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A problem of some physical interest is finding that integral curve of a 
differential equation which best fits some experimental data. For example 
we might measure the displacement Y(tk) of a pendulum at a number of times 
t, . Supposing the motion of the pendulum is described by 

y”(t) + sin y(t) = 0, (1) 

we then want to find a solution y(t) such that y(tk) is close to Y(tk) for all k. 
Bellman and Kalaba in [l] and elsewhere have used least squares as a criterion 
for closeness of fit. We shall study the Chebyshev criterion of minimizing 
the maximum error. After making some reasonable assumptions about the 
differential equation and the data, we shall prove the existence of a best fit 
and characterize it. The characterization is computationally useful. We shall 
also study the question of uniqueness of the best fit. The results are obtained 
quite easily because of an interesting connection with the theory of approxi- 
mation by unisolvent functions. 

We shall fit the integral curves of 

y’“‘(t) +f(t,Y(t>,Y’(t>,*.., r’“-“(0) = 0 (2) 

to {Y(tJ,..., Y(tm)}. (Other possibilities such as a system of first order equa- 
tions could be handled in the same way.) The data points tI ,..., t, are to lie 
in [a, b]. We are interested in an integral curve of (2) which minimizes 

We shall encounter difficulties unless we restrict [a, b]. The example (1) 
shows this clearly for it has a nontrivial solution y(t) which vanishes at 
suitable t, , k = 0, l,... . Since y(t) = 0 is a solution of (1) which also fits 
Y(tk) = 0, k = 0, l,..., with zero error, we see there are two best fits to this 
data and they need not be close to each other. We shall suppose b - a 
is small enough that this sort of interpolation problem has at most one 
solution. Specifically we assume 
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(U) Foranyx,,...,x,suchthata<x,<x,<***<x,-,<x,<band 

any 3 ,-.., x, , (2) has a unique solution y(t) such that 

YW = Zk h = I,..., n. 

We shall also suppose the problem is over-determined, i.e., m > n. The 
problem is then a generalization of the idea of a boundary value problem 
for (2). 

THEOREM. If(U) holds for (2) on [a, b] and if initial value problems for (2) 
have unique solutions on [a, b], then there exists a solution y(t) of (2) which 
minimizes (3). The minimal value d of (3) is attained for y(t) n + 1 times, at 
the points t, < tl < *a. < t, say, with alternating sign 

y(tj) - Y(t)) = (- 1)j (y(tO) - Y(Q) j = 0, I,..., n. 

If w(t) is any solution of (2) for which there are T,, < 71 < *a* < 7, with 

sign(w(TJ - Y(T~)) = (- 1)j sign(w(7,) - Y(5-J) j = 0, l,..., n 

then 

min 1 w(T~) - Y(T~) 1 < d d mjax I W(TJ - Y(TJ 1 . 

Because of the uniqueness assumption, the integral curves are uniquely 
specified by n parameters such as 

Y(4 = a19 y'(u) = u2 )...) y'"-l'(u) = a, . 

Let us denote the curve specified by A = (ui ,..., a,) as y(t, A). The assump- 
tion (U) about the family of approximating functions y(t, A) is precisely 
Tornheim’s definition of an n-parameter family [2]. Such families are more 
commonly called unisolvent families today (Motzkin [3], Rice [4, p. 70 ff.]). 
The theorem is a translation to this context of the results of [2, 31. There 
are few interesting examples of nonlinear unisolvent families and this source 
of such families apparently has not been explicitly noted before. 

If we fit y(t, A) to a continuous curve Y(t) on [a, b], the best approximation 
is unique; however, this continuity is necessary [2]. To obtain uniqueness 
in our case we need strong unisolvence, meaning that y(t, A,) - y(t, A,) 
has at most n - 1 zeros in [a, b] if A, f A, where a zero without change of 
sign in its neighborhood is counted twice. Our assumptions imply strong 
unisolvence when n = 2 so by [3] we have the 

COROLLARY. When n = 2 the best approximation of the Theorem is unique. 
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There has been considerable interest in criteria which imply the validity 
of (U) for (2), especially when n = 2. Lasota and Opial [5] have given a, 
suitable condition of general n and the papers Schrader [6], Shampine [7] 
give conditions for n = 2. The last paper asserts that (U) holds for the 
equation (1) if only b - a < rr. The equation is Lipschitzian so that uni- 
queness is true of initial value problems. We see the corollary is applicable 
provided all the t, lie in an interval [a, b] with b - a < T. 

When 71 = 2 the use of the characterization to compute the best approxima- 
tion is qualitatively the same as fitting a straight line to this data, c.f., Rice [4, 
p. 531. After numerically obtaining an integral curve we compute the errors 
at the points t, and their signs. If, say, the largest positive error is greater in 
magnitude than the largest negative error, we wish to raise the integral curve 
to decrease (3). This can be done conveniently by using various ways of 
specifying the integral curves. If it is convenient to solve boundary value 
problems for (2), let us specify y(t, A) by y(a) = a, , y(b) = a2 . Because 
of (U) if we change only one parameter, the change in y(t, A) is monotone. 
For example if A’ = (a, , ui) with ai > u2 , then y(t, A’) > y(t, A) on (a, b]. 
A similar procedure can be used when it is convenient to solve initial value 
problems for (2). We use y(u) = a, , y’(u) = u2 and vary a2 to obtain the 
best fit with a, fixed. We then switch to y(b) = y(b, A), y’(b) = b, and vary 
b, , etc. In either case as soon as we have produced a good enough approxima- 
tion that the error alternates in sign, we have a bound from the theorem on 
the optimal error and how close we are to it. 

With the hypotheses of the corollary the alternating behavior of the best 
approximation also holds for best weighted pth power approximation, 
0 < p < co; however, uniqueness of the best approximation is not necessarily 
present [8,9]. 
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