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This paper is about the verification of dynamic properties bymodel-checking for finite state

reactive systems. Properties are expressed as PLTL formulae. Systems are specified through

a top-down refinement process. In order to copewith the state explosion problem, we pro-

pose partitioning the state space to be verified and to verify the properties independently

on each part. Properties that are such that if they hold on every part then they hold for the

whole system are called verifiable by parts.

In a previous paper, we presented a class of interesting PLTL properties that are always

verifiable by parts. That is, they are verifiable by parts with any partitioning of the state

space. In addition to these properties, some properties are verifiable by parts on a system

provided with a particular partitioning.

In this paper, we propose a partitioning of the state space of a system that is guided by the

refinement process. We introduce an extended class of PLTL properties that are verifiable

by parts with regard to this partitioning. This class includes the first one. In particular, the

new class includes liveness properties under fairness assumptions. This class is defined

from Büchi automata that accept the language of the negations of the properties.

Ourwork is illustrated by its application to a chip card protocol called T = 1. This protocol

is specified through successive refinements.

© 2009 Elsevier Inc. All rights reserved.

1. Motivations

Refinement is a specification method that aims to produce reliable software. A way to get into a system that is complex is

to consider it first globally, with no details (as seen from the sky), and then to gradually get amore precise view by looking at

it more and more closely. This is the approach that is considered when a system is specified through a top-down refinement

process [13]. The specifier first gives an abstract specification of how the systemworks. Then, step by step, he introduces new

operational details that were “hidden” at the previous level of specification. Each specification level is a refinement of the

previous one. At the end of the process, the specifier gives a specification that is precise enough to be directly implemented.

In this paper, we take the specification by refinement as a context. We specify reactive systems as transition systems.

We want to verify dynamic properties on these systems. In particular, we aim at verifying properties of safety and liveness

with fairness assumptions. We propose to provide a set of new dynamic properties at every level of the refinement. These

properties are the ones that have to be verified at this level of specification. They could not have been verified on the previous

levels because they are concerned with details that were previously “hidden”. For this verification method to be useful in

practice, properties must be preserved by the refinement. That is, if a property holds at a given level of specification, then it

must also hold on all future refinements of it (compatibility with the refinement).
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The dynamic properties expressed as formulae of Propositional Linear Temporal Logic (PLTL) [21] are compatible with

the refinement [10]. We verify them by model-checking [24,6,8]. It is well known that the main drawback of PLTL model-

checking [20,27] is that it cannot handle very large finite state systems. This problem is known as the exponential blow

up of state space. To deal with this problem, many solutions have been proposed, such as partial order techniques [17,

29], abstraction techniques [9,7,12], modular techniques [14,19,2], symbolic representations by BDD [4,23], and SAT-based

methods [3]. For a class of PLTL properties, we have proposed [22,16] another solution, which can be used in associationwith

the previous ones. We have called this method verification by parts.

Verification by parts is an out-of-core [26] model-checking technique.1 A transition system expresses the semantics of

the system that we want to verify. Verifying this system by parts consists of partitioning the transition system into several

parts, and verifying each part independently from the others. As every part is verified separately from the others, the other

parts can be stored on disks while the part of interest is in the main memory.

We say that a property is verifiable by parts if, when it holds on every part, then it also holds on the whole transition

system. Of course, verification by parts applies only to properties that are verifiable by parts. In [22,16], we have showed that

some PLTL properties are always verifiable by parts, independently from the way the transition system is partitioned into

parts. To decide if a property ϕ is (always) verifiable by parts, we have given a sufficient condition C on the Büchi automaton

that accepts the ω-language of ¬ϕ. C is expressed as syntactic and propositional conditions on the Büchi automata. Safety

and liveness properties such as � (p ⇒ © q), � (p ⇒ ♦ q) and � (p ⇒ q U r) are (always) verifiable by parts.

Now some PLTL properties are not, at least not always, verifiable by parts. In particular, if ϕ is a PLTL property and if f is

the expression of a fairness assumption (f is a PLTL formula), then in general f ⇒ ϕ is not always verifiable by parts.

In this paper, we state that a property does not have to be always verifiable by parts to be verified by parts. As a matter of

fact, once the choice of a particular partitioning P of the transition system has beenmade, it does not matter that a property

ϕ is not verifiable by parts with a partitioning different from the one that has been chosen. The fact that ϕ is verifiable by

parts with regard to P is enough to verify ϕ by parts.

By doing so, we extend the class of the properties that are verifiable by parts by adding properties that are verifiable by

parts only in the context of a given partitioning of the original transition system. In this paper, we propose a partitioning of

the transition system that is based on the refinement process. We call it refinement based partitioning. For this, we express

the semantics of the refinement as a relation between two transition systems (the abstract and the refined one), as we have

proposed in [1].

We exhibit sufficient conditions to decide if a property ϕ is verifiable by parts with regard to a refinement based

partitioning. These conditions are expressed from:

• the Büchi automaton that accepts the ω-language of ¬ϕ,

• the transitions of the system, as they appear in the refined transition system.

We show that the properties that are always verifiable by parts satisfy the conditions as well.

Such conditions allow for example to extend themethod of verification by parts to PLTL properties expressedwith fairness

assumptions.

In Section 2, we review some background on transition systems and on PLTL and Büchi automata. Refinement is presented

in Section 3. In Section 4, we present the partitionedmodel-checking technique. Section 5 extends the class of the properties

verifiable by parts by considering that the transition systems are partitioned according to the refinement. Throughout the

paper, the method is illustrated through the example of a chip card protocol (T = 1) [11]. Finally, we compare our method to

related works and we present some possible future extensions in Section 6.

2. Preliminary definitions

In this section, we give formal definitions for transition systems, PLTL properties and their validity on executions of

transition systems. Note that the notations we give in this section will be used throughout the whole paper.

2.1. Transition systems

Assume that V is a finite set of variables v with their respective finite domain Dv. Let APV
def= {v = d | v ∈ V ∧ d ∈ Dv} be

the set of atomic propositions over V . Let SPV be a set of state propositions defined by the grammar

p ::= ap | p ∨ p | ¬p where ap ∈ APV .

Definition 1 (Transition systems). A transition system TS
def= 〈S0, S,A, T ,L〉 interpreted over V has a set of initial states S0

included in a finite set of states S, an alphabet A of labels, a labelled transition relation T ⊆ S × A × S that must be total, and

a state labelling function L : S → 2APV .

1 The idea of out-of-core algorithms is to store on disks data structures that are too large to fit in the main memory.
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A label in A is the name of an action that modifies the state of the system.We consider transition systems that are labelled

and interpreted. A transition (s, a, s′) of T is written as s
a→ s′ and is labelled by an action a of A. The transition system is

interpreted2 as every state is decorated with a set of atomic propositions by means of function L.

Remark 2. As the transition relation is total, there can be no deadlock in a transition system. If a state s has no successor, a

transition s
Skip→ s (where Skip does not belong to A) is added to obtain a transition system. Notice that we do not consider

in practice transition systems where actions (other than Skip) could relate a state to itself. In other words, transitions s
a→ s

are forbidden, as they are of no interest in practice.

Definition 3 (Validity of a state proposition). The validity of a state proposition p ∈ SPV on a state s of a transition system

interpreted over V , written s |= p (we say that p holds on s), is defined as

• s |= ap iff ap ∈ L(s),
• s |= p1 ∨ p2 iff s |= p1 or s |= p2,

• s |= ¬p iff it is not true that s |= p (written s �|= p).

Definition 4 (Execution). An execution of a transition system TS is an infinite sequence σ
def= s0

a0→ s1
a1→ s2 · · · si ai→ si+1 · · · of

pairs of states and actions such that s0 ∈ S0 and for every i ≥ 0, we have si
ai→ si+1 ∈ T .

We note Inf s(σ ) the set of states occurring infinitely often in an execution σ :

Inf s(σ )
def= {s | σ = s0

a0→ s1 · · · si ai→ si+1 · · · ∧ s = si for infinitely many i}

We call �TS the set of all the executions of a transition system TS. In an execution σ = s0
a0→ s1

a1→ s2 · · · , we denote by

(σ , j) the state sj , and by σj the suffix of σ starting in sj .

2.2. PLTL properties

The Propositional Linear Temporal Logic (PLTL) is an extension of the propositional logic, introduced to specify properties

with temporal aspects of the executions of a system. Future PLTL formulae are built with two temporal operators, ‘©’ (Next)

and ‘U ’ (Until), according to the following grammar:

ϕ ::= ap | ¬ϕ | ϕ ∨ ϕ | © ϕ | ϕ U ϕ.

Other operators can be used: ♦ϕ
def= true U ϕ (eventually ϕ), �ϕ

def= ¬♦¬ϕ (always ϕ) and ϕ1 W ϕ2
def= ϕ1 U ϕ2 ∨ �ϕ1

(ϕ1 unless ϕ2).

PLTL properties are interpreted on the executions of a transition system. The semantics of PLTL is as follows. Let ϕ, ϕ1 and

ϕ2 be PLTL formulae. Let σ = s0
a0→ s1

a1→ s2 · · · be an execution. We define that ϕ holds on the state sj (j ≥ 0) of σ , written

(σ , j) |= ϕ, as

• (σ , j) |= ap iff ap ∈ L(sj),
• (σ , j) |= ¬ϕ iff it is not true that (σ , j) |= ϕ, written (σ , j) �|= ϕ,

• (σ , j) |= ϕ1 ∨ ϕ2 iff (σ , j) |= ϕ1 or (σ , j) |= ϕ2,

• (σ , j) |= ©ϕ iff (σ , j + 1) |= ϕ,

• (σ , j) |= ϕ1 U ϕ2 iff ∃k · (k ≥ j ∧ (σ , k) |= ϕ2 ∧ ∀i · (j ≤ i < k ⇒ (σ , i) |= ϕ1)).

When (σ , 0) |= ϕ we say that “ϕ holds on σ ”, and we write σ |= ϕ. A PLTL formula holds on a transition system TS if it holds

on all the executions of TS.

A PLTL property ϕ defines an ω-language that is the set of all the executions on which ϕ holds. It is always possible to

associate to a PLTL formula ϕ a non-deterministic Büchi automaton (see Definition 5) which recognizes the ω-language of

ϕ [28].

Definition 5 (Büchiautomaton).LetSPV beasetof statepropositionsoverV . ABüchiautomaton isa5-tupleB def= 〈q0,Q , SPV , TB ,
FB〉 where Q is a finite set of states (q0 ∈ Q is the initial state), TB is a finite set of transitions labelled by elements of SPV :

TB ⊆ Q × SPV × Q and FB ⊆ Q is the set of accepting states of the automaton.

An infinite sequence π = q0
p0→ q1

p1→ q2 · · · qi pi→ · · · such that qk
pk→ qk+1 ∈ TB for k ≥ 0, is called a run of B. We denote by

�B the set of all the runs of B. A run π of B is accepting if at least one of the accepting states appears infinitely often in the

run : Infs(π) ∩ FB /= ∅, where the notation Infs(π) has the same meaning for runs and executions.

2 This is a Kripke structure.
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Definition 6 (Synchronization of an execution and a run). Let σ =s0
a0→ s1 · · · si ai→ si+1 · · · be an execution of a transition

system, and letπ = q0
p0→ q1 · · · qi pi→ qi+1 · · · be a run of a Büchi automaton.We say that σ synchronizes withπ if ∀i(i ≥ 0 ⇒

si |= pi).

In thecasewhereσ andπ arefinite sequencesσ = s0
a0→ s1 · · · sn−1

an−1→ sn andπ = q0
p0→ q1 · · · qn−1

pn−1→ qn,σ synchronizes

with π if ∀i(0 ≤ i < n ⇒ si |= pi).

For n = 1, we say that the transition s
a→ s′ synchronizes with q

p→ q′ if s |= p.

Definition 7 (Acceptance of an execution). A run π accepts an execution σ if π is accepting and σ synchronizes with it. A

Büchi automaton B accepts σ if there exists a run of B that accepts σ .

We denote by Bϕ a Büchi automaton that recognizes the ω-language of ϕ. The set of executions satisfying ϕ are exactly

those accepted by Bϕ .

3. Refinement

In this section, we consider the refinement of transition systems. We express the refinement as a relation between

TS2
def= 〈S02 , S2,A2, T2,L2〉 and TS1

def= 〈S01 , S1,A1, T1,L1〉, which are, respectively, the refined and abstract transition systems.

TS2 and TS1 are, respectively, interpreted over sets of variables V2 and V1.

Refining a transition system is achieved by:

• introducing new actions, so A1 ⊆ A2,

• introducing new variables, so that V1 ∩ V2 = ∅,
• gluing the states of S2 to the states of S1, by means of a gluing predicate expressed on the variables of V2 and V1.

This is expressed on the transition systems by a particular kind of simulation of TS2 by TS1, which is a τ -simulation, as

defined in [1]. The τ -transition system of TS2 on A1 is a transition system identical to TS2 in which every transition label that

is not in A1 is replaced by τ . This means renaming every new action by τ in the refined transition system. A τ -transition is a

transition labelled by τ . We say that TS2 is a refinement of TS1 by requiring that the τ -transition system of TS2 on A1 satisfy

some conditions given in Section 3.2.

3.1. Gluing predicate

Consider the sets of variables V1 and V2 of two transition systems TS1 and TS2. The set SPV12 of state propositions over V1

and V2 is defined by the following grammar:

p ::= ap1 | ap2 | ¬p | p ∨ p where ap1 ∈ APV1 and ap2 ∈ APV2 .

Definition 8 (Validity of a state proposition on a pair of states). A state proposition p ∈ SPV12 holds on a pair of states (s1, s2)

of two transition systems TS1
def= 〈S01 , S1,A1, T1,L1〉 and TS2

def= 〈S02 , S2,A2, T2,L2〉, written (s1, s2) |= p, if

• (s1, s2) |= ap1 iff ap1 ∈ L1(s1), where ap1 ∈ APV1 .• (s1, s2) |= ap2 iff ap2 ∈ L2(s2), where ap2 ∈ APV2 .• (s1, s2) |= p ∨ q iff (s1, s2) |= p or (s1, s2) |= q.

• (s1, s2) |= ¬p iff it is not true that (s1, s2) |= p, also written (s1, s2) �|= p.

We express the link between the states of TS2 and TS1 as a gluing predicate P12, which is a state proposition of SPV12 . It

says that any state of TS2 is linked to one and only one state of TS1.

Definition 9 (Gluing predicate). A state proposition P12 ∈ SPV12 is a gluing predicate of two transition systems TS1
def= 〈S01 , S1,

A1, T1,L1〉 over V1 and TS2
def= 〈S02 , S2,A2, T2,L2〉 over V2 if

∀s2 · (s2 ∈ S2 ⇒ ∃s1 · (s1 ∈ S1 ∧ (s1, s2) |= P12 ∧ ∀s′1 · (s′1 ∈ S1 ∧ (s′1, s2) |= P12 ⇒ s′1 = s1))).

3.2. Refinement relation

Nowwe define the refinement relation between TS2 and TS1 as a τ -simulation which respects the gluing predicate of TS2
and TS1. Intuitively, it is defined by the four following clauses:

• strict refinement (abstract transitions): for every refined transition labelledbya former action, there is anabstract transition

labelled by the same former action, and such that the source state of the refined transition is related to the source state of

the abstract transition, and the target state of the refined transition is related to the target state of the abstract transition;
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Fig. 1. Execution refinement.

• stuttering of τ -transitions: this clause says that the source and target states of a τ -transition must be related to the same

abstract state;

• satisfaction of the gluing predicate: states which are in relation satisfy the gluing predicate;

• abstract actions preservation: for every abstract transition labelled by an action a, there is a refined transition labelled by

a such that its source state is related to the source state of the abstract transition.

Definition 10 (Refinement relation ρ). Let TS1
def= 〈S01 , S1,A1, T1,L1〉 and TS2

def= 〈S02 , S2,A2, T2,L2〉 be two transition systems

where A2 = A1 ∪ {τ }3 and such that TS2 is τ -livelock free.4 Let P12 be the gluing predicate between TS2 and TS1. We define

the refinement relation ρ as the greatest relation included in S2 × S1 that is such that (s2 ∈ S2, s1 ∈ S1, and we denote as

s2 ρ s1 that s2 is related to s1): if s2 ρ s1 then

• strict refinement: s2
a→ s′

2
∧ a ∈ A1 ⇒ ∃s′

1
· (s1 a→ s′

1
∧ s′

2
ρ s′

1
).

• stuttering of τ -transitions: s2
τ→ s′

2
⇒ s′

2
ρ s1.

• satisfaction of the gluing predicate: (s1, s2) |= P12.

• abstract actions preservation: s1
a→ s′

1
∧ a ∈ A1 ⇒ ∃s′

2
, s

′′
2

· (s′
2

∈ S2 ∧ s
′′
2

∈ S2 ∧ s′
2

a→ s
′′
2

∧ s′
2
ρ s1).

Remark 11. In [1], one additional clause defines the refinement relation, namely the lack of new deadlocks. It means that

theremust not exist deadlocks in TS2 which do not exist in TS1. This additional clause allows to benefit of the preservation of

all PLTL properties by the refinement relation [10], while only safety properties are preserved by the relation of Definition 10.

Even if we do not consider this clause in the sequel, note that the results presented in the next sections for partitioned

model-checking also hold when adding it in the definition of refinement.

Definition 12 (Refinement). A transition system TS2
def= 〈S02 , S2,A2, T2,L2〉 refines a transition system TS1

def= 〈S01 , S1,A1, T1,

L1〉, written TS2 � TS1, if:

∀s2 · (s2 ∈ S02 ⇒ ∃s1 · (s1 ∈ S01 ∧ s2 ρ s1)).

Proposition 13 To every abstract transition s1
a→ s′

1
ofTS1 (with s′

1
/= s1) corresponds a fragment of an execution ofTS2 composed

of a finite (possibly null) sequence of τ -transitions followed by a transition labelled by a.

Proof Consider a transition s1
a→ s′

1
of TS1. Due to the abstract actions preservation clause, there is a transition s2

a→ s′
2
of

TS2 such that s2 ρ s1.Moreover, any fragment of executionmade of a sequence of transitions leading to s2 via states all related

to s1 is a sequence of τ -transitions. Indeed, the occurrence of an old action would lead to a state related to another state of

TS1 (due to the strict refinement and the satisfaction of the gluing predicate). Due to the τ -livelock freeness, the succession

of τ -transitions is finite, and so action a finally occurs. �

Proposition 13 is illustrated in Fig. 1, where we represent the relation between an abstract (on top) and a refined (at the

bottom) execution. The new actions performed by the refined system are seen as τ -actions in the figure.

3.3. Equivalence class

We require ρ to be a total function. This makes it possible to define an equivalence relation ∼ρ between the states of

the refined transition system. This equivalence relation on the states of TS2 then induces a partitioning of the state space, as

presented in the next section. We say that two states s2 and s′
2
of TS2 are equivalent w.r.t. ρ if they are related to the same

state s1 of TS1.

Definition 14 (Equivalence class). Consider a state s1 ∈ S1. The equivalence class EC(s1) ⊆ S2 of S2/∼ρ is defined as

EC(s1) = {s2 ∈ S2 | s2 ρ s1}.

3 Actually, the refinement relation is defined w.r.t. the τ -transition system of TS2 on A1.
4 This means that the new actions (seen as τ -transitions) cannot take control forever. So there is not infinitely successive τ -transitions in an execution,

i.e. there is no τ -cycle in the refined system.
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Fig. 2. Transition system of the abstract model of protocol T = 1.

3.4. An example: the protocol T = 1

We use as running example the protocol T = 1 [11]. This protocol defines the exchange of message in an asynchronous

half duplex transmission protocol between a device (the reader) and a card. We present here a simplified modeling of this

protocol on two refinement levels.

3.4.1. Abstract model of protocol T = 1

At this level of abstraction, we only consider the message transmission between the card and the reader, by using two

variables: Sender1 indicates which component is going to send the next message and Cstatus1 indicates whether the card is

inserted into the device or not.

Four actions are described at this level of abstraction. Action Rsends corresponds to the sending of amessage by the device,

whereas action Csends corresponds to the sending of a message by the card. The two actions Cinsert and Eject correspond,

respectively, to the insertion and the ejection of the card.

The transition system for this model of the protocol is given in Fig. 2. In each state, the card and the reader are graphically

represented, as well as the values of the variables. Cstatus1 takes its values in {in, out}. In states s2 and s3 the card is outside

the reader, whereas it is inside in states s0 and s1. The signs “!” and “?” are used to represent the value of Sender1, by saying,

respectively, that the reader sends (Sender1 = reader) or receives (Sender1 = card).

3.5. Refined model of protocol T = 1

At the refined level, each message is considered as a sequence of blocks. For each block sent (bl), one receives an

acknowledgement of receipt (ackb). Each message is ended by a last block (lb). The term used to designate these three

types of information is frame.

Two variables are added at the refinedmodel: CardF2 and ReaderF2, representing the type of the last frame (in the domain

{bl, lb, ackb}), respectively, sent by the card and the device. The variable Cstatus2 represents the same thing as Cstatus1, and

SenderF2 indicates which component (card or reader) is going to send the next frame.

Eight actions are described in this refinedmodel. Actions Cinsert and Eject still represent the insertion and the ejection of

the card. The two actions Rsends and Csends, also already described in the abstract model, make it possible here to end the

sending of a message by sending the last block. The sending of blocks bl and of the acknowledgement of receipt ackb by the

card and the device are treated in actions Cblocksends, Rblocksends, Cacksends and Racksends.
The gluing predicate between this refined model and the abstract one is the following:

(Cstatus2 = in) ⇔ (Cstatus1 = in) ∧
(Cstatus2 = out) ⇔ (Cstatus1 = out) ∧
(ReaderF2 = bl ∨ ((CardF2 = ackb ∨ CardF2 = lb) ∧ SenderF2 = reader))⇔ (Sender1 = reader) ∧
(CardF2 = bl ∨ ((ReaderF2 = ackb ∨ ReaderF2 = lb) ∧ SenderF2 = card))⇔ (Sender1 = card).

The transition system for this refined model is given in Fig. 3. In the states, the type of the last frame emitted by the card

and the reader is represented as indicated by the legend.

Notice that the refined transition system as presented here does not meet the τ -livelock freeness hypothesis. Indeed,

new actions Cblocksends and Racksends can “loop” between the states r8 and r9, and new actions Rblocksends and Cacksends

between the states r3 and r4. But a fairness assumption stating that the card and the reader cannot infinitely exchange

messages can be expressed, for the τ -livelock freeness to hold in this example.

4. Partitioned model-checking

In this section, we present the main results of the out-of-core model-checking technique that we have called verification

by partitionedmodel-checking (see [22,16]). In order to performmodel-checking on large transition systems, the partitioned

verification technique relies on a simple idea: splitting the transition system into several smaller pieces, and performing the

verification on each piece separately. The pieces are called parts. Parts are transition systems as well. The initial transition

system is called the global transition system. Performing a partitioned verification means verifying a property on each part

separately, and concluding that it is globally true when it is true on every part.
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Fig. 3. Transition system of the refined model of the protocol T = 1.

In order that every transition belongs to a single part, the parts are constructed by partitioning the transitions of the

global transition system. Some states may belong to two distinct parts: they can be the target state of a transition t in one

part, and the initial state of a transition t′ in another part. Due to the partitioning, some states may lose their successors. If

this is the case, remember that a Skip loop is added to the state (see Remark 2).

4.1. Properties verifiable by parts

Consider a transition system split into a set of parts (transition systems) according to a partition of its set of transitions.5

Some PLTL properties are globally true when they are true on every part. We call such properties verifiable by parts, and they

are defined according to Definition 15.

Definition 15 (Property verifiable by parts). Letϕ be a PLTL property. Let TS be a transition system, and letM be a partitioning

of TS. The property ϕ is verifiable by parts on TS based on partitioning M if

∀M · (M ∈ M ⇒ M |= ϕ) ⇒ TS |= ϕ.

Remark 16. We simply say ϕ is verifiable by parts, instead of ϕ is verifiable by parts on TS based on partitioning M.

Remark 17. To say “if ϕ is true on every part, then it is true on the global transition system” is equivalent to saying “if ϕ is

false on the global transition system, then it is false on at least one part”. So, a definition of a property verifiable by parts,

equivalent to that of Definition 15, is

¬(TS |= ϕ) ⇒ ∃M · ∃σ · (M ∈ M ∧ σ ∈ �M ∧σ |= ¬ϕ).

5 Actually, the fact that the parts are obtained by an overlapping of the transitions is sufficient.
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Fig. 4. The properties � (p ⇒ © q), � (p ⇒ ♦ q) and � (p ⇒ q U r) are verifiable by parts.

4.2. A class of PLTL properties verifiable by parts

By using Büchi automata, we give a sufficient condition for when a PLTL property is verifiable by parts. We define a

class named Cmod (see Definition 18) of Büchi automata, and we prove that every PLTL property whose negation defines an

ω-language recognized by an automaton in Cmod is a property verifiable by parts (see Theorem 20).

The Büchi automata in Cmod are defined in Definition 18 as Büchi automata for which the following requirements hold:

(1) The initial state is not an accepting one and there is a loop labelled True on it.

(2) Every transition leaving a non-initial state leads to a non-initial state that is an accepting state.

(3) For every transition with a label p leading to an accepting state, there is a transition leaving that state with a label p′
such that p ⇒ p′ holds.

A consequence of requirement 2 is that every transition leaving an accepting state necessarily leads to an accepting state.

Another consequence is that once the initial state is left, an accepting state is reached immediately after.

Definition 18 (The Cmod class). Let B = 〈q0,Q , SPV , TB ,FB〉 be a Büchi automaton. The automaton B is in the Cmod class if

q0
True→ q0 ∈ TB ∧ q0 �∈ FB (1)

q
p→ q′ ∈ TB ∧ q /= q0 ⇒ q′ ∈ FB (2)

q
p→ q′ ∈ TB ∧ q′ ∈ FB ⇒ ∃(p′, q′′

) · (q′ p′
→ q

′′ ∈ TB ∧ p ⇒ p′) (3)

Proposition 19. IfB = 〈q0,Q , SPV , TB ,FB〉 is a Büchi automaton in Cmod, then every accepting runπ = q0
p0→ q1 · · · qi pi→ qi+1 · · ·

of B is such that

∃k · (k > 0 ∧ ∀i · ((i < k ⇒ qi = q0) ∧ (i > k ⇒ qi ∈ FB))).

Proof. Every accepting run is such that its first state is q0. As q0 �∈ FB , then every accepting run necessarily leaves q0 in order

to reach an accepting state. Consider qk to be the first state of B to be reached just after the initial state is left for the first

time in an accepting run. By construction, every state preceding the occurrence of qk in the accepting run is the initial state.

Asqk /= q0, thenevery target stateq
′
k
ofa transitionwhosesource state isqk is such thatq

′
k

∈ FB (byclause2 inDefinition18)

and q′
k

/= q0 (since by clause 1 in Definition 18, q0 �∈ FB). Thus, by recurrence, every state q
′′
k
reachable from qk is such that

q
′′
k

/= q0 and q
′′
k

∈ FB . �

Notice that clause 3 is not used to prove Proposition 19. But it is necessary for the proof of Theorem 20.

Theorem 20. All the PLTL properties whose negation defines an ω-language recognized by a Büchi automaton in the Cmod class

are verifiable by parts, regardless of the transition system and its partitioning.

Proof. We refer the reader to [5] for a proof of Theorem 20. �

As examples, the properties � (p ⇒ © q), � (p ⇒ ♦ q) and � (p ⇒ q U r) (with p, q and r being state propositions about

a transition system) are always verifiable by parts because the automata of the negations of these properties are all in Cmod

(see Fig. 4).

4.3. A partitioning based on refinement

In order to perform the verification of PLTL properties by parts, it is necessary to partition the transition system to be

verified into a set of parts. We are within the context of refined transition systems, and as a possible partitioning we propose

a partitioning of a refined transition system that is based on the refinement relation.



J. Julliand et al. / Information and Computation 207 (2009) 681–698 689

Consider a refined transitions system TS2 refining an abstract transition system TS1, and consider a state s1 of TS1. A part

issued from s1 encloses, for all the abstract transitions leaving s1, the fragments of executions of TS2 defined according to

Proposition 13, and followed by a Skip loop.

Intuitively, each state of the abstract transition system is exploded in the refined transition system as a set of states,

related to each other by transitions labelled by new actions (i.e. the new actions, previously hidden, become visible at the

refined level). This corresponds to the sequence of τ -actions represented in Fig. 1.

Then the occurrence of an action of the abstract level (see for example actions a and b in Fig. 1) causes the part to reach a

“border” state of it. Each border state of a part is extended by a Skip loop according to Remark 2.

This partitioning is illustrated in Fig. 5, where the four states of the abstract transition system of protocol T = 1 (see Fig. 2)

give birth to four parts. Since in Fig. 2 the state s0 was possibly left by actions Rsends or Eject, then the border states of Part

1 in Fig. 5 are reached either by Rsends or Eject. The same thing goes for the other parts.

Definition 21 (Refinement based part). Let TS1
def= 〈S01 , S1,A1, T1,L1〉 and TS2

def= 〈S02 , S2,A2, T2,L2〉 be two transition systems

such that TS2 refines (�) TS1. Consider s1 ∈ S1 and EC(s1), an equivalence class of S2/ ∼ρ . The part of TS2 based on EC(s1) is
a transition system TSM = 〈S0M , SM ,AM , TM ,LM〉 defined as

• S0M = {s2 ∈ EC(s1) | s2 ∈ S02 ∨ ∃(s, a, s2) · (s a→ s2 ∈ T2 ∧ s �∈ EC(s1))},
• SM = {s2 ∈ EC(s1)} ∪ {s′ | s2

a→ s′ ∈ T2 ∧ s2 ∈ EC(s1) ∧ s′ �∈ EC(s1)},
• TM = {s2 a→ s′ ∈ T2 | a ∈ A2 ∧ s2 ∈ EC(s1)} ∪ {s′ Skip→ s′ | s′ ∈ SM \ EC(s1)},
• AM is the restriction of A2 to the labels of TM ,

• LM is the restriction of L2 on the states of SM .

Proposition 22. Any execution of a part is made of a succession of occurrences of new actions, ended by the occurrence of an old

action, and followed by a Skip loop.

Proof. By Definition 21, the states of a part (see the definition of SM) are the states that are related to the same state s1 of the

abstract transition system (they belong to EC(s1)), plus the states s′ that can be reached by one occurrence of an old action.

The Skip loop is added to s′ as the transition relation is total (see Remark 2).

Due to the stuttering of τ -transitions (see Definition 10), the transitions between two states in EC(s1) are all labelled by a

new action. Due to the τ -livelock freeness, an old action necessarily occurs in an execution. This occurrence of an old action

necessarily terminates the execution (apart from the Skip loop) as it leads to a state not in EC(s1), from which no transition

other than a Skip one is allowed (see the definition of TM in Definition 21). �

Corollary 23. Any execution of a part of the refined transition system is either a suffix of an execution of the refined system,

or is made of a sub-sequence of an execution ending in a state s of the refined system, and extended by an infinite sequence

s
Skip→ s

Skip→ s · · · .

Proof. Immediate. �

Examples of refinement based parts are given in Fig. 5.

In the next section, we extend the partitioned verification approach to a class of PLTL properties (which includes Cmod)

that are not always verifiable by parts (not with every partitioning). They are verifiable by parts for a given system with

regard to this refinement based partitioning.

5. Partitioned verification on refined systems

The sufficient condition of verification by parts presented in the previous section focuses on a limited class of PLTL

properties. Indeed, several usual properties do not satisfy it and are not a priori verifiable by parts. In particular, this is the case

for responsepropertieswith fairness assumptions. Theprevious conditiondoesnot consider theway the systemwas split into

parts. But we intend to use the refinement based partitioning in order to split the system. By using the specificity of this kind

of partitioning, we are able to extend the class of properties verifiable by parts. In this way, properties which are not a priori

verifiable by parts could be so in the particular context of a system and its refinement. In this section, we present sufficient

conditions to determine if a property is verifiable by parts, regarding to a partitioning based on the refinement process.

5.1. Preliminary definitions

First, let us give some preliminary definitions that are necessary to define the sufficient conditions we propose. In the

sequel, we consider a Büchi automaton B def= 〈q0,Q , SPV , TB ,FB〉.
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Fig. 5. The four parts obtained by splitting the global refined transition system of protocol T = 1.

• The starting states of B are the accepting states and the states reached by one or more transitions from these accepting

states. The set QsB of starting states is defined as

QsB
def= {q | q ∈ Post* (FB)}

where Post* (FB) is the set of all the successors of the states in FB , reachable with zero or a finite number of transitions.

• The inhospitable states are all the non-accepting states which can be reached from a starting state. The set QhB of

inhospitable states is defined as

QhB
def= QsB \ FB.

• Let 	aB ⊆ TB be the set of transitions such that the target state is an accepting state and the source state is a starting

state

	aB
def= {q p→ q′ | q p→ q′ ∈ TB ∧ q ∈ QsB ∧ q′ ∈ FB}.

• Let 	hB ⊆ TB , be the set of transitions such that the target state is an inhospitable state and the source state is a starting

state

	hB
def= {q p→ q′ | q p→ q′ ∈ TB ∧ q ∈ QsB ∧ q′ ∈ QhB }.
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• We define PrefixB as the set of prefixes (with at least two transitions) of runs of B which start when the initial state is

left and which end in the first accepting state encountered.

PrefixB
def=

{
q0

p0→ q1 · · · qn−1
pn−1→ qn | q1 /= q0 ∧ qn ∈ FB ∧ n ≥ 2 ∧ ∀i · (1 ≤ i < n ⇒ qi �∈ FB)

}
.

• Wedefine LastTransInPrefixB as the set of transitions occurring in the runs of PrefixB such that they leave a non-initial

state and lead to an accepting state

LastTransInPrefixB
def= {q p→ q′ | q /= q0 ∧ q0

p0→ q1 · · · q p→ q′ ∈ PrefixB}.

5.2. Conditions of verifiability by parts with a refinement-based partitioning

Wenowpresent some conditionswhich, when they hold, ensure that an extended class of PLTL properties (in comparison

to the initial method) is verifiable by parts, when considering the particular partitioning based on the refinement process.

The conditions are expressed with respect to two transition systems (such that one refines the other) and to a PLTL

property, for which we consider the Büchi automaton of its negation. When both these conditions hold, and the automaton

is in a class6 that we have called C, then the property is verifiable by parts with the refinement based partitioning of the

refined transition system, as stated by Theorem 28.

5.2.1. The C class of Büchi automata

A Büchi automaton belongs to the C class if the two following criteria hold:

• the initial state is not accepting and there is a loop labelled by True on it (see clause 1),

• for each transition q
p→ q′ leading to an accepting state q′, there is a cycle reachable from q′ that contains an accepting

state. Moreover, the label p implies both

◦ the label of every transition leading to the cycle,

◦ the label of every transition in the cycle (see clause 5).

Definition 24 (C class). A Büchi automaton B belongs to the C class if the following two clauses hold:

q0
True→ q0 ∈ TB ∧ q0 �∈ FB , (4)

q
p→ q′ ∈ TB ∧ q′ ∈ FB ⇒ ∃π ·

(π = q′ p0→ q1
p1→ q2 · · · ∧ Infs(π) ∩ FB /= ∅ ∧ ∀i · (i ≥ 0 ⇒ (p ⇒ pi))). (5)

Example 25. To illustrate the definition of the C class expressed in Definition 24, let us consider the example of the Büchi

automaton B in Fig. 6. This automaton accepts the negation of the PLTL property �(�♦p ⇒ ♦q) ⇒ �(r ⇒ ♦s), which is a

liveness property under a fairness assumption. For this automaton, we have (the labels of the transitions are omitted for

readability reasons):

PrefixB = {0 → 1 → 2, 0 → 1 → 1 → 2, 0 → 1 → 1 → 1 → 2, · · · ,
0 → 3 → 2, 0 → 3 → 3 → 2, 0 → 3 → 3 → 3 → 2, · · · ,
0 → 3 → 4, 0 → 3 → 3 → 4, 0 → 3 → 3 → 3 → 4, · · · }

LastTransInPrefixB = {1 → 2, 3 → 2, 3 → 4 }.
QsB = {2, 3, 4}, QhB = {3}.
	aB = {2 → 2, 4 → 2, 4 → 4, 3 → 4}.
	hB = {3 → 3, 4 → 3}.

This automaton B belongs to the C class since the clauses 4, 5 expressed in Definition 24 hold.

• There is a loop labelled by True on the initial state (which is state 0), so the clause 4 holds.

• There are two accepting states in this automaton: states 2 and 4.

◦ State 2. Five transitions lead to this state: 0
¬p∧r∧¬s→ 2, 1

¬p∧r∧¬s→ 2, 2
¬p∧¬s→ 2, 3

¬p∧¬s→ 2 and 4
¬p∧¬s→ 2. By considering cycle

2
¬p∧¬s→ 2, the clause 5 holds.

◦ State 4. Two transitions lead to this state: 3
q∧¬s→ 4 and 4

q∧¬s→ 4. By considering cycle 4
q∧¬s→ 4, the clause 5 holds.

6 The class in itself is not a sufficient condition for the verifiability by parts in general.
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Fig. 6. A Büchi automaton belonging to the C class.

5.2.2. Sufficient conditions

The intuition to express the conditions of verifiability by parts is based on the definition of a property verifiable by parts,

expressing that: if a property is false on the global system, then there is at least one part on which it is false. If a property

ϕ is false on the global system, then there is at least one execution (of the global system) on which it does not hold. That

is, this execution is accepted by some run of B¬ϕ (the Büchi automaton that recognizes the ω-language of ¬ϕ). We focus

on the first occurrence of an accepting state in this run. Let us call qf this first occurrence of the accepting state in the run.

Reaching qf in the run occurs when synchronizing with a particular transition in the execution. The source state s of this

transition necessarily belongs to a part. Note that if q
p→ qf is the transition that reaches qf in the run, then s |= p. Remember

that with a refinement-based partitioning, according to Proposition 22, every execution of a part is made of a finite sequence

of occurrences of new actions (τ ), ended by the occurrence of a former action (see Fig. 1), after which there is an infinite

sequence of Skip. We indicate two conditions ensuring that there is an execution of a part which is accepted by the Büchi

automaton:

(1) The accepting state qf can be reached from inside a part. That is, by synchronization with a prefix of an execution of the

part, leading to the state s whose label allows the synchronization to reach qf (condition c1).

(2) It is possible to recognize the violation inside the part, from the state swhich allows to reach qf . That is, it must always

be possible to reach an accepting state when exiting the part (condition c2).

Condition c1. The condition c1 concerns the prefixes of the runs (of the Büchi automaton B¬ϕ) leading to an accepting

state, but which do not contain any other accepting states (i.e. the set PrefixB¬ϕ ). It expresses that, for each prefix, the first

occurrence of an accepting state is reachable by synchronizationwith the prefix of an execution of the part. This is truewhen:

• Either the accepting state, reachable by some transition which do not leave the initial state, can also be directly reached

from the initial state.

• Or if the prefix of the run can synchronizewith some part of execution going to s, then this part of execution is a sequence

of new actions, possibly ended by the occurrence of an old one (thus, the part of execution is contained in one part).

Let us now define formally this condition. In the definition, the notation Factorn, of a set of executions �, represents the

set of all subsequences of length n (in terms of number of states) of the executions in �.

Definition 26 (Condition c1). Let TS1
def= 〈S01 , S1,A1, T1,L1〉 and TS2

def= 〈S02 , S2,A2, T2,L2〉 be two transition systems, respec-

tively, interpreted over sets of variables V1 and V2, such that TS2 � TS1. Let B def= 〈q0,Q , SPV , TB ,FB〉 be a Büchi automaton.

The condition c1 is defined as follows:

∀s, q, p, q′ · (s ∈ S2 ∧ q
p→ q′ ∈ LastTransInPrefixB ∧ s |= p ⇒

∃p′ · (q0 p′
→ q′ ∈ TB ∧ p ⇒ p′) ∨

∀σ · (σ = s1
a1→ s2 · · · sn−1

an−1→ s ∈ Factorn(�(TS)) ∧
∃ρ · (ρ = q1

p1→ q2 · · · qn−1
pn−1→ q

p→ q′ ∈ PrefixB ∧ ∀i · (1 ≤ i ≤ n − 1 ⇒ si |= pi)) ⇒
∀i · (1 ≤ i < n − 1 ⇒ ai ∈ A2\A1))).
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Note that in the second part of c1 (i.e. the second part of the disjunction), the execution σ contains one transition less

than the run ρ . This is because, since s |= p, any transition from s can synchronize with q
p→ q′, and lead to the accepting

state. Thus in c1, we do not focus on one such transition in particular, since we are only interested in being able to reach the

accepting state q′.
Condition c2. We now express condition c2, that guarantees that once an accepting state is reached, the violation is

recognized inside the part. We call exit states, the states which are target of a transition labelled by an old action (i.e.

an action of the abstract transition system). The condition expresses that, from every starting state of the automaton, if

the transitions from the exit states cannot synchronize with a transition leading to an accepting state, then they cannot

synchronize with a transition going to an inhospitable state.

Definition 27 (Condition c2). Let TS1
def= 〈S01 , S1,A1, T1,L1〉 and TS2

def= 〈S02 , S2,A2, T2,L2〉 be two transition systems, respec-

tively, interpreted over sets of variables V1 and V2, such that TS2 � TS1. Let B def= 〈q0,Q , SPV , TB ,FB〉 be a Büchi automaton.

The condition c2 is defined as follows:

∀s, a, s′, q · (s a→ s′ ∈ T2 ∧ a ∈ A1 ∧ q ∈ QsB∧ � ∃q′, p · (q p→ q′ ∈ 	aB ∧ s′ |= p) ⇒� ∃q′′ · (q p′
→ q

′′
, p′ ∈ 	hB ∧ s′ |= p′)).

5.2.3. Verifiability by parts

These conditions lead to the following theorem of verifiability by parts, in the case of a refinement-based partitioning,

for properties whose negation can be represented by a Büchi automaton in C.

Theorem 28. Let TS1
def= 〈S01 , S1,A1, T1,L1〉 and TS2 def= 〈S02 , S2,A2, T2,L2〉 be two transition systems, respectively, interpreted over

sets of variables V1 and V2, such that TS2 � TS1. Suppose that TS2 is split into a set of refinement-based parts M (see Def. 21).
Let B be a Büchi automaton in the C class that recognizes the ω-language of a PLTL property ¬ϕ.
If c1 and c2 are valid then ϕ is verifiable by parts on M.

Proof. The complete proof can be found in Appendix A. �

Comparison with our previous works. The following propositions show that themethod described in this section to guarantee

the verifiability by parts subsumes the previous one (presented in Section 4).

Proposition 29. The Cmod class is included in the C class.

Proof. We want to prove that if a Büchi automaton verifies the clauses 1, 2, 3 of the Cmod class, then it also verifies the

clauses 4, 5 of the C class.

• From the clause 1 of the Cmod class, we know that there is a loop labelled by True on the initial state.

• From the clauses 2 and 3 of Cmod, we know that each accepting state has a successor which is also an accepting state. As

the number of accepting states (in FB) is finite, it is always possible to reach a cycle containing an accepting state from

an accepting state (more precisely, the cycle only contains accepting states and is reached by accepting states). With the

clause 3 of Cmod, and as the cycle only contains accepting states and is reached by accepting states, we can conclude that

the clause 5 holds. �

Proposition 30. For an automaton in the Cmod class, whatever the transition systems considered, conditions c1 and c2 hold.

Proof

• Condition c1: from Proposition 19, we know that any run of a Büchi automaton B in Cmod visits at most one non-accepting

state after leaving the initial state and before reaching an accepting state. Thus, for those automata, the prefixes of runs

in PrefixB are of length two. The second part of the condition (i.e. the second part of the disjunction) forbids the parts of

executions which synchronizes with those prefixes of runs to contain transitions labelled by old actions, except for the

last transition. Recall that these parts of executions have one transition less than the prefixes of runs. Thus, the parts of

executions only contains one transition. These executions thus immediately satisfy the second part of the disjunction,

and thus the condition itself.

• Condition c2: in any run of an automaton in Cmod, all the successors of an accepting state are also accepting states (see

Proposition 19). Thus, the set of starting states of such an automaton is the set of its accepting states. Moreover, as the

inhospitable states are the non-accepting states that can be reached from a starting state, there are no inhospitable states

for an automaton in Cmod, and so condition c2 holds. �
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5.3. Application to the protocol T = 1

We use the refinement-based partitioning to split the refined transition system of the protocol T = 1. This partitioning

leads to the creation of four parts, as illustrated in Fig. 5 in Section 4. Using our method, we want, in particular, to verify two

properties indicating that each message is composed of a finite number of blocks, i.e. each time a device sends a block, then

it will eventually send a last block. These two properties are expressed formally with the liveness properties P1 and P2:

• P1
def= �(CardF2 = bl ⇒ ♦(CardF2 = lb)),

• P2
def= �(ReaderF2 = bl ⇒ ♦(ReaderF2 = lb)).

These two properties must be, respectively, verified under the following fairness assumptions f1 and f2. They ensure that

the card and the reader will not send blocks (bl) forever.

• f1
def= �(�♦(SenderF2 = card ∧ CardF2 = bl) ⇒ ♦CardF2 /= bl),

• f2
def= �(�♦(SenderF2 = reader ∧ ReaderF2 = bl) ⇒ ♦ReaderF2 /= bl).

Thus, the two properties considered are f1 ⇒ P1 and f2 ⇒ P2. They can be represented by a Büchi automaton in the C class

that is in the shape of the one in Fig. 6. The experimentation demonstrates that both properties are verifiable by parts and

verified by parts. Indeed, the two conditions c1 and c2 hold for these properties with the refinement based parts, and the

verification on the four parts of the protocol (using the model-checker SPIN [15]) was successful.

Notice that the verification of the conditions c1 and c2 is decidable and can be performed by an algorithm that works on

automata issued from the Büchi automata of the properties, and of the transition systems of the parts. The condition c1 is to

be verified on the finite sets S2 (the states of the refined system, which can be obtained by parts) and LastTransInPrefixB ,
and on the infinite set PrefixB , which is regular. The condition c2 is to be verified on the finite sets 	aB , 	hB and T2 (the

transitions of the refined system, which can be obtained by parts).

6. Conclusion and future work

In thispaper,we remind the readerof themain results of anout-of-coremodel-checking technique thathasbeenpresented

in [22,16]. This technique is called verification by parts. The transition system of a system is partitioned into a set of parts,

and every part is verified independently from the others. We call verifiable by parts the properties that can be verified in

this way, and we present an interesting class of PLTL properties that are verifiable by parts for any partitioning. We propose

a partitioning of the transition system that is based on the refinement process.

Our contribution in this paper is to present sufficient conditions called c1 and c2 according to which a PLTL property is

verifiable by parts with regard to this partitioning and a refined system. This allows more PLTL properties to be verified by

parts, such as liveness properties expressed with fairness assumptions. In particular, the properties concerned are the ones

which negation can be represented by a Büchi automaton belonging to a class called C. The sufficient conditions c1 and c2
are expressed as predicates that link the Büchi automaton of the negation of the property to the refined transition system.

Wehavepresented in [5] adifferent (thoughsimilar) approach for theverificationofpropertiesunder fairness assumptions

in a partitioned way. Only the class Cmod is presented in [5], and fairness is handled by adding explicit fairness constraints

to the transition systems. This allows properties in the shape of f �⇒ ϕ (where ϕ is a property in Cmod and f is a fairness

assumption) to become verifiable by parts, even if f �⇒ ϕ as a whole is not in Cmod.

We adopt a different approach in the present paper. Indeed, fairness constraints need not be added to the transition

systems we consider, and we can deal for the verification by parts with properties in the shape of f �⇒ ϕ without the need

forϕ to be in Cmod. Also, themethod in the present paper is not restricted to properties under fairness assumptions. It applies

to any property in class C expressed on a system for which conditions c1 and c2 hold. Moreover, the partitioning is not the

same. In [5], it is necessary that some fair transitions be added to the parts as considered in the present paper, for themethod

to apply. Thus the parts are usually “bigger” in [5]. However the two methods cannot be compared from their generality, as

properties of [5] are verifiable by parts for any partitioning, whereas in the present paper we address more properties, but

for which verifiability by parts depends on the refinement based partitioning.

Notice that the results in the present paper still apply if the fairness assumptions are added explicitly to the transition

system, as was the case in [5].

Another interesting approach to the model-checking blow up problem when dealing with fairness assumptions is that

of [18]. The authors suggest dealing with the fairness assumptions at the algorithmic level instead of adding them to

specification. For that, they express fairness requirements as Street automata acceptance conditions, and they propose a

symbolic model-checking algorithm that checks for the emptiness of the language defined by Street automata. Thus, the

verification of a formula f ⇒ ϕ is reduced to the verification of ϕ. Our partitioned verification approach is compatible with

the symbolicmodel-checking approach of [18]. For this, we need to translate our fair transition systems into Street automata.

It is always possible as our fairness assumptions are expressible in PLTL. Once the global system is partitioned, the symbolic

model-checking can be applied on each of the parts.
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Our approach has similarities with methods based on the assume-guarantee paradigm [14,2,19]. We simply assume that

the property holds on all parts but the being currently verified. And if it also holds on the current part, then we guarantee

that it holds for the whole system. Our partitioning is not based on a parallel composition of interacting components. It is

consecutive to the conception of a system through successive refinements. It can be applied inside a component, in addition

to a technique that guarantees that the parallel composition of all the components still satisfies the property.

Also, our approach has to be compared with [25], where a partitioning of the state space is proposed for the verification

of a property. Our approach is orthogonal since the partitioning in [25] is guided by the property. Our partitioning is guided

by the refinement of a transition system.

Our research team is currently working on an implementation of the partitioned model-checking technique, so that we

can evaluate its performance on industrial-size applications. Some of the tools have already been implemented such as a

partitioner for a transition system, parsers and interfaces with propositional calculus provers in order to determine if a given

Büchi automaton is in Cmod, or in C.

Appendix A. Proof of Theorem 28

Proof. Consider a transition system TS2, which refines a transition system TS1. A property ϕ is verifiable by parts on TS2,

split according to the refinement process in a set of parts M, iff when ¬ϕ holds on an execution of TS2, then a part M in M
contains an execution on which ¬ϕ holds.

Thus, assume that there is an execution σ ∈ �(TS2) on which ¬ϕ holds:

σ = s0
a0→ s1

a1→ s2
a2→ · · · si−1

ai−1→ si
ai→ si+1 · · ·

Consider now a Büchi automaton B¬ϕ which represents the negation of ϕ. As σ satisfies ¬ϕ, there exists a run π in B¬ϕ

which accepts σ :

π = q0
p0→ q1

p1→ q2
p2→ · · · qi−1

pi−1→ qi
pi→ qi+1 · · ·

such that ∀k ≥ 0, sk |= pk and Infs(π) ∩ FB /= ∅.
Thus, π synchronizes with σ and contains an infinity of accepting states. We focus on the first occurrence of an

accepting state in π . Let qi be this accepting state. Notice that the first accepting state met in π (i.e. the state qi) cannot

be the initial state, since B¬ϕ is in the class C. As si−1 |= pi−1, the transition si−1

ai−1→ si synchronizes with the transition

qi−1

pi−1→ qi. The state si−1 necessarily belongs to a part M. We want to prove that there exists an execution in this part M,

which contains si−1 and on which ¬ϕ holds. Note that si−1 can also belong to two different parts: as an initial state in one

part, and as an exit state in the other. In this case, we consider the part where si−1 is an exit state. Consider an execution σ ′
inM

σ ′ = s′
0

a′
0→ s′

1

a′
1→ · · · sj−1

a′
j−1→ s′

j

a′
j→ s′

j+1
· · ·

where s′
0
is an initial state of M and sj−1 = si−1 (but the indices i and j can be different). We prove that there exists a run π ′

of B¬ϕ which accepts σ ′:

π ′ = q0
p′
0→ q′

1

p′
1→ · · · q′

j−1

p′
j−1→ qj

p′
j→ q′

j+1
· · ·

where qj = qi (as for σ ′, the indices i and j can be different). The state qj still represents the first occurrence of an accepting

state in π ′. We split the proof in two parts:

• (Part 1) The prefix ofπ ′ up to the state qj synchronizeswith the prefix ofσ ′ up to state s′
j
. That is, q0

p′
0→ q′

1

p′
1→ · · · q′

j−1

p′
j−1→ qj

synchronizes with s′
0

a′
0→ s′

1

a′
1→ · · · sj−1

a′
j−1→ s′

j
.

• (Part 2) The suffix of π ′ from the state qj synchronizes with the suffix of σ ′ from the state s′
j
. Moreover, the suffix of π ′

from qj contains an infinity of accepting states. That is, qj
p′
j→ q′

j+1
· · · synchronizes with s′

j

a′
j→ s′

j+1
· · · , and ∀k > j, ∃l > k

such that q′
l
∈ FB (recall that qj is also an accepting state).

Proof of Part 1: the prefix of �′ up to the state qj synchronizes with the prefix of �′ up to the state s′
j

To prove this first clause, let us go back to the transition qi−1
pi→ qi of the run π . We know that qi (which is qj in π ′) is

an accepting state and that si−1 |= pi−1 (si−1 is sj−1 in σ ′). We handle the two following cases: in π , either (1) qi is directly

reached from the initial state, or (2) it is reached from some other non-initial state.
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(1) case qi−1 = q0. By the clause 4 of the class C, there is a loop true on the initial state of B¬ϕ . Thus, in this case, the prefix

of π ′ which synchronizes with σ ′ is immediately the following:

π ′ = q0
true→ q0

true→ · · · q0
pj−1→ qj

where qj−1 is the same state as qi−1 in π and pj−1 is equal to the label pi−1 in π .

(2) case qi−1 /= q0. Now, in the run π , we consider that the first accepting state qi is not directly reached from the ini-

tial state in one step. We use the condition c1 to prove this case. In π , the transition qi−1

pi−1→ qi belongs to the set

lastTransInPrefix since qi−1 /= q0 and qi ∈ FB . The condition c1 states that

(i) either there is a transition q0
p→ qi such that pi−1 ⇒ p. As si−1 |= pi−1, then si−1 |= p. In σ ′, we have sj−1 |= p, and

therefore the run π ′ which accepts σ ′ is the following:

π ′ = q0
true→ q0

true→ · · · q0 p→ qj

(ii) or if there exists a part of an execution up to the state si−1 which synchronizes with a part of a run leaving the initial state

q0 of the Büchi automaton and leading to the transition qi−1

pi−1→ qi, then this part of execution up to the state si−2 only

contains transitions labelled with new events. This part of execution exists: it is the part of σ which synchronizes with

the part of π from the last occurrence of q0 to qi. Call qk this last occurrence of q0 in π , we have for π up to the state

qi:

π = q0
p0→ q0

p1→ q0 · · · qk
pk→ qk+1 · · · qi−1

pi−1→ qi · · ·
and the corresponding σ up to state si:

σ = s0
a0→ s1

a1→ s2 · · · sk
ak→ sk+1 · · · si−1

ai−1→ si · · ·
By the condition c1, we know that each al , k ≤ l < ai−2, is a new action (i.e. labelled in A2\A1). Thus, the part of σ
from sk to si is entirely contained in one part. Indeed, recall Proposition 22 saying that, with a refinement-based

partitioning, the executions of a part are composed of a finite sequence of new actions, ended by an old one (labelled

in A1), and a Skip loop. Thus, ak to ai−3 are new actions, ai−2 can be either a new action or an old one, and ai−1 can be

either a new action, or an old one, or a Skip loop. Thus, the execution σ ′ is the part of σ from sk to si, preceded by a

possible sequence of consecutive transitions that goes to sk in σ and that are labelled by new actions. The transitions

can synchronize with the loop true on the initial state of the Büchi automaton.

Proof of Part 2: the suffix of �′ from the state qj synchronizes with the suffix �′ from the state s′
j , and this suffix of �′

contains an infinity of accepting states

In the first part of the proof, we proved that the state sj−1 in σ ′ satisfies the label p′
j−1

of some transition in π ′ leading to

the accepting state qj (whatever this transition is, according to the first part of the proof). Thus, as sj−1 |= p′
j−1

, then any

transition from sj−1 can synchronize with the transition q′
j−1

p′
j−1→ qj . In particular, this is the case for the transition si−1

ai−1→ si

in the global execution σ . Moreover, recall that the suffix of σ from the state si can synchronize with the suffix of the run π
from the state qi, and that this suffix of π contains an infinity of accepting states. Thus, consider that σ ′ has the same suffix

from sj−1 as σ from the state si−1. Call σ
′
j−1

the suffix of σ ′ from sj−1:

σ ′
j−1

= sj−1

aj−1→ sj
aj→ sj+1

aj+1→ · · ·

where sj−1 = si−1, aj−1 = ai−1, sj = si, · · · . We consider the two following cases:

(1) either σ ′
j−1

is entirely contained in the part M which contains sj−1,

(2) or it is cut on some exit state sx of the part. That is, only the prefix from sj−1 to sx is contained inM, and is then extended

with Skip transitions:

σ ′
j−1

= sj−1

aj−1→ sj
aj→ sj+1

aj+1→ · · · sx−1
ax−1→ sx

Skip→ s′
x+1

Skip→ · · ·
where x ≥ j and ∀k > x, s′

k
= sx .

Note that we go back to the states of indices j − 1. Indeed, in the first part of the proof, we only proved that sj−1 |= p′
j−1

,

for some transition labelled by p′
j−1

leading to the accepting state qj . But we did not specify which transition from sj−1

synchronizes with the transition q′
j−1

p′
j−1→ qj .
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(1) The suffix σ ′
j−1

is entirely contained in M. In this case, the proof is immediate. The suffix σ ′
j−1

synchronizes with the

following suffix π ′
j−1

:

π ′
j−1

= q′
j−1

p′
j−1→ qj

pj→ qj+1

pj+1→ · · ·
such that the suffix from qj is the same as the suffix ofπ from its state qi. As this suffixπi contains an infinity of accepting

states, then π ′
j
also contains an infinity of accepting states.

(2) The suffix σ ′
j−1

is cut on some exit state sx of M, and is extended with Skip transitions from sx . We consider two cases:

either sx = sj−1 or sx /= sj−1:

(i) if sx = sj−1: in this case, the only transition available from sx is a Skip transition. Thus, we have

σ ′
j−1

= sj−1
Skip→ s′

j

Skip→ s′
j+1

· · · .

such that ∀k ≥ j, s′
k

= sj−1.

By the clause 5 of the class C, we know that there exists a suffix π ′
j−1

of π ′ from the state q′
j−1

:

π ′
j
= q′

j−1

p′
j−1→ qj

p′
j→ q′

j+1

p′
j+1→ q′

j+2
· · ·

such that p′
j−1

⇒ p′
k
, ∀k ≥ j and that Infs(π ′

j
) ∩ FB /= ∅. As sj−1 |= p′

j−1
(whatever p′

j−1
is, according to the first part of

the proof), then ∀k ≥ j, sj−1 |= p′
k
and thus s′

k
|= p′

k
.

(ii) if sx /= sj−1: by construction of the parts, sx−1
ax−1→ sx is labelled by anold action inA1. Recall thatσ

′
j−1

has the following

form:

σ ′
j−1

= sj−1

aj−1→ sj
aj→ sj+1

aj+1→ · · · sx−1
ax−1→ sx

Skip→ s′
x+1

Skip→ · · ·

We can prove that there exists a suffix π ′
j−1

π ′
j−1

= q′
j−1

p′
j−1→ qj

pj→ qj+1

pj+1→ · · · qx−1
px−1→ qx

p′
x→ q′

x+1

p′
x+1→ · · ·

which synchronizes with σ ′
j−1

and contains an infinity of accepting states. For this purpose, we use the assumption

that condition c2 holds. First recall that there exists a transition qx
px→ qx+1 in the Büchi automaton such that sx |= px .

Thus, each s′
k

|= px , for k > x. As x ≥ j and qj is an accepting state, each state qk , k ≥ j, is a starting state and each

state qk , k > j, is either an inhospitable or an accepting state. Thus, qx ∈ QsB and qx+1 ∈ QhB ∪ FB:

◦ If qx+1 ∈ FB: according to the clause 5 of the class C, there is a run from qx+1 which contains an infinity of accepting

states, such that pk implies the labels of each transition in this run. As each s′
k
satisfies pk , for k > x, then each s′

k
satisfies the labels of the transitions of this run. The suffix σ ′

j−1
synchronizes with the following accepting suffix

π ′
j−1

:

π ′
j−1

= q′
j−1

p′
j−1→ qj

pj→ qj+1

pj+1→ · · · qx−1
px−1→ qx

px→ qx+1

p′
x+1→ · · ·

such that px ⇒ p′
k
, for k > x.

◦ If qx+1 ∈ QhB :weknowthat the transition sx−1
ax−1→ sx is labelledby anold action inA1, and that sx |= px . By condition

c2, we know that there exists a transition qx
p′
x→ q′

x+1
such that sx |= p′

x and q′
x+1

∈ FB . At this point, the previous

case applies. The suffix σ ′
j−1

synchronizes with an accepting suffix π ′
j−1

:

π ′
j−1

= q′
j−1

p′
j−1→ qj

pj→ qj+1

pj+1→ · · · qx−1
px−1→ qx

p′
x→ q′

x+1

p′
x+1→ · · ·

such that p′
x ⇒ p′

k
, for k > x. �
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