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In this paper we study a stochastic Volterra–Levin equation. By using fixed point theory,
we give some conditions for ensuring that this equation is exponentially stable in mean
square and is also almost surely exponentially stable. Our result generalizes and improves
on the results in [14,1,30].
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1. Introduction

For more than one hundred years Lyapunov’s direct method has been the primary technique for dealing with stability
problems in deterministic/stochastic differential equations and functional differential equations. Yet numerous difficulties
with the theory and application to specific problems persist and it does seem that newmethods are needed to address those
difficulties. Recently, Burton and other authors have applied fixed point theory to investigate the stability for deterministic
systems, and it has been shown that some of these difficulties vanish on applying fixed point theory; for example, see the
monograph in [1] and papers [2–13].
To the best of the author’s knowledge, up to now, there have been a few papers in which the fixed point theory is used

to deal with the stability for stochastic (delay) differential equations; see [14–18]. More precisely, Appleby in [14] (also
see [1, pp. 315–328]) studied the almost sure stability for some classical equations by splitting the stochastic differential
equation into two equations, one being a fixed stochastic problem and the other a deterministic stability problem with
forcing function. In [15], Luo used a method different to that in [14] to investigate the mean square asymptotic stability by
means of fixed point theory for neutral stochastic differential equations. In [16–18], Luo used the fixed point theory to study
the exponential stability of mild solutions of stochastic partial differential equations with bounded delays and with infinite
delays.
The stability theory of stochastic differential equations with/without delay has been considered by many authors over

the last few years; see the monographs [19–29] among others.
In the present paper, we focus on the exponential stability for the classical stochastic Volterra–Levin equations, which

has been discussed in [14], [1, pp. 315–328] only for stability, not for exponential stability. Our method is based on the
contraction fixed point principle, and is different from the usual method. Some conditions of an averaging nature are
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obtained to ensure that the equation is exponentially stable in mean square and is also almost surely exponentially stable,
while all the known conditions are pointwise conditions. Moreover, our result generalizes and improves on the results in
[14,1,30].

2. Main result

Let {Ω,F , P} be a complete probability space equipped with some filtration {Ft}t≥0 satisfying the usual conditions, i.e.,
the filtration is right continuous and F0 contains all P-null sets. Let {B(t), t ≥ 0} denote a standard Brownian motion
defined on {Ω,F , P}. Let L > 0. We denote by C([−L, 0];R) the family of all continuous functions ϕ : [−L, 0] → R with
‖ϕ‖ = sup−L≤θ≤0 |ϕ(θ)|. For I an interval of R, we use the notation C(I;R) to denote the family of continuous functions
ϕ : I → R. We have the mappings σ ∈ C([0,∞);R), p ∈ C([−L, 0];R) and g ∈ C(R;R).
Consider the following Volterra–Levin equation perturbed by additive noise of the form [14,1]

dx(t) = −
(∫ t

t−L
p(s− t)g(x(s))ds

)
dt + σ(t)dB(t), t ≥ 0 (2.1)

with the initial condition

x(s) = ψ(s) ∈ C([−L, 0];R), −L ≤ s ≤ 0. (2.2)

As in [14] or [1, pp. 315–328], throughout this paper, we always assume that the following conditions on g and p hold:

xg(x) ≥ 0, g(0) = 0, and γ := lim
x→0

g(x)
x
exists. (2.3)

There exists a α > 0 such that
g(x)
x
≥ 2α. (2.4)

There exists a K > 0 such that for all x, y ∈ R, |g(x)− g(y)| ≤ K |x− y|; (2.5)

and

2K
∫ 0

−L
|p(s)s|ds < 1,

∫ 0

−L
p(s)ds = 1. (2.6)

By Theorem 7.3.1 in [1], under the condition (2.5), Eq. (2.1) has a unique continuous solution. We also mention here that
the unperturbed equation of Eq. (2.1), i.e.,

x′(t) = −
∫ t

t−L
p(s− t)g(x(s))ds,

is first used in [31] and later in [32] to model a certain biological problem.

Definition 2.1. Eq. (2.1) with the initial condition (2.2) is said to be exponentially stable inmean square if there exists a pair
of positive constants λ and C such that

E|x(t)|2 ≤ CE‖ψ‖2e−λt , t ≥ 0. (2.7)

Definition 2.2. Eq. (2.1) is said to be almost surely exponentially stable if there exists a λ > 0 such that there is a finite
random variable β such that

|x(t)| ≤ βe−λt a.s. for all t ≥ 0, (2.8)

or equivalently if

lim sup
t→∞

1
t
ln |x(t)| ≤ −λ a.s.

Theorem 2.1. Suppose that the conditions (2.3)–(2.6) hold. Moreover, if one of the following two conditions holds:

(i)
∫ t
0 e
4αsσ 2(s)ds is bounded for all t ≥ 0,

(ii)
∫
∞

0 e
4αsσ 2(s)ds = ∞ and eαtσ 2(t)→ 0 as t →∞,

then Eq. (2.1) is exponentially stable in mean square, that is, eαtE|x(t)|2 → 0 as t →∞.
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Proof. Define a continuous function a(t) : [0,∞)→ [0,∞) by

a(t) :=


g(x(t))
x(t)

, if x(t) 6= 0,

γ , if x(t) = 0.

Thus our equation is

dx(t) = −a(t)x(t)dt + d
(∫ 0

−L
p(s)

∫ t

t+s
g(x(u))duds

)
+ σ(t)dB(t), t ≥ 0. (2.9)

Let (B, ‖ · ‖B) be the Banach space of all bounded and continuous in mean square F0-adapted processes φ(t, ω) :
[−L,∞] ×Ω → Rwith the supremum norm

‖φ‖B := sup
t≥0
E |φ(t)|2 for φ ∈ B.

Denote by S the complete metric space with the supremummetric consisting of functions φ ∈ B such that φ(s) = ψ(s) on
s ∈ [−L, 0] and E |φ(t, ω)|2 → 0 as t →∞.
Define an operatorΦ : S → S byΦ(x)(t) = ψ(t) for t ∈ [−L, 0] and for t ≥ 0,

Φ(x)(t) :=
4∑
i=1

Ii(t), (2.10)

where

I1(t) := e−
∫ t
0 a(u)du

(
ψ(0)−

∫ 0

−L
p(s)

∫ 0

s
g(ψ(u))duds

)
,

I2(t) :=
∫ 0

−L
p(s)

∫ t

t+s
g(x(u))duds,

I3(t) := −
∫ t

0
e−

∫ t
v a(s)dsa(v)

∫ 0

−L
p(s)

∫ v

v+s
g(x(u))dudsdv,

I4(t) :=
∫ t

0
e−

∫ t
s a(u)duσ(s)dB(s).

We first verify the mean square continuity ofΦ on [0,∞). Let x ∈ S, t1 ≥ 0, and |r| be sufficiently small; then

E|Φ(x)(t1 + r)− Φ(x)(t1)|2 ≤ 4
4∑
i=1

E|Ii(t1 + r)− Ii(t1)|2.

It can easily be shown that

E|Ii(t1 + r)− Ii(t1)|2 → 0, i = 1, 2, 3

as r → 0. Further, by using Burkhölder–Davis–Gundy inequality [24], we get

E|I4(t1 + r)− I4(t1)|2 ≤ 2E
∣∣∣∣∫ t1

0

(
e−

∫ t1+r
t1

a(u)du
− 1

)
e−

∫ t1
0 a(u)duσ(s)dB(s)

∣∣∣∣2 + 2E ∣∣∣∣∫ t1+r

t1
e−

∫ t1+r
s a(u)duσ(s)dB(s)

∣∣∣∣2
≤ 2E

∫ t1

0

(
e−

∫ t1+r
t1

a(u)du
− 1

)2
e−2

∫ t1
0 a(u)duσ 2(s)ds+ 2E

∫ t1+r

t1
e−2

∫ t1+r
s a(u)duσ 2(s)ds

→ 0 (2.11)

as r → 0. Thus,Φ is indeed mean square continuous on [0,∞).
Next, we show that Φ(S) ⊂ S. It is easy to get eαtE|Ii(t)|2 → 0 as t →∞, i = 1, 2. We only need to prove eαtE|I3(t)|2

→ 0 and eαtE|I4(t)|2 → 0 as t →∞. In fact,

eαtE|I3(t)|2 = eαtE
(∫ t

0
e−

∫ t
v a(s)dsa(v)

∫ 0

−L
p(s)

∫ v

v+s
g(x(u))dudsdv

)2
≤ eαtE

(∫ t

0
e−

∫ t
v a(u)dua(v)dv

)(∫ t

0
e−

∫ t
v a(u)dua(v)

(∫ 0

−L
p(s)

∫ v

v+s
g(x(u))duds

)2
dv

)
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≤ eαtE
∫ t

0
e−

∫ t
v a(u)dua(v)

(∫ 0

−L
p2(s)ds

)(∫ 0

−L

(∫ v

v+s
g(x(u))du

)2
ds

)
dv

≤ eαt
(∫ 0

−L
p2(s)ds

)
E
∫ t

0
e−

∫ t
v a(u)dua(v)

(∫ 0

−L
(−s)

∫ v

v+s
g2(x(u))duds

)
dv

≤

(
K 2L2

∫ 0

−L
p2(s)ds

)
eαtE

∫ t

0
e−

∫ t
v a(u)dua(v)

∫ v

v−L
x2(u)dudv

:= C1eαtE
∫ t

0
e−

∫ t
v a(u)dua(v)

∫ v

v−L
x2(u)dudv, (2.12)

where C1 := K 2L2
∫ 0
−L p

2(s)ds.
For any ε > 0, there exists T1 > 0 such that s ≥ T1 − L implies eαsE|x(s)|2 < ε. Hence, we have

eαtE|I3(t)|2 ≤ C1eαtE
∫ T1

0
e−

∫ t
v a(u)dua(v)

∫ v

v−L
x2(u)dudv + C1eαtE

∫ t

T1
e−

∫ t
v a(u)dua(v)

∫ v

v−L
x2(u)dudv

≤ C1LE
(
sup
−L≤s≤T1

|x(s)|2
)∫ T1

0
e−α(t−2v)a(v)dv

+ C1eαt
∫ t

T1
e−α(t−v)e−

1
2
∫ t
v a(u)dua(v)

∫ v

v−L
e−αueαux2(u)dudv

≤ e−αtC1LE
(
sup
−L≤s≤T1

|x(s)|2
)∫ T1

0
e2αva(v)dv +

2(eαL − 1)
α

ε. (2.13)

Thus, we have eαtE|I3(t)|2 → 0 as t →∞.
On the other hand, from our conditions (i) and (ii), we have

eαtE|I4(t)|2 ≤ eαt
∫ t

0
e−2

∫ t
v a(u)duσ 2(v)dv ≤

∫ t
0 e
4αvσ 2(v)dv
e3αt

→ 0 as t →∞. (2.14)

So we conclude thatΦ(S) ⊂ S.
Thirdly, we will show thatΦ is contractive. For x, y ∈ S, we have

E sup
s∈[0,t]
|Φ(x)(s)− Φ(y)(s)|2 ≤ E sup

s∈[0,t]

(∫ 0

−L
|p(v)|

∫ s

s+v
|g(x(u))− g(y(u))|dudv

+

∫ s

0
e−

∫ s
v a(v)dsa(v)

∫ 0

−L
|p(τ )|

∫ v

v+τ

|g(x(u))− g(y(u))|dudτdv
)2

≤ E sup
s∈[0,t]
|x(s)− y(s)|2

(
2K
∫ 0

−L
|p(s)s|ds

)2
. (2.15)

Thus by (2.6) we know thatΦ is a contraction mapping.
Hence by the Contraction Mapping Principle, Φ has a unique fixed point x(t) in S, which is a solution of (2.9) with

x(s) = ψ(s) on [−L, 0] and eαtE|x(t)|2 → 0 as t →∞. This completes the proof. �

Theorem 2.2. Suppose that all the conditions of Theorem 2.1 hold. Then Eq. (2.1) is almost surely exponentially stable.

Proof. Let N be a sufficiently large positive integer. Let N ≤ t ≤ N + 1; then

x(t) = e−
∫ t
N a(u)du

(
x(N)−

∫ 0

−L
p(s)

∫ N

N+s
g(x(u))duds

)
+

∫ 0

−L
p(s)

∫ t

t+s
g(x(u))duds

−

∫ t

N
e−

∫ t
v a(s)dsa(v)

∫ 0

−L
p(s)

∫ v

v+s
g(x(u))dudsdv +

∫ t

N
e−

∫ t
s a(u)duσ(s)dB(s). (2.16)

Thus, for any fixed εN > 0, we obtain

P
{
sup

N≤t≤N+1
|x(t)| > εN

}
≤ P

{
sup

N≤t≤N+1
e−

∫ t
N a(u)du

∣∣∣∣x(N)− ∫ 0

−L
p(s)

∫ N

N+s
g(x(u))duds

∣∣∣∣ > εN/4
}
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+ P
{
sup

N≤t≤N+1

∣∣∣∣∫ 0

−L
p(s)

∫ t

t+s
g(x(u))duds

∣∣∣∣ > εN/4
}

+ P
{
sup

N≤t≤N+1

∣∣∣∣∫ t

N
e−

∫ t
v a(s)dsa(v)

∫ 0

−L
p(s)

∫ v

v+s
g(x(u))dudsdv

∣∣∣∣ > εN/4
}

+ P
{
sup

N≤t≤N+1

∣∣∣∣∫ t

N
e−

∫ t
s a(u)duσ(s)dB(s)

∣∣∣∣ > εN/4
}

= J1 + J2 + J3 + J4, say. (2.17)

In view of Theorem 2.1, there is a C > 0 such that E|x(t)|2 ≤ Ce−αt , t ≥ 0. So we have that

J1 ≤ (4/εN)2E sup
N≤t≤N+1

e−2
∫ t
N a(u)du

∣∣∣∣x(N)− ∫ 0

−L
p(s)

∫ N

N+s
g(x(u))duds

∣∣∣∣2
≤ (4/εN)2 × 2

(
E|x(N)|2 + E

∣∣∣∣∫ 0

−L
p(s)

∫ N

N+s
g(x(u))duds

∣∣∣∣2
)

≤ (4/εN)2 × 2

(
Ce−αN + LE

∣∣∣∣∣
∫ 0

−L
p2(s)

(∫ N

N+s
|g(x(u))|du

)2
ds

)
≤ (4/εN)2 × 2

(
Ce−αN + LE

∣∣∣∣∫ 0

−L
p2(s)|s|

∫ N

N+s
|g(x(u))|2duds

)
≤ (4/εN)2 × 2

(
Ce−αN + K 2L

∣∣∣∣∫ 0

−L
p2(s)|s|

∫ N

N+s
E|x(u)|2duds

)
≤ (4/εN)2 × 2C

(
1+

LK 2(eαL − 1)
α

∫ 0

−L
p2(s)|s|ds

)
e−αN , (2.18)

J2 ≤ (4/εN)2E sup
N≤t≤N+1

∣∣∣∣∫ 0

−L
p(s)

∫ t

t+s
g(x(u))duds

∣∣∣∣2
≤ (4/εN)2E sup

N≤t≤N+1
L

∣∣∣∣∣
∫ 0

−L
p2(s)

(∫ t

t+s
g(x(u))du

)2
ds

≤ (4/εN)2 sup
N≤t≤N+1

L
∣∣∣∣∫ 0

−L
p2(s)|s|

∫ t

t+s
K 2E|x(u)|2duds

≤ (4/εN)2
CLK 2(eαL − 1)

α

(∫ 0

−L
p2(s)|s|ds

)
e−αN , (2.19)

J3 ≤ (4/εN)2E sup
N≤t≤N+1

∣∣∣∣∫ t

N
e−

∫ t
v a(s)dsa(v)

∫ 0

−L
p(s)

∫ v

v+s
g(x(u))dudsdv

∣∣∣∣2
≤ (4/εN)2E sup

N≤t≤N+1

{∫ t

N
e−

∫ t
v a(s)dsa(v)dv

∫ t

N
e−

∫ t
v a(s)dsa(v)

(∫ 0

−L
p(s)

∫ v

v+s
g(x(u))duds

)2
dv

}

≤ (4/εN)2E sup
N≤t≤N+1

∫ t

N
e−

∫ t
v a(s)dsa(v)

(∫ 0

−L
p(s)

∫ v

v+s
g(x(u))duds

)2
dv

≤ (4/εN)2E sup
N≤t≤N+1

∫ t

N
e−

∫ t
v a(s)dsa(v)L

∫ 0

−L
p2(s)

(∫ v

v+s
g(x(u))du

)2
dsdv

≤ (4/εN)2LE sup
N≤t≤N+1

∫ t

N
e−

∫ t
v a(s)dsa(v)

∫ 0

−L
p2(s)|s|

∫ v

v+s
g2(x(u))dudsdv

≤ (4/εN)2L sup
N≤t≤N+1

∫ t

N
e−

∫ t
v a(s)dsa(v)

∫ 0

−L
p2(s)|s|

∫ v

v+s
K 2E|x(u)|2dudsdv

≤ (4/εN)2
CLK 2(eαL − 1)

α

(∫ 0

−L
p2(s)|s|ds

)
e−αN , (2.20)

and

J4 ≤ (4/εN)2E sup
N≤t≤N+1

∣∣∣∣∫ t

N
e−

∫ t
s a(u)duσ(s)dB(s)

∣∣∣∣2
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≤ (4/εN)2E sup
N≤t≤N+1

∫ t

N
e−2

∫ t
s a(u)duσ 2(s)ds

≤ (4/εN)2E sup
N≤t≤N+1

∫ t

N
e−4α(t−s)σ 2(s)ds

≤ (4/εN)2
∫ N+1
N e4αsσ 2(s)ds

e3αN
e−αN . (2.21)

From the conditions (i) and (ii), we know that for sufficiently large N , there exists a positive constant L1 such that∫ N+1
N e4αsσ 2(s)ds

e3αN
< L1.

Thus we have J4 < (4/εN)2L1e−αN .
Using these estimates, it follows that

P
{
sup

N≤t≤N+1
|x(t)| > εN

}
≤
(
D/ε2N

)
e−αN ,

where

D := 16
{
2C + L1 +

4CLK 2(eαL − 1)
α

∫ 0

−L
|p2(s)s|ds

}
.

Hence, if we set εN = D1/2e−αN/4, then

P
{
sup

N≤t≤N+1
|x(t)| > D1/2e−αN/4

}
≤ e−αN/2.

Therefore, by the Borel–Cantelli lemma we conclude that there exists a random time 0 < T (ω) such that

|x(t)| ≤ D1/2eα/4e−αt/4 a.s. for t > T (ω).

The proof is completed. �

Remark 2.1. In [14,1], Eq. (2.1) is almost surely stable if the conditions (i) and (ii) in Theorem 2.1 are replaced by

σ 2(t) ln t → 0 as t →∞. (2.22)

However, if we let α→ 0, then from our proof we know that the corresponding condition is∫ t

0
σ 2(s)ds is bounded for all t > 0, (2.23)

or ∫
∞

0
σ 2(s)ds = ∞ and σ 2(t)→ 0 as t →∞. (2.24)

Obviously, our conditions (2.23) and (2.24) are better than Appleby’s condition (2.22). For example, let σ 2(t) = 1
ln(t+1) ,

t > 0; then the condition (2.24) is satisfied, but the condition (2.22) fails. Hence, our result generalizes and improves on the
results in [14,1].

Remark 2.2. Consider an ordinary equation with damped stochastic perturbation of the form

dx(t) = f (x(t))dt + σ(t)dB(t) on t ≥ 0 (2.25)

with initial data x(0) = ψ ∈ R, where f : R → R, σ : R → R, B is a one-dimensional Brownian motion. Assume that
there is a positive constant α such that xf (x) ≤ −2αx2 for all x ∈ R. Then by Theorem 2.1 in [30] Eq. (2.25) is almost surely
exponentially stable if there exists a positive constant C such that

e4αtσ 2(t) ≤ C for all t ≥ 0. (2.26)

The above condition (2.26) is a pointwise condition. However, by Theorem 2.2 in the present paper, if∫ t

0
e4αsσ 2(s)ds is bounded for all t ≥ 0, (2.27)
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or ∫
∞

0
e4αsσ 2(s)ds = ∞ and eαtσ 2(t)→ 0 as t →∞, (2.28)

then Eq. (2.25) is almost surely exponentially stable. Obviously, (2.27) is a condition of an averaging nature. In addition, it
is easily seen that conditions (2.27) and (2.28) are better than the condition (2.26). In this sense, the result in this paper
improves on that in the paper [30].
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