For any codeword c, we have c + z E C. I f  c ~ {0, z} we have 

2a + 2b = d + d <~ w(c) + w(c + z) 

= (w(c,)  + w(c, + 1)) + (w(c2) + w(c2)) + (w(c3) + w(c3 + 1)) 

-= a + 2w(c2) + a ~< 2a + 2b 

since w(c2) <~ b. Hence w(c2) = b (and c2 = 1). Let g" be a codeword in C, not in 

{0, x,y, z}, and let 

c = e + x -- ( (~  + 1)10lc?3 ). 

Then b = w(c2) = w(0) = 0. [] 

Theorem 2. I f  C is an [n, k > 2, d] Dec code, then 2d <~ n. 

Proof. Let D~ = { 0 , x }  and D R = { 0 , y } .  By Lemma 2, Z(X) f~ Z(Y) =- 0 and so 

2d = Ig(x)l + IZ(Y)] -- IZ(x) tO Z(Y)I ~< n. [] 

Example. The simplex codes have parameters [2 m - 1, m, 2 m-I ]. By Theorem 2, the 

simplex codes do not satisfy the double chain condition. In contrast, Kasami et al. 

[8] showed that the closely related [2 m, m + 1,2 m-j ] first order Reed-Muller codes do 

satisfy the double chain condition for all m. 

Theorem 3. I f  C is an [n,k,d] Dec code, then 

dr+l <~ dr + d 

Jor 1 <~ r < k. In particular dr <~ rd for all r and n <~ kd. 

Proof.  Let 1 ~< r < k and let D =  (DL,DR). Since n ~ Z(Dr L) and n E z(DR), we have 

dim(D) = r + 1. Hence 

dr+i <, ws(D) <~ ws(D L) + ws(DR1) = dr + d. [] 

In [11], Lafourcade and Vardy proved that for any [n,k,s,d] code we have 

k 
n >~ - ( d -  1). (3) 

S 

For codes satisfying the double chain condition we can give stronger bounds on n. We 

will also give bounds on dr in general. 
By Theorem 3, if d = I for an [n,k] Dcc code C, then n = k and so C = GF(2)  n 

Further, the only [kd, k,d] Dcc codes are the [kd, k,O,d] Dcc codes generated by the 



178 

matrices 

d 

1 
0 

0 

T KlovelDiscrete Mathematics 175 (1997) 173-195 

d 

0 

1 

0 

0 

1 

Therefore,  from n o w on we will assume that s / >  1, d >~ 2, and n < kd. 

Lemma 3. For an [n , k , s , d  >1 2]  DCC code we have 

dr + d k - r - s + l  ~ n + 1. 

Proofi Let i = dr - 1. By  definition, ki -= r - 1 and 

and so 

kn-i  = k - k i  - si > > - k - r +  1 - s  

n - i ~ d k - r + l - s  and n ~ dr - 1 + d k - r + l - s .  

Corollary 2. L e t  C be an [n, k,s, d / >  2] Dcc code. I f  r + t <~ k - s, then 

dim((DL,DR)) = r + t a n d  L R ws(  (D r , D  t )) = dr + dr. 

Corollary 3. Le t  C be an [n , k , s , d  >~ 2] DCC code. I f  r + t = k - s + 1, then 

and  

dim( (DLr,DR) ) = r + t 

L R dr + dt - 1  ~ ws(  (D r , D  t ) ) <~ dr + dt. 

Proof .  I f  r + t ~< k - s, then, by  L e m m a  3, 

dr + dt <~ dr + dt+l - I ~ dr + d k - r - s + l  -- 1 <~ n 

and so z (D~)  n z(Dt R) = 0. Hence  , 

d im( (DL,DR) )  = r + t and ws((D~,DRt))  = dr + dr. 

I f r + t = k - s + l  we get in the same way  that 

. t / D  E D R \ dr + d t -  l <~ w s t \  r,  t /)" 

Assume that d i m ( ( D ~ , D f i ) ) <  r + t. This  is on ly  possible  i f  9r E DR and so l (gr)  

n + 1 - dt >~ dr. Hence  l (gr)  = dr = u(gr)  and wn(gr )  = 1 < d, a contradiction. [] 
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T h e o r e m  4. For an [n,k ,s ,d  >~ 2] Dcc code we have 

d.+,+t I >~ d,  + dt - 1 

Jbr r ) 1, t >~ 1, and r + s  + t -  1 <~ k. 

Proof .  Let  

D L R = (Dr,Dk_r_s+l). 

By Coro l la ry  2, d i m ( D ) = k - s +  1. Since the vectors  gr+l,gr+2 . . . . .  gr+s+t--I are l inear ly 

independent ,  and 

d im(  (D, 9r+ j, 9r+2, • • •, 9 r+s+, -  1 ) ) ~< k, 

there exist  i t , i2 , . . . , i t  such that 

r +  1 ~<il < i 2  < " "  <i t  < ~ r + s + t -  1 

and 

gi, ~ D for 1 <~ u ~ t, 

that  is 

gi,, = Y u  4- Zu, 

R where  Yu E Dr  L and zu C D k _ r _ s +  1 . Suppose  

~ auzu = 0 
u--1 

for some a .  E GF(2) .  Then 

t t 

Z a"gi,, = Z auYu C DLr 
u--I u--I 

and so a ,  = 0 for all u; that  is, the vectors  Z l , Z 2 , . . . , z t  are l inear ly  independent .  Let  

D '  = (Zl, Z2 . . . . .  Z,). 

Then  

and 

max  x ( D ' )  = di,  <~ dr+s+t- 1. 

min  z (D ' )  >1 min R z(Dk_r_~+ 1) = n + 1 -- dk . . . .  +l /> dr  

by  L e m m a  3. C o m b i n i n g  (4)  and (5)  we get  

dr+s+t-l >~ dr + ws(D/)  - 1 >~ dr + d t  - 1. []  

(4)  

(5) 
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Let 

r - - I  

/=0 

denote the Griesmer bound. It is well known that 

dr >~ 9(r,d).  

Theorem 5. For an [n, k, s, d >~ 2] occ code C, Jbr t >~ 1, and for  1 <~ r <. k, write 

r = a ( s + t -  1 ) + b  

where 1 <~ b <~ s + t - 1 .  Then 

dr > / a ( g ( t , d ) -  1 ) + 9 ( b , d ) .  

Proof.  By Theorem 4 and induction we get 

dr >~ a(dt - 1 ) + d b  ~> a(9( t ,d)  - 1) + 9(b,d) .  [] 

Example.  I f  d is even and k = a(s + 1 ) +  2 for some integer a, we can choose t = 2, 
b = 2 in the theorem and get 

n~> - d - 1  + 
s T ] -  2 ' 

compared to Lafourcade and Vardy general bound (3): 

k 
n ~> - ( d -  1). 

S 

E.g. for s = 3 ,  d = 4 ,  k =  1 0 = 2 ( 3  + 1 ) + 2  we get n ~> 16 compared to n ~> 10. 

3. Codes with trellis complexity one 

Theorem 6. For an [n, k, 1, d ~> 2] DCC code we have 

(a) dr+l ~> dr + d - 1 f o r  1 <~ r < k, 

(b) dr >>-r(d- 1 ) +  1 f o r  1 <~r < k ,  
(c) n >>.k(d- 1 ) + 1 .  



72 Klove/Discrete Mathematics 175 (1997) 173-195 181  

Proof.  We see that (a) follows directly from Theorem 4 and that (b) follows from (a) 

by induction. Finally, (c) follows from (b) and Theorem 1, or alternatively, by putting 

s = t = l  in Theorem 5. [] 

By Theorems 3 and 6, for an [ n , k , l , d / >  2] oc t  it is necessary that d k -  k + 

1 <~ n < dk. The main result o f  this section is to show that this is also sufficient, i.e. 
for all such n there do exist [n, k, 1, d] Dcc codes• We do this by giving explicit code 

constructions o f  [n, k, 1, d t> 2] Dcc codes for all n, k, d for which d k -  k + 1 <~ n < dk. 

To give a compact description of  the codes we will present, we introduce another 

notation. To a sequence (bo, al ,bl ,a2,  b2 . . . . .  b~.-i,ak,bk) of  non-negative integers we 

assosiate a generator matrix 

bo a I b l a2 b2 b~ _ / a~ b~ 

1 1 0 0 . . -  0 0 0 

0 1 1 1 .- 0 0 0 

0 0 0 1 -. 0 0 0 

1 

0 

0 

0 

0 

0 

0 0 0 

0 0 0 

0 0 0 

of  an [n,k,d] code C(boalbla2b2 

k k 

n--Zo,+Zbi 
i - -  I i = 0  

If  

0 ,. 0 0 
0 ,. 1 0 

0 .-- 1 1 

""  bk-lakbk ), where 

a~=ak+l_~  for 1 ~<r~<k, 

b,. = bk-~ for 0 ~< r <~ k, 

b o + a l + b l  = d ,  
a~+br  <~d for 1 ~<r~<k, 

b , . _ l + a ~ + b ~ > ~ d  for 1 ~<r~<k, 

we call such a code an ab-code. If  in addition 

br E {0,1} for 0 ~< r ~< k, 

we call the code a 1-ab-code. Note that this implies that 

ar E { d -  2, d -  l , d }  for l ~ < r ~ < k .  

For the sequence boalbla2b2. . ,  bk-lakbk we will sometimes use a power notation. 
e.g. (102) 2 denotes 100100. 

Lemma 4. All  [n,k, 1,d] DCC codes are 1-ab-codes. 
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Proof .  Let C be an [n,k, 1,d] Dcc code. Let 

ar = n -- dr-1 - dk -r  for 1 ~< r ~< k, 

b r = d r + d k - r - n  for 0 ~ < r ~ < k .  

For  d = 1 we get C = GF(2)  k, and so dr = r for all r. Hence ar = 1 and br = 0 for 

all r, and 

C = C ( 0 1 0 1 0 . . . 0 1 0 ) .  

For d ~> 2, combining Theorem 3, Lemma 3, Corollary 2, and Theorem 4, we see that 

C = C(boalbla2b2 . . .  bk - lakbk)  

and that this is an 1-ab-code. [] 

Lemma 4 explains why we consider 1-ab-codes. However,  not all 1-ab-codes are 

[n,k, 1,d] Dcc codes. For  example,  for d >~ 2, the code C(OdOblbOdO) where 6 = d - 1  

is a 1-ab-code, but, 

d2 = ws( (g2 ,o3) )  = 2d - 1, 

and 

ws(D~)  = 2d > d2. 

L e m m a $ .  Let  C be an 1-ab-code. For each r, 1 <~r <<.k, there exis t  a set o f  r 

subscripts i l , i 2 , . . . , i r  such that 

dr = w s ( ( g i , ,  9i: . . . . .  9~,) ). 

Proof .  Let G denote the generator matrix o f  C. Any  r-dimensional  subspace D o f  C 

has a generator matrix A G  where A is an r × k matrix o f  rank r. Row operations on A 

will  not change the code D. Therefore, we may assume without loss o f  generality that 

A = (a/ j )  is a reduced echelon matrix, that is, there exist numbers j~, j2 . . . . .  j r  such that 

aij ,  ~ - - -  1 for 1 ~< i ~< r, 

ai , j ,  = O for l ~ < i ~ < r ,  l <~ { < i, 

a i j = 0  for 1 ~<i~<r ,  l ~ j < j i .  [] 

We say that D is a quasi-diagonal subcode i f  aij = 0 for 1 ~< i ~< r and j # j i .  The 

lemma states that for each r there exists an r-dimensional  quasi-diagonal subcode D 

o f  C such that dr  = ws(D).  Equivalently, i f  D is not quasi-diagonal,  then there exists a 

quasi-diagonal subcode D t o f  the same dimension such that ws(D t) <~ ws(D) .  We show 

this by  modifying the echelon matrix A to a matrix A t with only one non-zero element 

in each row. The modification can be done row by row. Suppose that the first i -  1 rows 

o f  A contain a single non-zero element. Consider row i with its first non-zero element 

in posit ion j i .  Let A ~ be the matrix which has the same elements as A outside row i, 
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and which has a single 1 in row i in posi t ion ji. Let D"  denote the r -d imens iona l  code 
'D"  k , generated by the rows of  D except row n u m b e r  i. Then D = / ,9/, + ~:~/.+1 ai/9:) 

and D '  = (D", 9.j,). Hence  

and 

ws(D)  = ws (D" )  + ]z(D) \ z(D")] = ws (D" )  4- ai, 4- c 

ws(D:) = w s ( D " )  + [z (D/ ) \ z (D")[  = ws (D" )  + ai 4- c' 

for some c >/0 ,  e '  C {0,1}.  Here c ' =  0 i f  bj, = 0. Similarly,  c ' =  0 i f  b: , - -  I and 

ji+l = j i  + 1. In all other cases c ~ = 1. We have ws(D' )  ~ ws(D)  except when c 0 

and c ' =  1. This can only  occur if  d = 2 ,  ji+l > j i +  1, b , .=  1 for j i  <- r <~ ji+l - 1, and 

at~ = 1 for j i  4- 1 <~ ji+l - 1. In this exeptional  case we can choose D' = (D",9/:., ~) 
to get ws(D' )  <~ ws(D).  This completes  the induction.  

For a sequence J =  (a l , a2 , . . . , ak )  define 

u + j  1 

~ ( u , j ) = ~ ( d ; u , j ) =  Z ai. 
i=u 

L e m m a  6. Let  (a l ,a2 , . . . , am)  be a sequence such that ai - am+l-i Jor all i, and 
] a ( u , j ) - a ( u ' , j ) ]  <. l f o r  all u, u', j such that 1 <~ j <<. m and 1 <~ u <~ u' <~ m - j +  1. 

Then the l-ab-codes Ct defined by 

Ct C ( l a l l a z l  lain_, ' ' ~ l a m - l l ) ' a m l )  . . . .  l (am0a 1 l a ,  1 . . . .  

/ 
where a' t = al + 1 and a m = am 4- 1, is a D C C  code Jor all t >~ O. 

Proof .  We first prove this for t = 0. Let 

D = (gi, ,gi, . . . . .  gi, ) 

be a subcode of  Co. Consider  the last gap in the sequence il , i2,. . . , i , .:  i,+1 > i, + 1, 

but  / / _ l = / i + l  f o r j > v .  Let 

D ' =  (gi,,gi,_ . . . . .  gi,,9i,+l . . . . .  gi,+t,.-,)). 

Then 

ws(D)  - wx(D')  = (1 + o(v + l , r  - v) + 1) - (~r ( v , r -  v) + 1) >~ 0. 

Now D '  has one less gap in its sequence of  subscripts, and we can repeat the process 

unti l  we end up with a code D"  with no gaps, that is 

D " =  (gu, gu+l . . . . .  gu+r-I) 

and w s ( D " )  <~ ws(D).  The same argument  shows that 

ws( (g l ,92  . . . . .  9r))  <~ w s ( D " )  <~ ws(D).  
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By Lemma 5 we get 

d~ = ws( (g~,82 . . . . .  8~) ). 

We note that ( g l , g 2  . . . . .  gr)  = DL and so 

z ( D ~ )  = z ( ( g l , 8 2 , . . .  ,gr ) )  = {1,2 . . . . .  dr}. 

From the symmetry in the generator matrix we get 

z ( ( g k + l - r , 8 k + 2 - r , ' " , g k ) )  = {n  + 1 -- dr, n + 2 - d . . . . . .  n} .  

Hence Co is a DCC code. 
Now, consider Ct in general. Let 

D = ( gio,, 8io2 . . . . .  gi% . . . . .  gi,,, 8i,2 . . . . .  gi,j, ) 

where 

u r n +  1 ~ iul < iu2 < " "  < iuj, <~ (u + l )m 

for 0 ~< u ~ t. Within each block we can perform the same operations as we did above. 

Thus we get w s ( D ' )  <~ w s ( D ) ,  where 

Ot  = ( gl , 82 . . . . .  8jo' gm+ l , gm+ 2 . . . . .  gm+jl . . . . .  gtm+ l , gtm+ 2 . . . . .  gtm+j, )" 

Next we observe that i f j u  + ju+ l  ~< m, then 

WS( ( gum+ 1, gum+2 . . . .  ,8um+j. ,  8(u+ 1 )m+ 1. g(u+ l )m+2 . . . . .  g(u+ 1 )m+ j.+, ) ) 

= W S (  (gum+ l , 8urn+2 . . . . .  gum+j.,  8um+m+ l--j,,+l ' g(u+l  )m+2 . . . .  , Sum+m) ) 

' Similarly, i f j u  4-ju+l  > m, then since a i = am+l i and a 1 = a m. 

ws(  ( 8um+ l , Sum+2 . . . .  , gum+j,,, 8(u+ l )m+ l, g(u+ l )m+2 . . . .  , 8 ( u + l ) m + j , , + ,  ) )  

=WS ( (8um+l . . . . .  8urn +m, 8( u+l )m+m-j,, + 1 . . . . .  8(u+ l )m+j,,+, ) )" 

Hence we can move elements from one block to the preceding block without increas- 

ing the support weight. By repeatedly moving elements and removing gaps we get 

ws(DL~) <~ w s ( D ) ,  where r is the dimension of  D. Hence we get dr = w s ( D L ) .  By 

symmetry, we get as above that Ct is a DCC code. 

Theorem 7. [n, k, 1, d >~ 2] Dcc codes  e x i s t  i f  a n d  on ly  i f  d k  - k + 1 4,% n < dk.  

Proof.  By Theorems 3 and Corollary 6, for an [n, k, 1,d >/2] Dcc it is necessary that 

d k -  k 4. 1 <~ n < dk .  It remains to show the if  part, and we do this by giving explicit 
constructions o f  the forms described in Lemma 6. We use the notation {x} for the 

integer closest to x, with the special case {n 4- 0.5} = n for all integers n. 



ar = a k + l - r  = d - 2 

a ~ = d -  1 

and t = 0 in L e m m a  6. 
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Case I: n -= kd - 2 p -  1 where  0 ~< p ~ (k - 2) /2 .  Use 

a , . = d - 2  for r =  2 ~ - ~ i + 1  , 0 ~ < i ~ < 2 p + 1 ,  

a,- = d - 1 otherwise,  

and t = 0 in L e m m a  6. 

Case l l :  k is odd and n = kd - 2p, where  0 < p ~< ½(k - 1). Use 

for r L ~ f i -  p + 1  , O<~i<~p, 

otherwise,  

185 

then 

l ~ u ~ u + j - 1  ~ k ,  

a(u , j )  = j (d  - 1) - A(u , j )  

where  

A(u, j )  = I~(u, j)  I, 

and where  

@ ( u , j ) = { r ] u < , r < ~ u + j - I  and a~ = d -  2}. 

Since a~ = d - 2 i f  and only i f  r - -  {[(k - l ) / ( 2 p  + 1)]i + 1} where  0 ~< i ~< 2 p  + 1, 

we  get 

{ k - 1  i + l < ~ u + J - 1 }  
~ ( u , j ) =  ilu<~ 2 p + l  

Let  imin and /max be the smallest  and largest  e lement  o f  ~ ( u ,  j ) .  Then  

( k  - 1)imin - p ( k  - 1)imp. + p ~<u~< 
2 p +  1 2 p +  1 

Case III: k is even  and n = k d -  2p, where  0 < p ~< m -  1. Let  k = am, where  ~ is 

even  and m is odd. Use  the construct ion in cases I and II (with m substituted for k)  

and t = ~ -  1 in L e m m a  6. 

We  have to show that the condi t ions  in L e m m a  6 are satisfied for the sequences  in 

cases I and It. Cons ider  case I. First  we note that [(k - 1 ) / ( 2 p  + 1 )]i + 1 is not o f  the 

form n + 0.5. Hence  

k + l -  2 ~ - ~ ' + 1  = k + l  2 p + ~ i + l  

2- 5(2p + 1 - i )  + . 

This impl ies  that a r  = a k + l - r  for all r. Next ,  i f  



186 T. Klove/Discrete Mathematics 175 (1997) 173-195 

and so 

( 2 p + l ) ( u -  1 ) - p  

k - 1  
imin 

( 2 p + l ) ( u - 1 ) ÷ p  

k - 1  

Similarly, 

( 2 p +  1)(u + j -  2 ) -  p 

k - 1  
~< /max ~< 

( 2 p +  1 ) ( u + j -  2 )+  p 

k - 1  

Since A(u, j )  =/max - -  imin ÷ 1, we get 

(2p  ÷ 1 ) ( j -  1 ) -  2p  
+ 1 <~ A(u, j )  <. 

k - 1  

Therefore 

muax{A(u,j)} - m i n { A ( u , j ) }  <~ 

( 2 p + l ) ( j -  1 ) ÷ 2 p  

k - 1  

< 2 ,  

+ 1 .  

and so 

[a (u , j )  - g (u ' , j ) ]  = [ A ( u , j ) -  A(d , j )[  <~ 1 

for all u, u' and j .  

The proof o f  case II is similar for p < ( k -  1)/2. For k = ( p -  1)/2 we get ar = d - 2  
for all r, 1 ~< r ~< k and so o ' (u , j )  = j ( d -  2) for all u and j .  [] 

4. Codes with trelfis complexity two 

We now consider the parameters n, k, d for which [n,k,2,d >>. 2] Dcc codes 

exist. Since [n, k, 1, d >~ 2] Dcc codes exist for n > kd - k, we restrict our attention to 
n <~ k d -  k. We will show that for even d, [n,k, 2, d >>. 2] °cc  codes exist if and 
only if n />  ½(k + 1)d. For odd d we show that [n,k,2,d >>. 2] Dcc codes exist for 

n >/ ½(k + 1)(d - 1 ) +  k. We believe that no [n,k,2,d >>. 2] Dcc codes exist for 

n < ½(k + 1 ) ( d -  1 ) +  k, but we can only show a slightly weaker result. 
Putting s = t = 2 in Theorem 5 we get a lower bound on n for an [n, k, 2, d >~ 2] °cc  

code. However, we will show that this bound can be improved in most cases. 

L R L Lemma 7. Let C be an [n,k,2,d >~2] Dcc code. I f  x E (Dr_l,Dk_r) \Dr_ l, then 

x = y + z  

where 

y E D L  ~, 

u(x) = u ( z ) ,  

R 
Z C D k _  r, 

I(Z) >~ dr-l.  
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L R L R Dk_~), by Proof.  Since x E (D~_I, definition, there exist y EDr_ I and z E D k r 
that x = y + z .  Since x ~  L Dr-1 we have z ~ 0. By Lemma 3 we have 

l (z)  >~ n + 1 - dk_ r >/dr-1. 

This also implies that 

u(Z) > dr-I  ~ u(y), 

and so u ( x ) = u ( z ) .  [] 
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such 

and 

Then 

L R L e m m a  8. I f  9 r is o f  type II, then gr+l E (Or_l,Dk_r).  

L e m m a  9. Let  C be an [n ,k ,2 ,d  >~ 2] DCc code and 1 <<. r <~ k - 1. 
L R (i) I f  9~ is" o f  type I, then g r = y + z  where y E Dr_ l, Z E Dk_ r, and dr >>- dr-I  + d -  I. 

L R (ii) I f  gr is o f  type II, then 9r+J = Y + Z where y E D r _ l ,  zEDk_r ,  and 
dr+l >~dr + ½ ( d - 1 ) .  

Proof.  Case I: gr is of  type I. By Lemma 7, 9r has the given representation and 

dr =- U(gr) = U(Z) >~ l (z)  + d - 1 ~ dr-I  + d - 1. 

Case II: 9r is of  type II. By Lemmas 7 and 8, 9r+1 has the given representation 
with u(z)  = dr+t, and l (z)  >~ dr- i .  Define 

a = I z ( z )  n Z(gr- )l, 

b = I{ili > dr-l ,gri  = 1, and zi = 1}l, 

c =  I{ i l i  > dr- . ,gri  = 1, and zi =0}[ ,  

e =  [{i l i  > dr-l ,gri  = 0 ,  and z i -~ 1}]. 

d r = d r  j + b + c ,  

dr+t = d r + e ,  

dr < Ws((DL_l,gr + Z)) = dr-1 + c-'}- e. 

Combining (6) and (8) we get 

e>~b. 

(6) 

(7) 

(8) 

(o) 

L D R If  9r E (Dr_ 1, k - r ) '  we say that 9r is of  type I, otherwise it is of  type II. From the 
proof  of  Theorem 4 we get the following lemma. 
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By definition, i f  a > 0, then 

a ~ < d r _ l - l ( z ) + l  ~< 1 

and so a = 1. Hence 

a + b + e = w(z)  >~ d. (10) 

Combining this with (9)  we get 

d~< l + 2 e ,  

and so 

d r + l = d r + e > / d r + ½ ( d - 1 ) .  [] 

Theorem 8. For an [n, k, 2, d >1 2] Dec code, where d is even, we have 

dr >~ ½(r + l )d for  1 <~ r <~ k. 

Proof .  The proof  is by induction on r. We first observe that the result is true by the 

Griesmer bound for r = 1 and r = 2. Let r ~> 2, and suppose that the result is true up 

to r. By Lemma 9 we have either dr ~> d r - l  + d - 1 and so 

dr+l >1 d r +  ] >I dr-I  + d >~ ½(r - l ) d  + d =  ½ ( r +  1)d 

or dr+l >i dr + l d  (since d is even) and so 

dr+, >. dr + ½d >~ ½(r - 1 ) d  + ½d = ½(r + l )d. [] 

For odd d, let 6 = (d  - 1 )/2. We have d2/>  33 + 2 by the Griesmer bound, and the 

same argument as in the proof  o f  Theorem 8 gives 

dr ~ > ( r +  1 ) 6 + 2  for r ~> 2. 

However,  in most cases this is weaker than the bound we obtain i f  we choose t = s = 2 

in Theorem 5. The underlying results for this bound from Lemma 2 are 

dr+2 ~> dr + g ( 1 , d )  - 1 = d r  + 2 3 ,  (11) 

and 

dr+3 ~ d r + 9 ( 2 ,  d ) -  l = d r + 3 6 + l .  

Using these results we get a lower bound on d,- as in Theorem 5. 

T h e o r e m 9 .  For an [n,k,2,d>~3] Dcc code, where d ~ odd, we have 

dr > / ½ ( r +  1)d - +(r  - f o r  1 r 

(12) 



where 
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3 

~,- = 1 
5 

.for r = 0 (mod 3), 
j b r  r= -  1 (mod3) ,  

.['or r ~ 2 (mod 3). 

ProoL We have dl = 26 + 1 and we get d2 ) 36 + 2 by the Griesmer bound. Next 

d3 ~ d 1 + 2 6 = 4 6 + 1 ,  

and we can show by an argument similar to the one in the appendix (but simpler) that 

d3 = 46 + 1 is not possible. Hence 

d3 ) 46 + 2. (13) 

This proves the theorem for r ~< 3, and the general result follows by induction 

using (12). 

It is possible to show that 

d,.+5 /> dr + 56 + 2, (14) 

and this will give a better bound on dr in most cases. The proof of  (14) is a little 
technical and is given in an appendix. Using (14) we get the following bound on d,.; 

the proof is similar to the proof o f  Theorem 9. 

Theorem 10. For an [n, k, 2, d ~> 5] Dcc code, where d is odd, we have 

5 
1 

[~r = - 3  

3 

- 1  

where 

f o r  r =_ 0 (mod 5), 
f o r  r= -  1 (mod5) ,  

Jor r = 2 ( m o d 5 ) ,  
j o r  r = 3 (mod5) ,  

Jor r = 4 (rood 5). 

Lemma 10. I f  the ab-code C = C ( b o a l b l a 2 . . .  bk-lakbk ) is' an [n,k,s,d] Dec code, then 

C I ! I I ! = C(boalb 1 a2" " b  k_ l akbk ), 

where b~ = bi + 1, is an [n + k + 1,k ,2 ,d  + 2] Dcc code. 

Proof.  If  9~ is the ith row in the generator matrix for C',  the correspondence 9, ~ 9~ 

extends to a natural 1 1 correspondence between the subspaces of  D of  C and the 
subspaces of  D '  of  C'. For any subspace D of  C of  dimension r, 7~(D) contains 

v(D) ~> r + 1 of  the groups o f  ai ls (where 1 ~< i ~< k), and v(D~) = r + 1. Hence, 

wsCD') = ws (D)  + vCD) >~ wsCD) ) + r + 1 = wsCCD~ )'). 
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Hence (D') L = (D,L) '. Similarly, we have (D') R = (DR) '. Hence C' is a DCC code. 
Clearly, the length has increased by k + 1 and the minimum distance by 2. Further 
s~= 2 (except when bi = 0 for all i). [] 

Let 6 + 1 ~ u ~< 26. Starting from an [no, k, 1 , 2 u -  26 + 1] Dcc 1-ab-code where 

k(2u - 26 + l ) - k + l <<.no <~ k(2u - 26 + l ), 

and repeating the construction in Lemma 10 a total of 26 - u times, we get an 
[n,k,2,26 + 1] °cc code, where 

( k + l ) u - ( 2 u - 2 6 ) ÷ l  ~ < n ~ < ( k + l ) u - ( 2 u - 2 6 ) + k .  

For u = 6 ÷ l  we get 

( k ÷ l ) 6 + k ~ < n ~ ( k + l ) 6 + 2 k -  1, 

for u = 6 ÷ 2  we get 

( k + l ) 6 + 2 k -  1 ~ < n ~ < ( k + l ) 6 + 3 k - 2 ,  

etc. 
Similarly, starting from [no, k, 1,2u - 26] Dcc 1-ab-codes, we get [n, k, 2, 26] Dcc codes 

for all n, 

( k + l ) 6 < . n < ~ 2 k 6 - k .  

Summarizing, we get the following result. 

Theorem 11. (i) I f  d is even, then there exist [n,k,2,d] °cc codes for  all n in the 

range 

½(k + 1)d <<. n k d - k .  

(ii) I f  d is odd, then there exist [n,k,2,d] Dcc codes for  all n in the range 

½ ( k ÷ l ) ( d -  1 ) ÷ k < ~ n  < ~ k d - k .  

Theorem l l(i) shows that the lower bound in Theorem 8 is best possible. For 
odd d there is a gap of approximately ½k + ~ k  = ~k between the lower bound in 
Theorem 10 and the smallest n given by Theorem l l(ii). The structure of possible 
[n, k, 2, d] Dcc codes with d odd and n < (k + 1 )6 ÷ k is described by the next theorem 
(except for small 6). 

Theorem 12. I f  C is an [n,k, 2,26 + 1] Dcc, where 

6 > ½(k + 5) 
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and 

n < ( k + l ) S + k ,  

then all 9r are o f  type II, and 

l(gr) = n + 1 - dk+l-r 

for  all r. 

Proof. From Theorem 9 we get 

dr >~ (r + 1)6 + ½(2r + 2), 

and similarly we can get 

dr+j >~ dr + j6  + ½(2J - 8) (15) 

for j ~> 2 and all r. 

Suppose 9r is o f  type I for some r, 2 ~< r ~< k - 2. Then dr >~ d r - i  + 26 and so 

n = d k  > l d r + ( k - r ) a + ½ ( 2 k - 2 r - 8 )  

~ > d r - l + ( k - r + 2 ) 6 + ½ ( 2 k - 2 r - 8 )  

2 /> r6 + j r  + (k - r + 2)6 + ½(2k - 2r - 8) 

= (k + 2)6 + ½ ( 2 k -  8) > (k + 1)6 + k -  1 

for 6 > ½(k + 5), a contradiction. Assume that 9k-J is of  type I. Then 

l(9k) = dk - 26 ~> dk-1 + 1 -- 26 >~ dk-2 q- 1. 

Hence 

d k - I  <~ Ws( (DL_a ,gr_ I  + g r ) ) = d k - 2  + d k  - dk- l  

and so 

dk - dk- t  >1 dk_l - d k - 2  > 26. 

Hence 

dk > ~ d k - 2 + 4 6 > ~ ( k  + 3 ) 6 +  ½ ( 2 k -  2 ) > ( k  + 1 ) 6 + k -  1 

for a > ~(k - 1). 

Since all 9r are of  type II, we have dr+l > /d r  + 6 for all r (in particular, (15) 

is true also for j = 1), and l(gr) >>1 d r - 2  for all r. Suppose that l(gr+l) <~ l(gr) for 

some r. Since l ( g r )  = n -4- 1 -- dr, and l(gr+ I ) = n + 1 - dr"  for some r '  :~ r"  we have 

l(gr+l ) ~< l(gr) - 6. 
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Hence 

dr >~ l(gr) + 26 ~> l(gr+l) + 36 >~ dr-1 + 36 >~ (r + 3)6 + 3Z-r, 

and we get 

n=dk > l d r + ( k - r ) 6 + l ( 2 k - 2 r - 8 )  

~> ( k + 3 ) 6 +  l ( 2 k -  8) > (k + 1 ) 6 + k -  1 

for 6 > l (k  + 5), again a contradiction. Therefore l (g r+l )>  l(9~) for all r. By 
Lemma 1, this implies that l(9~) = n + 1 - dk+l-r for all r. [] 

A computer search showed that there are no [n, k, 2, 26+ 1] Dcc codes with 6 > l ( k + 5 )  
and n < ( k +  1)6 + k for k ~< 12. If  there exist any [n,k, 2,26 + 1] Dcc codes with 
n < (k + 1)6 + k at all is an open question. 

Appendix A 

In this appendix we prove the following lemma. 

Lemma A.1. For an [n, k, 2, d >1 5] Dcc code, where d is odd, we have 

dr+5 >/dr + 56 + 2. 

Proof. By (11) and (12) we have 

dr+5 >~ dr+3 + 26 >~ dr + 56 + 1. 

We will show that dr+5 = dr + 56 + 1 is not possible. Suppose 

dr+5 = dr q- 56 q- 1 

for some r. By (9) we have 

dr+3 = d r  + 36 + 1. 

Similarly, since 

dr+5 >~ dr+2 + 36 + 1 >~ dr + 56 + 1, 

we get 

dr+2 = dr + 26. 

Since 

dr+5 -- dr+4 < dr+5 - dr+3 = 26 = d - 1, 

(A.1) 

(A.2) 

(A.3) 

(A.4) 

(A.5) 
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we conclude from Lemma 9(i) that 9r+5 is of  type II. Similar arguments show that 9j 

is of  type lI for all 

j E  { r +  1 , r + 2 ,  r + 3 ,  r + 4 } .  

Hence, by Lemma 7, for j ~ {r + 2, r + 3 , r  + 4, r + 5} there exist vectors y j  ED~ 2 
D r~ such that and ZJ E k - j  

9 i = y j  + Zj, (A.6)  

u(zj)  = d j, (A.7) 

l (z )  >>. dj-2.  (A.8)  

We have u(x)  - l (x )  > / d  - 1 = 26 for all codewords x. In particular, 

d,. + 26 = dr+2 = u(zr+2) >~ /(Zr+2) + 26 >~ dr + 26 

and so 

/(Zr+2 ) = dr. 

Similarly, we get 

l(Zr+5) • dr+3 = dr + 36 + 1. 

By the Griesmer bound 

dr+5 - /(gr+4) = WS((Zr+4, Zr+5} ) ~ d2 ~ 36 + 1 

and so l(Zr+4) <~ dr + 26. On the other hand, 

/(Zr+4) ~ dr+2 = dr q- 26, 

and so 

l(Zr+4) = dr q- 26. 

TO determine /(zr+3) requires a little more effort. First 

dr+4 - l(Zr+3) = Ws( (gr+3,gr+4) ) >/ d2 ) 36 + 1, 

and so 

/(Zr+3) ~< dr + 6 = /(Z,-+4) -- 6. 

Also 

l(Zr+3) >/dr+l  >~ d~ + 1 = / (z~+2)  + 1. 
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Hence l ( z j ) = n +  1 - d k + l - j  f o r j  E {r + 2,r + 3, r +4) ,  and so 

d k - r - 2  - d k - r - 3  ----- l (Zr+4)  --  l (Zr+3)  

~< l (Zr+4)  --  / (Zr+2)  --  1 = 26 - 1 < d - 1. 

Therefore, 9k--r--2 is o f  type II, and so 

l(Zr+3 ) - l(Zr+2 ) = d k - r - I  - d k - r - 2  >~ c5, 

and /(Zr+3) I> dr + 6. Therefore, 

l(Zr+3) = dr + 6. 

Hence we have the following situation: 

d , . -  1 6 6 1 6 I 6 6 n--d,.+5 

z,-+2 = ( 1 1 1 ) 

zr+3 = ( 1 a 1 1 ) 

Zr+4 = ( 1 1 b 1 ) 

z ~ + 5 =  ( 1 1 1 ) 

where a, b C {0 ,  1 }, and all the elements which are left out are zero. We have 

L 
dr+2 -k c~ q- 1 = dr+3 <~ ws(  (Dr+2, Zr+3 q- Zr+4) )  -~ dr+2 -'k c~ "}- ( l  - b )  

and so b = 0. S imi lar ly ,  a = 0. However,  this implies that 

W(Zr+2 + Zr+3 + Zr+4 + Zr+5) = 2C5 < d, 

a contradiction since zr+2 + ~,r+3 q- Zr+4 "}- Zr+5 E C.  [ ]  

R e f e r e n c e s  

[1] S. Encheva and T. Klowe, Codes satisfying the chain condition, IEEE Trans. Inform. Theory 40 (1994) 
175-180. 

[2] G.D. Forney, Dimension/length profiles and trellis complexity of linear block codes, IEEE Trans. Inform. 
Theory 40 (1994) 1741-1752. 

[3] G.D. Forney, Dimension/length profiles and trellis complexity of lattices, IEEE Trans. Inform. Theory 
40 (1994) 1753-1772. 

[4] T. Helleseth, T. Klove and J. Mykkeltveit, The weight distribution of irreducible cyclic codes, Discrete 
Math. 18 (1977) 179-211. 

[5] T. Helleseth, T. Klove and O. Ytrehus, Generalized Hamming weights of linear codes, IEEE Trans. 
Inform. Theory 38 (1992) 1133-1140. 

[6] T. Helleseth, T. Klove and O. Ytrehus, Codes and the chain condition, Proc. Internat. Workshop on 
Algebraic and Combinatorial Coding Theory, Voneshta Voda, Bulgaria (1992) 88-91. 

[7] T. Helleseth, T. Klove and O. Ytrehus, Codes, weight hierarchies, and chains, Proc. ICCS/IS1TA '92, 
Singapore (1992) 608--612. 

[8] T. Kasami, T. Takata, T. Fujiwara and S. Lin, On the optimum bit orders with respect to the state 
complexity of trellis diagrams for binary linear codes, IEEE Trans. Inform. Theory 39 (1993) 242-245. 



72 Klove/ Discrete Mathematics 175 (1997) 173 195 195 

[9] T. Klove, Support weight distribution of linear codes, Discrete Math. 106/107 (1992) 311 316. 
[10] T. Klove, Minimum support weights of binary codes, IEEE Trans. Inform. Theory 39 (1993) 648-654. 
[11] A. Lafourcade and A. Vardy, Asymptotically good codes have infinite trellis complexity, IEEE Trans. 

Inform. Theory 41 (1995) 555-559. 
[12] A. Vardy and Y, Be'ery, Maximum-likelihood soft decision decoding of BCH codes, IEEE Trans. 

Inform. Theory 40 (1994) 546-554. 
[13] V.K. Wei, Generalized Hamming weights for linear codes, IEEE Trans. lnfoma. Theory 37 (1991) 

1412 1418. 


