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1. Introduction

One of the most useful tools for handling multivariate distributions with
given univariate marginals is the copula function. Using it, any multivariate
distribution function can be represented in a way that emphasizes the
separate roles of the marginals and of the dependence structure. The goal
of the present paper is to introduce an analogous tool, called the linkage
function, that can be used for the study of multivariate distributions with
given multivariate marginals by emphasizing the separate roles of the
dependence structure between the given multivariate marginals, and the
dependence structure within each of the nonoverlapping marginals.

The linkage function is particularly useful when not all the interrela-
tionships among the random variables are equally important, but rather
only the relationships among certain nonoverlapping sets of random
variables (i.e., random vectors) are relevant. The need to study relation-
ships among random vectors arises naturally in a variety of circumstan-
ces (see, e.g., Chhetry, Sampson, and Kimeldorf [4] and Block and
Fang [2]). For example, in a complex engineering system, the rela-
tionship among the subsystems can be considered in the framework of
this paper, even if the dependence structure within the subsystems is not
entirely well understood. Additionally, a framework for studying vector
dependencies may lead to further understanding of complicated multi-
variate distributions.

The present paper is to be contrasted with some previous work in the
area of probability distributions with given multivariate marginals.
Cohen [5] describes a particular procedure which gives joint distribu-
tions with given nonoverlapping multivariate marginals; his procedure
depends on the particular set of the given multivariate marginals. Marco
and Ruiz�Rivas [12] are concerned with the following problem: Given k
(possibly multivariate) marginal distributions F1 , F2 , ..., Fk of dimensions
m1 , m2 , ..., mk , respectively, what conditions should a k-dimensional func-
tion C satisfy in order for C(F1 , F2 , ..., Fk) to be a (�k

i=1 mi)-dimen-
sional distribution function? They also give a procedure for the construc-
tion of such a function C. Cuadras [6] describes a procedure which,
under some conditions, yields joint distributions with given nonoverlap-
ping multivariate marginals, such that the resulting regression curves are
linear. Ru� schendorf [17], and references therein, considered the problem
of constructing a joint distribution with given (possibly overlapping)
marginals.

The insufficiency of the copula function to handle multivariate distribu-
tions with given marginals is illustrated by the following result of Genest,
Quesada Molina, and Rodriguez Lallena [8]. They showed that if the
function C: [O, 1]2 � [0, 1] is such that
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H(x1 , x2 , ..., xm , y1 , y2 , ..., yn)

=C(F(x1 , x2 , ..., xm), G( y1 , y2 , ..., yn))

defines a (m+n)-dimensional distribution function with marginals F and G
for all m and n such that m+n�3, and for all distribution functions F and
G (with dimensions m and n, respectively), then C(u, v)=uv. Namely, the
only possible copula which works with multidimensional marginals is the
independent one.

The approach of the present paper is completely different. Here, given a
(�k

i=1mi)-dimensional distribution function F, with the (possibly multi-
variate) marginal distributions F1 , F2 , ..., Fk of dimensions m1 , m2 , ..., mk ,
respectively, we associate with F the so-called linkage function L which
contains the information regarding the dependence structure among the
underlying random vectors. The dependence structure within the random
vectors is not included in L.

After giving some preliminaries we give the definition of the linkage func-
tion in Section 3. Preservation of some setwise positive dependence proper-
ties (in the sense of Chhetry, Sampson, and Kimeldorf [4], Joag�Dev,
Perlman, and Pitt [9], and Chhetry, Kimeldorf, and Zahedi [3]), from the
linkage function L to the joint distribution F and vice versa, are studied in
Section 4. In some applications two different (�k

i=1 mi)-dimensional dis-
tribution functions may be associated with the same linkage function (that
is, have the same setwise dependence structure). In Section 5 we show that,
in such a case, strong stochastic dominance order among the correspond-
ing multivariate marginal distributions implies an overall stochastic
dominance between the two underlying (�k

i=1mi)-dimensional distribution
functions.

2. Some Preliminaries

2.1. The Standard Construction and Its Inverse

Let X1 , X2 , ..., Xn be n random variables with a joint distribution F.
Denote by F1( } ) the marginal distribution of X1 , and denote by
Fi+1 | 1, 2, ..., i ( } | x1 , x2 , ..., xi) the conditional distribution of Xi+1 given
that X1=x1 , X2=x2 , ..., Xi=xi . The inverse of F1 will be denoted by
F &1

1 ( } ) and the inverse of Fi+1|1, 2, ..., i ( } | x1 , x2 , ..., xi) will be denoted by
F &1

i+1 | 1, 2, ..., i( } | x1 , x2 , ..., xi) for every (x1 , x2 , ..., xi) in the support of
(X1 , X2 , ..., Xi), i=1, 2, ..., n&1. Here the inverse F &1 of a distribution
function F is defined as F &1(u)=sup[x: F(x)�u], u # [0, 1].

22 LI, SCARSINI, AND SHAKED
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Consider the transformation 9F : Rn � [0, 1]n (which depends on F )
defined by

9F (x1 , x2 , ..., xn)

=(F1(x1), F2 | 1(x2 | x1), ..., Fn | 1, 2, ..., n&1(xn | x1 , x2 , ..., xn&1)), (2.1)

for all (x1 , x2 , ..., xn) in the support of (X1 , X2 , ..., Xn).

Lemma 2.1. Let X1 , X2 , ..., Xn be n random variables with an absolutely
continuous joint distribution F. Define

(U1 , U2 , ..., Un)=9F (X1 , X2 , ..., Xn). (2.2)

Then U1 , U2 , ..., Un an are independent uniform [0, 1] random variables.

Proof. It is well known that marginally U1 is a uniform [0, 1] random
variable. Given U1=u1 , the value of U2 can be computed (as a function of
X2 and u1) as follows: U2=F2 | 1(X2 | F &1

1 (u1)). It is thus seen that, given
U1=u1 , the conditional distribution of U2 is uniform [0, 1], independently
of the value of U1 . This shows that U1 and U2 are independent, and each
is a uniform [0, 1] random variable. Continuing this procedure we obtain
the stated result. K

In the univariate case only continuity (rather than absolute continuity)
is needed in order to prove the analogous result. That is, if the univariate
random variable X has the distribution function F, and F is continuous,
then F(X) is a uniform [0, 1] random variable. The assumption of absolute
continuity in Lemma 2.1 guarantees the continuity of the underlying condi-
tional distributions.

Note that the transformation defined in (2.2) is only one of many trans-
formations which transform the random variables X1 , X2 , ..., Xn into n
independent uniform [0, 1] random variables. For example, we can per-
mute the indices 1, 2, ..., n and get other transformations (see Example 3.1
for a discussion regarding this point).

By ``inverting'' 9F we can express the Xi 's as functions of the indepen-
dent uniform random variables U1 , U2 , ..., Un (see, e.g., Ru� schendorf and
de Valk [18]). Denote

x1=F &1(u1), (2.3)

and, by induction,

xi=F &1
i | 1, 2, ..., i&1(ui | x1 , x2 , ..., xi&1), i=2, 3, ..., n. (2.4)

23LINKAGES
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Consider the transformation 9F*: [0, 1]n � Rn defined by (here the xi 's are
functions of the ui 's as given in (2.3) and (2.4))

9F*(u1 , u2 , ..., un)=(x1 , x2 , ..., xn), (u1 , u2 , ..., un) # [0, 1]n.

Let

(X� 1 , X� 2 , ..., X� n)#9F*(U1 , U2 , ..., Un). (2.5)

Then

(X� 1 , X� 2 , ..., X� n)=st (X1 , X2 , ..., Xn), (2.6)

where ``=st'' denotes equality in law (note that no continuity assumptions
are needed for the validity of (2.6)). In fact, it is well known, and easy to
verify, that if F is absolutely continuous then

9F*9F (X1 , X2 , ..., Xn)=a.s. (X1 , X2 , ..., Xn), (2.7)

where ``=a.s.'' denotes equality almost surely under the probability measure
associated with F. The construction described in (2.5) is called the standard
construction; it is a well-known method of multivariate simulation.

2.2. CIS Random Variables

Let X1 , X2 , ..., Xn be n random variables with a joint distribution F.
In general 9F*(u1 , u2 , ..., un) is not necessarily increasing in
(u1 , u2 , ..., un) # [0, 1]n (here, and throughout this paper, ``increasing''
means ``nondecreasing'' and ``decreasing'' means ``nonincreasing'').
However, we provide below conditions under which 9F*(u1 , u2 , ..., un) is
increasing in (u1 , u2 , ..., un) # [0, 1]n.

The random variables X1 , X2 , ..., Xn (or their joint distribution function)
are said to be conditionally increasing in sequence (CIS) if

Xi Ast (X1 , X2 , ..., Xi&1), i=2, 3, ..., n,

that is, if E[,(Xi) | X1=x1 , X2=x2 , ..., Xi&1=xi&1] is increasing in
x1 , x2 , ..., xi&1 for all increasing functions , for which the expectations are
defined, i=2, 3, ..., n. The CIS notion is a concept of positive dependence
that was studied, e.g., in Lehmann [11] and in Barlow and Proschan [1].
The following result is implicit in Barlow and Proschan [1] and is explicit
in Rubinstein, Samorodnitsky, and Shaked [15].

Lemma 2.2. Let X1 , X2 , ..., Xn be n random variables with a joint dis-
tribution F. If X1 , X2 , ..., Xn are CIS then 9F*(u1 , u2 , ..., un) is increasing in
(u1 , u2 , ..., un) # [0, 1]n.

24 LI, SCARSINI, AND SHAKED
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2.3. Copulas

A linkage can be viewed as a multivariate extension of a copula. In this
section we recall the definition and the basic properties of copulas. We
define linkages in Section 3.

The copula (as named by Sklar [24], or the uniform representation as
named by Kimeldorf and Sampson [10], or the dependence function as
named by Deheuvels [7]) is one of the most useful tools for handling mul-
tivariate distributions with given univariate marginals F1 , F2 , ..., Fk . For-
mally, a copula C is a cumulative distribution function, defined on [0, 1]k,
with uniform marginals. Given a copula C, if one defines

F(x1 , x2 , ..., xk)=C(F1(x1), F2(x2), ..., Fk(xk)), (x1 , x2 , ..., xk) # Rk,

(2.8)

then F is a multivariate distribution with univariate marginals
F1 , F2 , ..., Fk . Given a continuous F, with marginals F1 , F2 , ..., Fk , there
corresponds to it a unique copula that can be constructed as

C(u1 , u2 , ..., uk)=F[F &1
1 (u1), F &1

2 (u2), ..., F &1
k (uk)],

(u1 , u2 , ..., uk) # [0, 1]k. (2.9)

Note that different multivariate distributions F may have the same copula.
Most of the multivariate dependence structure properties of F are in the
copula function, which is independent of the marginals and which is, in
general, easier to handle than the original F.

We now list some positive dependence properties that are inherited by F
from the corresponding copula. The random vector X=(X1 , X2 , ..., Xk) (or
its distribution function) is said to be positively upper orthant dependent
(PUOD) if

P[X1>x1 , X2>x2 , ..., Xk>xk]� `
k

i=1

P[Xi>xi], (x1 , x2 , ..., xk) # Rk.

It is said to be positively lower orthant dependent (PLOD) if

P[X1�x1 , X2�x2 , ..., Xk�xk]� `
k

i=1

P[Xi�xi], (x1 , x2 , ..., xk) # Rk

(see, e.g., Shaked and Shanthikumar [23, Subsection 4.G.1]). It is said to
be associated if

Cov(g(X), h(X))�0, (2.10)

25LINKAGES
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for all increasing functions g and h for which the covariance is defined (see,
e.g., Barlow and Proschan [1]). Finally, X (or its distribution function) is
said to be positively dependent by mixtures (PDM) if the joint distribution
function F of X can be written as

F(x1 , x2 , ..., xk)=|
0

`
k

i=1

G(w )(xi) dH(w),

where 0 is a subset of a finite-dimensional Euclidean space, [G(w ), w # 0]
is a family of univariate distribution functions, and H is a distribution func-
tion on 0 (see Shaked [21]). Note that if X is (PDM) then X1 , X2 , ..., Xk

have a permutation symmetric distribution function. The following results
are well known.

Proposition 2.3 [13]. Let C be a copula, and let F be defined as in
(2.8).

(i) If C is PUOD (PLOD) then F is PUOD (PLOD).

(ii) If C is associated then F is associated.

(iii) If C is PDM, and if F1 , F2 , ..., Fk of (2.8) are all equal, then F
is PDM.

Proposition 2.4 [19]. Let X=(X1 , X2 , ..., Xk) and Y=(Y1 , Y2 , ..., Yk)
have the same copula (as defined in (2.9)). If Xi�stYi , i=1, 2, ..., k, then
X�st Y; that is, E,(X)�E,(Y) for all real increasing functions , for which
the expectations are defined.

3. Linkages

Let X1 , X2 , ..., Xk be k random vectors of dimensions m1 , m2 , ..., mk ,
respectively. We do not necessarily assume that the Xi 's are independent.
Let Fi be the (marginal) mi-dimensional distribution of Xi , i=1, 2, ..., k,
and let F be the joint distribution of X1 , X2 , ..., Xk which is, of course,
of dimension �k

i=1 mi . For i=1, 2, ..., k, let the transformation
9Fi : Rmi � [0, 1]mi be defined as in (2.1). Then, by (2.2), if Fi is absolutely
continuous, then the vector U i=9Fi (Xi) is a vector of mi independent
uniform [0, 1] random variables. However, since the Xi 's are not
necessarily independent, it follows that the Ui 's are not necessarily inde-
pendent. The joint distribution L of

(U1 , U2 , ..., Uk)=(9F1
(X1), 9F2

(X2), ..., 9Fk(Xk)) (3.1)

will be called the linkage corresponding to (X1 , X2 , ..., Xk).

26 LI, SCARSINI, AND SHAKED
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Note that different multivariate distributions F (with marginals of
dimensions m1 , m2 , ..., mk) may have the same linkage. Most of the infor-
mation, regarding the multivariate dependence structure properties between
the Xi 's is contained in the linkage function, which is independent of the
marginals and which may be easier to handle than the original F. Note that
the linkage function is not expected to contain any information regarding
the dependence properties within each of the Xi 's. This information is con-
tained in the mi -dimensional functions 9Fi , and it is erased when we trans-
form the vector Xi , of dependent variables, into the vector Ui , of indepen-
dent uniform [0, 1] random variables, by Ui=9Fi (Xi). Thus, the linkage
function can be useful when one is interested in studying the dependence
properties between the Xi 's, separate from the dependence properties within
the Xi 's.

If X1 , X2 , ..., Xk have the joint distribution F, and if U1 , U2 , ..., Uk have
the joint distribution L, where L is the linkage corresponding to F, then it
is not hard to show, using (2.7), that (X� 1 , X� 2 , ..., X� k) defined by

(X� 1 , X� 2 , ..., X� k)#(9*F1
(U1), 9*F2

(U2), ..., 9*Fk(Uk)), (3.2)

is such that

(X� 1 , X� 2 , ..., X� k)=st (X1 , X2 , ..., Xk). (3.3)

Example 3.1. Consider the case in which k=2 and m1=m2=2.
Explicitly we are given now two bivariate marginals F1 and F2 , say. A
linkage in this case is a four-dimensional (m1+m2=4) distribution func-
tion L, of the random vectors (U11 , U12) and (U21 , U22), say, where U11

and U12 are independent uniform [0, 1] random variables, U21 and U22 are
independent uniform [0, 1] random variables, but otherwise L can be any
joint distribution. Let (X� 11 , X� 12) and (X� 21 , X� 22) be defined as in (3.2), and
let F be their joint distribution function. Thus F is a distribution that has
the linkage L and the bivariate marginals F1 and F2 .

For example, let L be such that P[U11=U21]=1 (and, of course, U12

and U22 are both independent of the random variable U11(=U21), but they
otherwise can have any joint distribution). Then, marginally, the joint dis-
tribution of X� 11 and X� 21 is the Fre� chet upper bound with marginals F11

and F21 (where here Fij denotes the marginal distribution of X� ij). That is,
X� 11 is an increasing function of X� 21 and vice versa (in fact, here we have
that X� 11=F &1

11 (F21(X� 21)) or X� 21=F &1
21 (F11(X� 11))).

Assume now, furthermore, that L is such that also P[U12=U22]=1
(of course, now U12(=U22) is independent of the random variable
U11(=U21)). Do we get then that the joint distribution of X� 12 and X� 22 is

27LINKAGES
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the Fre� chet upper bound with marginals F12 and F22? The answer is: Not
necessarily. This can be seen by computing explicitly

X� 12=F &1
12 | 11(F22 | 21(X� 22 | F &1

21 (F11(X� 11))) | X� 11),

where Fij | ik denote the conditional distribution ofX� ij given X� ik , i=1, 2. That is,
given the value of X� 11 (or, equivalently, of U11) we see that X� 12 is an increasing
function of X� 22 and vice versa, but this need not be the case when X� 11 is not
fixed. The fact that we do not necessarily get the Fre� chet upper bound for F12

and F22 is not really surprising; having already the Fre� chet upper bound with
marginals F11 and F21 and having the fixed bivariate marginals F1 and F2 , the
latitude that we have in choosing F, with the additional constraint of having to
have the univariate marginals F12 and F22 , is limited.

By choosing L to be such that P[U11=1&U21]=1 we see that the joint
distribution of X11 and X21 is now the Fre� chet lower bound with marginals
F11 and F21 .

If we want to get that the joint distribution of X� 12 and X� 22 (rather than
X� 11 and X� 21) is the Fre� chet upper (or lower) bound with marginals F12 and
F22 then we can apply the above procedure, interchanging the indices 1 and
2 in the proper places. We can even get, if we wish, by the correct choice
of indices, that, e.g., the joint distribution of X� 12 and X� 21 is the Fre� chet
upper (or lower) bound with marginals F12 and F21 . The actual choice
of indices may depend on the primary and secondary importance of the
random variables among X� 11 , X� 12 , X� 21 , and X� 22 .

Example 3.2. Let W and Z be two independent univariate random
variables. Define X=(X1 , X2)=((Z, Z+W), W), so the random vector X
consists of one 2-dimensional vector and one 1-dimensional vector. It is not
hard to see, using, e.g. (3.1), that the linkage associated with X is the joint dis-
tribution L of ((U1 , U2), U2), where U1 and U2 are independent uniform [0, 1]
random variables. In fact, L is the linkage of ((Z, g(Z, W)), W) whenever
g(z, w) is strictly increasing in w for all z, even if g is decreasing in z. This
illustrates the intuitive idea that the linkage is concerned with the dependence
between the underlying random vectors, but need not be affected by the
dependence within the vectors. For a similar illustration see Remark 3.5.

Example 3.3. Let X=((W1 , W2), (Z1 , Z2)) be a four-dimensional mul-
tivariate normal random vector with mean vector 0 and correlation matrix

7=\
1

\W

\
\

\W

1
\
\

\
\
1

\Z

\
\
\Z

1 + ,

28 LI, SCARSINI, AND SHAKED
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where &1<\W<1, &1<\Z<1, and &1�\� 1
2 - (1+\W)(1+\Z)

(then 7 is a proper correlation matrix; see Corollary 6 of Scarsini and
Verdicchio [20]). For simplicity we assume that the variances of all the
components of X are equal to 1. Here the bivariate marginals of X are
bivariate normal random vectors consisting of standard normal variables
with correlations \W and \Z , respectively. Denote by 8 the standard
normal distribution function, and let ``t'' stands for ``distributed as.''
Since W1 tN(0, 1), [W2 | W1=w1]tN(\Ww1 , 1&\2

W), Z1 tN(0, 1), and
[Z2 | Z1=z1]tN( pZz1 , 1&\2

Z), we see that the linkage of X is the dis-
tribution L of

\
U1

U2

V1

V2
+=\

8(W1)

+ .

8 \W2&\WW1

- 1&\2
W

+
8(Z1)

8 \Z2&\Z Z1

- 1&\2
Z
+

We note that the transformation from X to (U, V) does not depend on
\, although L depends on \ since the distribution of X depends on it. In
order to get some insight into L we note that it is the linkage of
(8&1(U1), 8&1(U2), 8&1(V1), 8&1(V2)), that is, the linkage of

\
W1

+
W2&\WW1

- 1&\2
W

Z1

Z2&\Z Z1

- 1&\2
Z

tN 0,

1 0 \ �1&\Z

1+\Z
\

.

0 1 �1&\W

1+\W
\ �1&\W

1+\W �1&\Z

1+\Z
\

\ �1&\W

1+\W
\ 1 0

�1&\Z

1+\Z
\ �1&\W

1+\W �1&\Z

1+\Z
\ 0 1
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It is known that if a random vector(X1 , X2 , ..., Xk), with continuous
marginals, has the copula C, then the random vector (g1(X1), g2(X2), ...,
gk(Xk)) has the same copula C whenever the gi 's are strictly increasing
real univariate functions; that is, the copula is preserved under strictly
increasing univariate transformations. The following result is a generaliza-
tion of this fact.

Theorem 3.4. Let X=(X1 , ..., Xk)=((X11 , ..., X1m1
), ..., (Xk1 , ..., Xkmk))

be random vector with an absolutely continuous function. Let Y=
(Y1 , ..., Ym)=((Y11 , ..., Y1m1

), ..., (Yk1 , ..., Ykmk)) be another random vector
such that

((Y11 , ..., Y1m1
), ..., (Yk1 , ..., Ykmk))

=st ((g11(X11), ..., g1m1
(X1m1

)), ..., (gk1(Xk1), ..., gkmk(Xkmk))), (3.4)

where the gij 's are strictly increasing real univariate functions. Then X and Y
have the same linkage.

Proof. Let Fij | i1, ..., i( j&1)( } | xi1 , ..., xi( j&1)) denote the conditional dis-
tribution of Xij given that Xi1=xi1 , ..., Xi( j&1)=xi( j&1) . Similarly, let
Gij |i1, ..., i( j&1)( } | yi1 , ..., yi( j&1)) denote the conditional distribution of Yij

given that Yi1=yi1 , ..., Yi( j&1)=yi( j&1) . From (3.4) it follows that

Gij | i1, ..., i( j&1)( yij | yi1 , ..., yi( j&1))

=Fij | i1, ..., i( j&1)(g&1
ij ( yij) | g&1

i1 ( yi1), ..., g&1
i( j&1)( yi( j&1))). (3.5)

Denote by Fi[Gi] the marginal distribution of Xi [Yi], i=1, 2, ..., k. Define
Y� ij=gij (Xij), j=1, 2, ..., mi , i=1, 2, ..., k. Thus

Y� =st Y.

Using (3.5) we obtain

(V1 , ..., Vk)#(9G1
(Y� 1), ..., 9Gk(Y� k))

=(9G1
(Y� 11 , ..., Y� 1m1

), ..., 9Gk(Y� k1 , ..., Y� kmk))

=(9F1
(g&1

11 (Y� 11), ..., g&1
1m1

(Y� 1m1
)), ...,

9Fk(g&1
k1 (Y� k1), ..., g&1

kmk
(Y� kmk)))

=(9F1
(X11 , ..., X1m1

), ..., 9Fk(Xk1 , ..., Xkmk))

#(U1 , ..., Uk).

Therefore X and Y� have the same linkage. Hence X and Y have the same
linkage. K
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One may ask whether, under the assumption of absolute continuity,
(X1 , X2 , ..., Xk) and (g1(X1), g2(X2), ..., gk(Xk)) have the same linkage,
where gi is a strictly increasing function from Rmi to Rmi, i=1, 2, ..., k (here
when we say that gi is strictly increasing, we mean that each of the mi coor-
dinates of gi is strictly increasing in each of its mi arguments). we do not
believe so, but we do not have a counterexample. However, for increasing
(rather than strictly increasing) functions gi 's it is easy to show that
(X1 , X2 , ..., Xk) and (g1(X1), g2(X2), ..., gk(Xk)) need not have the same
linkage. To see it, let Z and W be two independent random variables and
let X=(X1 , X2)=((Z, W), (Z, W)). Let g1 be the identity function, and let
g2(x1 , x2)=(x2 , x1). Then (g1(X1), g2(X2))=((Z, W), (W, Z)) which has a
different linkage than ((Z, W), (Z, W)).

Remark 3.5. The proof of Theorem 3.4 can actually be used to prove a
slightly stronger result than the one stated in the theorem. If in (3.4),
gij (Xij) is replaced by gij (Xi1 , Xi2 , ..., Xij), where gij (xi1 , xi2 , ..., xij) is
strictly increasing in the last variable xij when the other variables are held
fixed, j=1, 2, ..., mi , i=1, 2, ..., k, then the conclusion of Theorem 3.4 still
holds. Note that here we do not require gij (xi1 , xi2 , ..., xij) to be increasing
in xil , l<j. This shows that the linkage may not be affected by the
dependence within the underlying random vectors as it is affected by the
dependence between them.

The following result is a corollary of Theorem 3.4. It shows that if X and
Y have the same copula then they have the same linkage. This should be
contrasted with Remark 3.7 in which it will be shown that if X and Y have
the same linkage then they need not have the same copula.

Corollary 3.6. If X=(X1 , ..., Xk)=((X11 , ..., X1m1
), ..., (Xk1 , ..., Xkmk))

and Y=(Y1 , ..., Yk)=((Y11 , ..., Y1m1
), ..., (Yk1 , ..., Ykmk)) have the same

unique copula then they have the same linkage.

Proof. It is easy to prove that if ((X11 , ..., X1m1
), ..., (Xk1 , ..., Xkmk)) and

((Y11 , ..., Y1m1
), ..., (Yk1 , ..., Ykmk)) have the same unique copula then (3.4)

holds. The result now follows from Theorem 3.4.

Remark 3.7. If two random vectors X=(X1 , X2 , ..., Xk) and Y=
(Y1 , Y2 , ..., Yk) have the same linkage L it does not necessarily follow that
they have the same copula C. This is so because the copula is affected by
all the dependencies among the �k

i=1 mi underlying random variables,
whereas the linkage is affected only by the dependencies between the k
underlying random vectors. To see it, let W and Z be two independent
univariate random variables as in Example 3.2. Define X=(X1 , X2)=
((Z, Z+W), W) and Y=(Y1 , Y2)=((Z, 2Z+W), W). From Example 3.2
it follows that X and Y have the same linkage L, but it is easy to see, for
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example, when W and Z are standard normal random variables, that X
and Y do not have the same copula C.

4. Preservation of Positive Dependence Properties

The following extensions of the PUOD and the PLOD concepts, applied
to sets of random variables, were introduced in Chhetry, Sampson, and
Kimeldorf [4] (see also [9, 3]). The k random vectors X1 , X2 , ..., Xk of
dimensions m1 , m2 , ..., mk , respectively (or their joint distribution func-
tion), are said to be setwise positively upper set dependent (SPUSD) if

P _,
k

i=1

[Xi # Ui]&� `
k

i=1

P[Xi # Ui],

for all upper sets Ui in Rmi, i=1, 2, ..., k (a set U[B] is an upper [lower]
set in Rm if (x1 , x2 , ..., xm) # U[B] and (x1 , x2 , ..., xm)�[�]
( y1 , y2 , ..., ym) imply that ( y1 , y2 , ..., ym) # U[B]). The random vectors
X1 , X2 , ..., Xk (or their joint distribution function) are said to be setwise
positively lower set dependent (SPLD) if

P _,
k

i=1

[Xi # Bi]&� `
k

i=1

P[Xi # Bi],

for all lower sets Bi in Rmi, i=1, 2, ..., k. It is not hard to verify that
X1 , X2 , ..., Xk are SPUSD if, and only if,

E _`
k

i=1

gi (Xi)&� `
k

i=1

E[ gi (Xi)],

for all nonnegative increasing mi -dimensional functions gi , i=1, 2, ..., k, for
which the expectations exist. Similarly, X1 , X2 , ..., Xk are SPLSD if, and
only if,

E _`
k

i=1

hi (Xi)&� `
k

i=1

E[hi (Xi)],

for all nonnegative decreasing mi-dimensional functions hi , i=1, 2, ..., k, for
which the expectations exist. In particular, when k=2, then X1 and X2 are
SPUSD if, and only if,

Cov(g1(X1), g2(X2))�0,
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for all nonnegative increasing functions g1 and g2 (of the proper dimen-
sions) for which the covariance is well defined. A similar statement holds
also for pairs of SPLSD random vectors.

These setwise positive dependence properties are often inherited from the
linkage by the resulting joint distribution. This is shown in the next result.
Note that no continuity assumptions are needed for the validity of this
theorem.

Theorem 4.1. Let U1 , U2 , ..., Uk be distributed according to a linkage L,
and let F1 , F2 , ..., Fk be k ( possibly multivariate) distributions. Let F be a
distribution that has the linkage L and marginals F1 , F2 , ..., Fk (that is, F is
the distribution of

(X1 , X2 , ..., Xk)=(9*F1
(U1), 9*F2

(U2), ..., 9*Fk(Uk)); (4.1)

see (3.2) and (3.3)). If L is SPUPD (SPLSD) and if each Fi is CIS, then F
is SPUSD (SPLSD).

Proof. We only prove the SPUSD part of the theorem; the proof of the
SPLSD is similar. Let gi , i=1, 2, ..., k, be nonnegative increasing functions
of the proper dimension. From Lemma 2.2 we see that 9*Fi(u i) is increasing
in ui (since Fi is CIS), and therefore gi (9&1

Fi
(ui)) is increasing in u i . Now,

E _`
k

i=1

gi (Xi)&=E _`
k

i=1

gi (9*Fi(Ui))&
� `

k

i=1

E[ gi (9*Fi(Ui))]

= `
k

i=1

E[ gi (Xi)],

where the first equality follows from (4.1), the inequality follows from the
assumption that L is SPUSD, and the last equality follows from (4.1)
again. This completes the proof for the SPUSD case. K

The property of association (see (2.10)) is also often inherited from the
linkage by the resulting joint distribution. This is shown in the next result.
We say that a linkage L is associated if U1 , U2 , ..., Uk have the joint dis-
tribution L and the vector (U1 , U2 , ..., Uk) (of dimension �k

i=1 mi) is
associated in the sense that

Cov(g(U1 , U2 , ..., Uk), h(U1 , U2 , ..., Uk))�0,

for all increasing functions g and h (of dimension �k
i=1mi) for which the

covariance is defined. Note that, although each Ui consists of independent
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random variables, the whole vector (U1 , U2 , ..., Uk) can be positively
dependent because of some positive relationship between the Ui 's. Again,
note that no continuity assumptions are needed for the validity of the next
theorem.

Theorem 4.2. Let L, F1 , F2 , ..., Fk and F be in Theorem 4.1. If L is
associated, and if each Fi is CIS, then F is associated.

Proof. In the proof of Theorem 4.1 we argued that, under the CIS
assumption, X1 , X2 , ..., Xk of (4.1) can be represented as increasing func-
tions of U1 , U2 , ..., Uk , respectively, where the Ui 's are described in
Theorem 4.1. It is well known that increasing functions of associated ran-
dom variables are associated (see, e.g., [1]). This observation gives the
stated result. K

Note that in Theorem 4.2 the assumption that each Fi is CIS implies at
once that each vector Xi is associated from within (see, e.g., [1]). The
association of the linkage gives us then the positive dependence (within and
between) of all the �k

i=1mi underlying random variables.
Chhetry, Sampson, and Kimeldorf [4] extended the notion of PDM to

the multivariate case as follows. The random vector X=(X1 , X2 , ..., Xk)
(or its distribution function), where each Xi is m-dimensional, is said to be
setwise dependent by mixture (SDM) if the joint distribution function F of
(X1 , X2 , ..., Xk) has the representation

F(x1 , x2 , ..., xk)=|
0

`
k

i=1

G( w )(xi) dH(w), (4.2)

where 0 is some subset of a finite-dimensional Euclidean space,
[G( w ), w # 0] is some family of m-variate distribution functions, and H is
a distribution function on 0. Note that if X is SDM then X1 , X2 , ..., Xk all
have the same marginal distribution functions.

In the next result it is shown that the property of SDM is inherited from
the linkage by the resulting distribution function, under proper dimen-
sionality conditions combined with the requirement that the marginal dis-
tribution functions are all equal. Again, no continuity assumptions are
needed for the validity of the next theorem. Also, note that the marginals
here are not required to be CIS.

Theorem 4.3. Consider a linkage L and let F1=F2= } } } =Fk be k
m-dimensional distributions, and consider the distribution F of the vector
defined in (4.1). If Lis SDM then F is SDM.

Proof. Since F1=F2= } } } =Fk it follows that 9F1
=9F2

= } } } =
9Fk=9, say. If (U1 , U2 , ..., Uk) is distributed according to L then, from the
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fact that L has the representation (4.2) it follows that, for all collections
[A1 , A2 , ..., Ak] of k Borel sets in Rm,

P[Ui # Ai , i=1, 2, ..., k]=|
0

`
k

i=1

P( w )[Ai] dH(w), (4.3)

where 0 is some subset of a finite-dimensional Euclidean space,
[P(w ), w # 0] is some family of probability measures on Rm, and H is a dis-
tribution function on 0. Thus, if (X1 , X2 , ..., Xk) is distributed according to
F, then, for any collection [B1 , B2 , ..., Bk] of k Borel sets in Rm,

P[Xi # Bi , i=1, 2, ..., k]=P[9*(Ui) # Bi , i=1, 2, ..., k]

=P[Ui # (9*)&1 (Bi), i=1, 2, ..., k]

=|
0

`
k

i=1

0( w )[Bi] dH(w),

where the first equality follows from (4.1), the third equality follows from
(4.3), and 0(w )[ } ]=P( w )[(9*)&1( } )] for all w # 0. Thus F has the
representation (4.2) and therefore it is SDM. K

5. Stochastic Comparisons

In this section we extend Proposition 2.4 to the multivariate case.
Let X1 , X2 , ..., Xk and Y1 , Y2 , ..., Yk be two sets of (possibly dependent)

random vectors. In order to be able to stochastically compare these sets, it
is necessary that Xi and Yi have the same dimension, mi , say, i=1, 2, ..., k.
Let F be the joint distribution of X1 , X2 , ..., Xk , with marginals Fi ,
i=1, 2, ..., k, and let G be the joint distribution of Y1 , Y2 , ..., Yk , with
marginals Gi , i=1, 2, ..., k. We will assume below that (X1 , X2 , ..., Xk) and
(Y1 , Y2 , ..., Yk) have the same linkage. That is, we will assume that

(U1 , U2 , ..., Uk)=(9F1
(X1), 9F2

(X2), ..., 9Fk(Xk))

and

(V1 , V2 , ..., Vk)=(9G1
(Y1), 9G2

(Y2), ..., 9Gk(Yk))

satisfy

((U1 , U2 , ..., Uk)=st (V1 , V2 , ..., Vk) (5.1)

with the common linkage L. One would expect in this case, in light of
Proposition 2.4, that if Xi�st Yi , i=1, 2, ..., k, then (X1 , X2 , ..., Xk)�st
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(Y1 , Y2 , ..., Yk). By just assuming Xi�st Yi , i=1, 2, ..., k, we were not able
to obtain the conclusion (X1 , X2 , ..., Xk)�st (Y1 , Y2 , ..., Yk). We need to
assume a little more (see Remark 5.3 and Theorem 5.4 below). Before
stating Theorem 5.4 we first state and prove a special case of it which
corresponds to the choice of k=2 and m1=m2=2.

Theorem 5.1. Let (X11 , X12) and (X21 , X22) be two possibly dependent
bivariate random vectors with an absolutely continuous joint distribution F
and marginal distributions F1 and F2 , respectively. Let (Y11 , Y12) and
(Y21 , Y22) be two other ( possibly dependent) bivariate random vectors with
an absolutely continuous joint distribution G and marginal distributions G1

and G2 , respectively. Suppose that ((X11 , X12), (X21 , X22)) and ((Y11 , Y12),
(Y21 , Y22)) have the same linkage in the sense that

((U11 , U12), (U21 , U22))

=(9F1
(X11 , X12), 9F2

(X21 , X22))

=((F11(X11), F12|11(X12 |X11)), (F21(X21), F22|21(X22 |X21)))

and

((V11 , V12), (V21 , V22))

=(9G1
(Y11 , Y12), 9G2

(Y21 , Y22))

=((G11(Y11), G12|11(Y12 |Y11)), (G21(Y21), G22|21(Y22 |Y21)))

satisfy

((U11 , U12), (U21 , U22))=st ((V11 , V12), (V21 , V22)),

with a common distribution (=linkage) L((u11 , u12), (u21 , u22)), say, where
here Fij[Gij] denote the univariate distribution of Xij[Yij], and Fij | ik[Gij | ik]
denote the conditional distribution of Xij [Yij] given Xik[Yik]. If

X11�st Y11 , (5.2)

[X12 | X11=x11]�st [Y12 | Y11=y11] whenever x11�y11 , (5.3)

X21�st Y21 , (5.4)

[X22 | X21=x21]�st [Y22 | Y21=y21] whenever x21�y21 , (5.5)

then

((X11 , X12), (X21 , X22))�st ((Y11 , Y12), (Y21 , Y22)). (5.6)
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Proof. Let U11 , U12 , U21 , and U22 be four jointly distributed uniform
[0, 1] random variables, defined on some probability space and having the
joint distribution L((u11 , u12), (u21 , u22)) mentioned above. Define on the
same probability space as the Uij 's

((X� 11 , X� 12), (X� 21 , X� 22))

=(9*F1
(U11 , U12), 9*F2

(U21 , U22))

=((F &1
11 (U11), F &1

12 | 11(U12 | F &1
11 (U11))), (F &1

21 (U21), F &1
22 | 21(U22 | F &1

21 (U21))))

(5.7)

and

(Y� 11 , Y� 12), (Y� 21 , Y� 22))

=(9*G1
(U11 , U12), 9*G2

(U21 , U22))

=((G&1
11 (U11), G&1

12 | 11(U12 | G&1
11 (U11))), (G&1

21 (U21), G&1
22 | 21(U22 | G&1

21 (U21))))

(5.8)

Then, from (3.2) and (3.3), using the assumption that ((X11 , X12),
(X21 , X22)) and ((Y11 , Y12), (Y21 , Y22)) have the same linkage L, we get

((X� 11 , X� 12), (X� 21 , X� 22))=st ((X11 , X12), (X21 , X22)),

((Y� 11 , Y� 12), (Y� 21 , Y� 22))=st ((Y11 , Y12), (Y21 , Y22)).

Thus, in order to obtain (5.6) we just need to show that

((X� 11 , X� 12), (X� 21 , X� 22))�a.s. ((Y� 11 , Y� 12), (Y� 21 , Y� 22))

From (5.2) it follows that

X� 11=F &1
11 (U11)�a.s. G&1

11 (U11)=Y� 11 .

Using the fact that F &1
11 (U11)�G&1

11 (U11), it follows from (5.3) that

X� 12=F &1
12|11(U12 |F &1

11 (U11))�a.s. G&1
12|11(U12 |G&1

11 (U11))=Y� 12 .

Similarly, using (5.4) and (5.5), it can be shown that

X� 21�a.s. Y� 21

and that

X� 22�a.s. Y� 22 .

This completes the proof of (5.9). K
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Remark 5.2. The assumption of absolute continuity in Theorem 5.1 is
not needed in the following sense. If ((U11 , U12), (U21 , U22)) is such that
U11 and U12 are independent uniform [0, 1] random variables and U21

and U22 are independent uniform [0, 1] random variables, and if
((X11 , X12), (X21 , X22)) and ((Y11 , Y12), (Y21 , Y22)) have the same distribu-
tion as ((X� 11 , X� 12), (X� 21 , X� 22)) and ((Y� 11 , Y� 12), (Y� 21 , Y� 22)) of (5.7) and
(5.8), then (5.6) holds, even if ((X11 , X12), (X21 , X22)) and ((Y11 , Y12),
(Y21 , Y22)) do not have continuous distribution functions. The same
remark applies also to Theorem 5.4 below.

Remark 5.3. From a result of Veinott [25] it follows that if (5.2) and
(5.3) hold then (X11 , X12)�st (Y11 , Y12). Similarly, (5.4) and (5.5) together
is a stronger assumption than merely assuming (X21 , X22)�st (Y21 , Y22).
In fact, the result of Veinott [25] says, for random vectors W=
(W1 , W2 , ..., Wn) and Z=(Z1 , Z2 , ..., Zn), that if

W1�st Z1 (5.10)

and if

[Wi | W1=w1 , W2=w2 , ..., Wi&1=wi&1]

�st [Zi | Z1=z1 , Z2=z2 , ..., Zi&1=zi&1] (5.11)

whenever wj�zj , j=1, 2, ..., i&1, i=2, 3, ..., n, then W�st Z. Below, if W
and Z satisfy (5.10) and (5.11), we will denote it by W�sst Z. Note that
�sst is not an order in the usual sense. In fact, it is obvious that

W�sst W � (W is CIS). (5.12)

This representation of the positive dependence notion of CIS is reminiscent
of the characterizations of some other positive dependence orders discussed
in Shaked and Shanthikumar [22].

The proof of the next theorem is a straightforward extension of the proof
of Theorem 5.1, and therefore it is omitted.

Theorem 5.4. Let X1 , X2 , ..., Xk and Y1 , Y2 , ..., Yk be two sets of
( possibly dependent) random vectors. (We assume that Xi and Yi have
the same dimension, mi , say, i=1, 2, ..., k.) If (X1 , X2 , ..., Xk) and
(Y1 , Y2 , ..., Yk) have the same linkage (in the sense of (5.1)) and if

Xi�sst Yi , i=1, 2, ..., k (5.13)
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then

(X1 , X2 , ..., Xk)�st (Y1 , Y2 , ..., Yk). (5.14)

One may ask whether, under the conditions of Theorem 5.4, it is possible
to obtain the conclusion (X1 , X2 , ..., Xk)�sst (Y1 , Y2 , ..., Yk), which is
stronger than (5.14). It turns out that, in general, that is not the case. In
order to see it, take Xi=Yi , i=1, 2, ..., k, in Theorem 5.4, where each X i is
CIS. Then, by (5.12), we have that (5.13) holds. However, if the conclusion
of Theorem 5.4 were (X1 , X2 , ..., Xk)�sst (Y1 , Y2 , ..., Yk), that is,
(X1 , X2 , ..., Xk)�sst (X1 , X2 , ..., Xk), then it would have followed, again by
(5.12), that (X1 , X2 , ..., Xk) is CIS. But in general this need not be true. For
example, let X1=(W, W+Z) and X2=Z, where W and Z are independent
random variables. Then X1�sst X1 (since X1 is CIS), and X2�sst X2

(for univariate random variables �sst and �st are the same), but
((W, W+Z), Z)=(W, W+Z, Z) is not CIS. The latter claim can be
seen from the fact that [Z | W=a1 , W+Z=a2]=[Z | W=a1 ,
Z=a2&a1]=st [Z|Z=a2&a1], and [Z|Z=a2&a1] is stochastically
decreasing (rather than increasing) in a1 .

6. Discussion

In this paper we introduced the linkage function and derived some basic
properties of it. We also indicated, through some examples, how the
linkage function can be computed, or at least described by means of the
associated uniform [0, 1] random variables (see, e.g., Example 3.3); other
similar examples can be routinely worked out. However, many questions
regarding the linkage function are still unanswered.

Perhaps the most befuddling aspect of the linkage function is its
dependence on the order of the random variables within each vector that
is transformed to independent uniform random variables. Thus, when we
say that ``most of the information regarding the dependence structure
between the Xi 's is contained in the linkage function, whereas the informa-
tion regarding the dependence structure within the Xi 's is erased by it,'' we
say it intuitively and not quantitatively. The question of how the order of
the random variables influences the amount of information about the
dependence structure between the Xi 's, that is contained in the resulting
(different) linkage functions, is still untouched and unanswered. Therefore,
we do not know what is the best choice of order to use, if there is no
natural indexing. In the permutation symmetric case it seems that the order
of the random variables is irrelevant, but, even then, there is a loss of some
symmetry. For instance, in Example 3.3 all the pairs of variables Wi and

39LINKAGES



F
ile

:6
83

J
15

82
21

.B
y:

B
V

.D
at

e:
12

:0
2:

96
.T

im
e:

16
:2

1
L

O
P

8M
.V

8.
0.

P
ag

e
01

:0
1

C
od

es
:

30
00

Si
gn

s:
22

45
.L

en
gt

h:
45

pi
c

0
pt

s,
19

0
m

m

Zj are equally correlated, but each pair Ui and Vj of the resulting uniform
[0, 1] variables has a different correlation.

Another related question regarding the particular definition of the
linkage function in this paper is the use of the standard construction. There
exist several other constructions that can transform independent uniform
random variables to a desired vector X. A study that parallels the present
paper, but which applies to a construction that is different than the
standard construction, can be undertaken, and then compared to the pre-
sent study.

Our study of the linkage function somewhat parallels previous studies of
the copula function. However, during the last 35 years many properties of
the copula function have been discovered, and we could not investigate all
the possible analogous properties of the linkage function in the present
paper. For example, a referee has asked us whether there is an analog of
the Fre� chet upper bound for linkage functions. Since a linkage function is
a proper multivariate distribution with uniform [0, 1] marginal one can
use known results that give bounds on multivariate distributions. Let L be
a linkage function, that is, the joint distribution of U=(U1 , ..., Uk)=
((U11 , ..., U1m1

), ..., (Uk1 , ..., Ukmk)), where within each U i the random
variables are independent. Then, by Ru� schendorf [16], (1981),

max \ :
k

n=1

`
mn

l=1

unl&(k&1), 0+�L((u11 , ..., u1m1
), ..., (uk1 , ..., ukmk))

�min \`
m1

l=1

u1l , ..., `
mk

l=1

ukl+ ,

and for fixed uij 's, j=1, 2, ..., mi , i=1, 2, ..., k, the bounds are sharp.
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