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We show how Rao and Vaserstein’s identities may be related to the groups S3
and S,. We then develop a theory that enables us to produce various identities, for
any given pair (G,e) of a group G and a character ¢ defined on G. When ¢
is + 1-valued, these identities may be used to obtain upper bounds for the easier
Waring problem over Z and Q. This approach may be considered as an alternative
to the Tarry-Escott problem. € 1993 Academic Press, Inc.

1. INTRODUCTION

In a recent paper [11] Vaserstein mentioned Rao’s identity
(a®c 4+ bdx)® + (@°d — bex)® + (b°c — adx)® + (b°d + acx)® — (a’c — bdx)®
—(@®d+ bex)® — (b°c + adx)® — (b°d — acx)®
= 12abcd(c* — d*)(a** — b**) x.

He noticed that Fuchs and Wright [5] were unable to “find similar iden-
tities for higher values of £,” Rao’s identity corresponding to the case k = 6.
He proposed such an identity for k =8,'

(a56b31654x+b3lC110)8 + (a25cll(1x+ aZSbSSCZS)S
+ (a25b31C85x+ a57b63c21)8 + (aSSbZSCGIX_a7b73C61)8

+ (azobcl20x_a()0b81)8 + (a3’b36074.x—a’5b28698)8

! There were a couple of misprints in the original formula: the linear terms a'6%%¢™x +
a3h%3c have to be replaced by a*'b%c™x + a'’p*®c®, and the last monomial in the definition
of e is a®h~'%c%° instead of a®°p>*°c*.
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_ (056b31C54x _ bzlcuo)s _ (0256“6)( _ aZSbSSCZS)S
_ (a25b31085x — g ps3 )8 _ (a55b25C61x + a’b3 0 )8
_ (azobclzox_l_ a60b81)8 _ (a31b3(’c74x + a15b28698)8
— 16[056b2486824 + q?0p616,312 + gt pAT2p232 _ ;440,568,120

_a136b232C760_ a104b536c488] X.

Vaserstein’s identity does not seem to be as symmetric as Rao’s.
However, a tricky change of variables reveals symmetries in Vaserstein’s
identity. More precisely let us put

0/17221/17 ,70/17
u=a’"pH 77N,
V= a735/l7b38/17cl38/17,
W=aé7/l7b123/l7c—\49/17,

y= 0300“7b‘3l6/”()862/17.

Then Vaserstein’s identity becomes

(u7UlO + u5w6y)8 + (u7w10 _ uSU()y)B + (v7w10 + USuGy)S
+ (07 — 0SWO)E + (W0 + wpSp)E + (wTp!0 — wiusy)®
— (170" — uwOy) — (w0 + usv6y)8 R (v7w10 N vsuby)s
— (074" + WOy — (wTu® — w5v6y)3 _ (w7vlo + wiubp)8

= 16(uow)® (u¥B0% + 08w 4 wBydt — 1808 _ 8,64

w48064) 7.

In this identity, the group S, of the permutations of {u, v, w} appears
naturally. In Rao’s identity the group occurring was S,x S,, ie, the
permutations of {a, b} x {c, d}. This led us to develop a theory that would
provide identities of this kind for any finite group.

In Section 2 we define a so-called (weak) k-admissibility notion and
prove two related lemmas. Section 3 provides some initial inequalities,
which motivate a conjecture about the equivalence of k-admissibility and
weak k-admissibility. In Section 4 we establish some formulas that help to
effectively compute some k-admissibility degrees. We apply these results in
Section 5 to dihedral groups and give algorithms to derive identities from
a given group; we also make explicit these identities for the dihedral groups
D, for n< 3. Section 6 is concerned with the size of the identities we can
obtain this way and some upper bounds are given. We then use these iden-
tities to derive some upper bounds in number theory for the easier Waring
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problem for algebras of characteristic zero over a field (Section 7), the
easier Waring problem over Z (Section 8), and the non-trivial representa-
tions of zero as sums or differences of k-powers (Section 9). We end this
article by presenting some possible extensions of this work.

2. DEFINITIONS AND FIRST PROPERTIES

Let G be a finite group and let ¢ be a non-trivial representation of G of
dimension 1.

For any finite dimensional representation V of G over a field K of
characteristic zero, we will define a notion of k-admissibility. For any non-
negative integer k, we will say that G is k-admissible over V' with respect
to ¢ if and only if the following condition is satisfied: V((4,, iy), ..
(Ag» i) € (Q3), I(a, B) e V? such that

(i) Vvie{l,., k},3g,€G, with e(g,)# 1 and 2,0+ y;feFix g,
(ii) VgeG,aeFixg and feFix g imply e(g)=1.

Here Fix g denotes the space of vectors in V invariant under the action
of g.

Similarly we will say that G is weakly k-admissible over V with respect
to ¢ if and only if the following condition is satisfied: There exist two
polynomials functions & and f in the ((4,, 4;)); <, <x, With values in ¥ and
coefficients in K such that

(i) Vie{l,..,k},3g,€G, with e(g,)# 1 and 4,&4+ u,feFix g,
(i) VgeG,aeFixg and feFix g imply e(g)=1.

Here the action of G on polynomial functions is the one induced by the
action of G on V, and Fix g denotes the space of invariants for this action.

Remark. In the definition of k-admissibility, we may replace Q by Z,
for the underlying set of the 1;’s and u,’s. Indeed the conditions (i) and (ii)
do not change when 4, (resp. ;) is replaced by dA; (resp. dy;); choosing d
to be a common denominator of the 4;’s and u;’s completes the proof of
this remark. The same argument shows that (Q2)* may be replaced by
({1} x@U {(0, H})* or (@x {1} U {(1,0)})

LEMMA 1. If G is (weakly) k-admissible over V with respect to ¢, then G
is (weakly) l-admissible over V with respect to &, for any nonnegative integer
1 less than or equal to k.

Proof. Let ((4,, t1), s (A1, 1)) € (@%) be given. Let us complete this
I-tuple of pairs of scalars by k—/ zero pairs. We can apply the
k-admissibility property to get the /-admissibility.
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Now, if G is weakly k-admissible over J" with respect to ¢, let us evaluate
gand f at (A, @')=({A;4 1» His1)s - (A, f1e)). The condition (i) is trivially
satisfied so we have to concentrate on condition (ii). Let us suppose that
this condition is not satisfied, for any (k —/)-tuple (4’, 1’). To each element
g in G with &(g) # 1, we may define Q(g) to be the set of all (k —/)-tuples
(', 1') such that the evaluations of & and § at (//, u’) belong to Fix g. Then
(@*)* "= U, %1 Q(g). Thus there exists a g, in G with &(g,) # 1, such
that @(g,) contains a subset of the form S, x --- x.S,,_,, where S, is an
infinite subset of Q (otherwise (Q%)* "/ would be a finite union of proper
subspaces). Since the conditions &€ Fix g, and f € Fix g, are algebraic (via
the cartesian equations) and satisfied on S, x --- x 8, 5, they are
satisfied for all (A, ). This contradicts the k-admissibility hypothesis.
Thus there exists (4j, ug) such that the evaluations of @ and f at (g, ug)
satisfy the condition (ii). |

LemMa 2. If G is (weakly) k-admissible over V with respect to ¢, then k
is less than the order of G.

Proof. Let us take for (4, u) the k-tuple of pairs ((1, 1), (1, 2), ..., (1, k)).
Then, for any subspace W of V, and for any vectors a, § in V, we have

{a+if,a+jBlcW={a,f}cW when i#].

This implies that the g;’s defined by the condition (i) are all distinct. Thus
k is less than the order of G. Similarly, if G is weakly k-admissible, we have
for any g

(Ja+up ha+ufycFixg={a f}cFixg when is#j.

This also implies that k is less than the order of G, by the same
enumerative argument. ||

This last lemma allows us to define the integer k (V; K) (resp. k (V; K))
to be the greatest integer k£ such that G is k-admissible (resp. weakly
k-admissible) over V with respect to & Similarly we define k,(G; K) (resp.
k.(G; K)) to be the maximum of the numbers k (V; K) (resp. k,(V; K)),
where V runs over all the representations of G over the field X. The next
sections will be devoted to inequalities satisfied by these numbers, in order
to make them easier to compute.
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3. SOME BASIC INEQUALITIES

One can ask how the notion of (weakly) k-admissibility behaves through
the classical operations in representation theory. Some answers are given in
the following theorem for the direct sum of two representations of G.

THEOREM 1. ke(_Vl BV, K)yzmax(k,(V; K), k(V,y; K)) k(V @ V)5 K)
= max(k,(Vy; K), k(V3; K)).

Proof. If G is k-admissible over V|, there exists (a,, f,) in V7 satisfying
the conditions (i) and (ii) for any (4, u) in (@?)*. Then the vectors a;, +0
and f,+0 in V,@®V, will also satisfy these requirements, for the same
value of (4, #). This shows that

ke(VlG') VZsK)>ke(V17K)'

By symmetry we have also k. (V, @ V,; K)=k,(V,; K) and thus the first
part of the theorem holds. Similarly we get the second inequality in the
theorem. J

COROLLARY. If G acts trivially on V,, we have
k(V®Vo: K)=k(V:K) and  k(V®Vy: K)=k(V;K).

Proof. Since G acts trivially on V,, we know that every vector in V is
fixed by any element of G. Therefore the condition (ii) cannot be satisfied

and k(Vy; K)=k,(V,y; K)=0. Then we deduce from Theorem 1 that
k(VOVy; K) 2k (ViK)  and  k(V®Vy; K)2k(V; K)

Now let us prove the reverse inequalities. If V'@ V, is k-admissible, there
exists, for any 2k-tuple (4, u), two vectors « and § in V@ V, satisfying the
conditions (i) and (ii). Let o’ (resp. ') denote the projection of « (resp. f)
on F, so that o« —a’ € F, (resp. f— B"€ V). Then condition (i) holds in V
with «' and g, for the same choice of the g,’s. Moreover, if o’ and f’ are
fixed by an element g in G, the trivial action of G on ¥V, ensures us that
o and f are fixed by g. Using condition (ii) also in ¥'@® ¥V, we deduce that
¢(g) = 1. Therefore condition (ii} also holds in ¥ and V is k-admissible.
Thus we have Lk (V®V,; K)<k(V;K). The same technique leads to
k(V®V,y; K)<k,(V;K) and the proof of the corollary is completed. ||

These first results show some similarities between the behaviors of
k(V;K) and k,(V;K). As a matter of fact we have the following
proposition, which justifies the term “weakly.”
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PropPosITION 1. k,(V; K)<k, (V;K).

Proof. Let us put k=k(V; K). For each k-tuple of pairs of scalars
(4, ), we may associate a k-tuple (g, ..., g,) of elements of G. As in the
proof of Lemma 1, we may find a particular k-tuple (g9, .., g%) that is
associated to a subset of Q% of the form S, x --- xS,,, where S, is an
infinite subset of @. Each condition 4,a + y, B € Fix g is linear in the coor-
dinates of « and f. Thus to find « and f satisfying to the conditions in (i)
with (g9, .., £2) is equivalent to solving an homogeneous system of linear
equations, whose coefficients are proportional to the 1,'s and u,’s. Similarly,
finding & and B is equivalent to solving the same system, in which the A’s
and p,’s are now considered as variables; indeed the use of Cramer’s rule
under suitable assumptions shows that generic solutions will be polyno-
mials in the 4s and p;’s. We just have to check that the rank of this last
system is smaller than the number of unknowns allowed. Now the deter-
mination of the rank may be done by considering determinants of minors,
that are polynomials in the A’s and p/s. Let P be such a polynomial,
obtained from a minor whose order is greater than or equal to the number
of unknowns. We know that P(A, u)=0, for (4, u)eS,;x --- xS, by
hypothesis. Thus P=0 and then we may express the generic solutions as
polynomials in the 4,’s and p,’s.

Now let us suppose that these & and § are fixed under the action of an
element g in G with ¢(g) # 1. The solutions « and f§ associated to any (4, u)
in §,x --- x 8§, are proportional to the specialization of & and f, unless
the full-rank system used to determine & and f is degenerate at (4, p). Then
o and § would be fixed by g, which is impossible. Thus the system is
degenerate at (4, u), for any (4, u) in S, x --- X S, ; that is, the determi-
nant of the system vanishes at any (4, u) in S, x --- x.§,,. This shows that
this determinant would be identically zero, which is also impossible. As a
conclusion we have succeeded in finding polynomial functions & and f§
satisfying conditions (i) and (ii). |

This last proposition motivates the following conjecture.
Conjecture. k (V;K)=k(V; K).

Indeed, if G is weakly k-admissible over ¥ with respect to ¢ one might
want to take for @ and f§ the evaluations of & and f§ at (4, ). Then condi-
tion (i) would also be satisfied and condition (ii) would almost always be
satisfied. Only the exceptional cases where {&(4, u), B(4, u)} = Fix g for
some g in G with &(g)=1 will pose a problem. But these conditions are
algebraic in (4, p) so the choice (a, )= (d(4, u), B(4, u)) will work for any
(4, p) in Q% but an algebraic variety. Thus the reverse inequality in
Proposition 1 is “almost” true.
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4. Exact FORMULAS

A close look at the proof of Proposition 1 shows that the only restriction
to be checked is that the number of equations is smaller than the number
of unknowns. Thus, if we are able to evaluate both quantities, we will get
a closed formula for k,(V; K). Such a formula is given by the following
theorem.

THEOREM 2. Let us put

k(V; K)=max {k: dg,, .., g,€G, ¢e(g;)# 1 and

k k
Y codim Fix g, <2 codim < () Fix g,)}.
i=1 i=1

Then k(V; K)=k(V; K).

Proof. Firstly, let us prove that the equations 1,4+ u,feFix g, for
1 €i<k are independent. More precisely let us suppose that the condition
ve Fix g, is given by the equations E;, for 1 <j<r,=codim Fix g,. If we
have any dependence relation 0=3, a,(4,E; + u, E;), the choice (4, u)=
(0, ..,0,1,0,..,0),0) will show that a,»j=0 for ]<]<r Thus all the
coefficients have to be zero and the equations A,a+ y;feFixg, are
independent; their number is 3%_, r,=3¥*_| codim Fix g,.

We now have to evaluate the number of unknowns allowed. Because of
condition (ii), the solutions & and § cannot lie in N*_, Fix g,. Thus the
number of unknowns allowed is less than or equal to 2(dim V—
dim N*_, Fix g;) =2 codim(N%_, Fix g;). Let us prove that the equality
holds. Let us suppose that there exists an element g in G such that
{a, ﬁ} Fix g. Since & and § are the he generic solutions of the system 2,& +
u, B e Fix g,, any equation defining Fix g will be a linear combination of the
equations E;. Again the same specialization of (4, ) as before shows that
any equation defining Fix g is a linear combination of the (Ei<jsrs
for any ie{l,..,k}. That is Fixg<()*_, Fixg, Thus, if the number
of unknowns allowed is greater than or equal to 2 codim(*_, Fix g,),
condition (ii) will always be satisfied. This completes the proof of the
theorem. ||

Let us now derive some interesting consequences from the formula given
in Theorem 2.

PrROPOSITION 2. k (V, @ V,; K)=max(k (V,; K), k.(V,: K)).
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Proof. Let us suppose that G is k-admissibie over V', @ V', with respect
to & Since V', and V, are fixed by G, we have

2 codim(Fix g, V, @ V,) =2 codim(Fix g| ,,,, V,) + 2 codim(Fix g| ., V'),

for any g in G. Thus the condition for V, @ V,

k k
2 codim( (\ Fix g, V, @ V2> > Y codim(Fix g;, V,®V,)

i=1 i=1

implies the same condition for V', or V,. This shows that max(k(V,; K),
ki(V,; K))=k. Hence we get the inequality max(k (V,; K), k,(V,; K)) =
k(V,®V,;K). Theorem | provides us the reverse inequality so the
proposition is proved. |

PROPOSITION 3. k.(G; K) does not depend on K; it will be denoted by
k(G).

Proof. 1t is enough to show that k (G K)=k/(G;Q). Let V be a
rational representation of G. Let V=V,® --- @V, be a decomposmon of
V into irreducible representations over K. Then k(V;Q)=k,(V;K)=
maxls,sjks( V., K)<k,(G;K). Hence k,(G;Q)<k,(G;K). Let us prove
now the reverse inequality. Similarly we have k(G; K) <k (G; K), where K
is an algebraic closure of K. Thus we may suppose without loss of
generality that K is algebraically closed. If V,, ..., ¥, denote the irreducible
representations of G over K we have k(G; K) =max, ., k.(V;; K). Now
the regular representation of G is rational and every V; (1 <i<h) appears
in it [10]. So we have

k(G Q) 2K (Vieg; Q) =k(Vieg; K) = max k(V;; K)=k,(G; K).

I1<igh

This completes the proof of Proposition 3. ||

Remarks. (1) The last proof shows that k,(G) = k(G;C) =
max; k (V;; C), where V, runs over all the irreducible complex representa-
tions of G. Since k,(¥;;C) may be determined in a finite number of
steps by using Theorem 2, k.(G) may be found after a finite number of
verifications.

(2) We also get from Proposition 3, k,(G) =k (G; Q) =k (Ve; Q).
So we may find the vectors & and f with integral coordinates.

Let us now apply these various properties to some particular groups.
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5. EXAMPLES AND IDENTITIES

Let us consider the dihedral group D, as the group of isometries of a
regular n-polygon. Let us take for ¢ the determinantal mapping, so that
e(g)=11if g is a rotation in D, and ¢(g)= —1 if g is a symmetry. Then we
have the following proposition.

_ ProposITION 4. We have k(D,; Q) = k(D,) =n for n<3 and
k(D=3 forn=3.

Proof. Let us suppose first that #>3. One can check (see, e.g.,
[9,p.37]1) that for any two-dimensional irreducible representation V
of D, we have codim Fixg=1 when ¢(g)= —1. Thus, if V' is weakly
k-admissible, we get the inequality k& <2 codim (*_, Fix g;<4. Then k<3
and k. (V;C)<3. Since n>>3, we can choose three distinct symmetries in
D,, so that N}_, Fixg,={0}. This shows that k[(V;C)>3. Hence
kD,)=3.

Let us study now the cases n=1, 2, 3.

(1) Forn=1, D,=S,. Let us take the regular representation of D,,
and let us PUt ({X, ﬂ) = ((,U], 0), (0’ ;l)) if ()“1’ H])?‘é (0’ 0) If ('il, /»‘1) =
(0,0), put («, )=1((1,0), (0,0)). Then we have 4,u+ u, feFix(12) and
{a, B} ¢ Fix(12), which shows that k. (V,,, Q)>1. Since k(D;)=1, we
have k.(D,; Q)=1.

(2) Formn=2, D,~8,x8,. Let us take the product of the regular
representations of S, and let us put (a, )= ((x,, ), (1, B,)), where
(2, B,) and (x,, B,) are obtained as in (1). This shows that k. (V; Q)= 2.
Since one can easily check that k.(D,) < 2, the announced result follows.

(3) For n=3, Dy~ S;. Let us take the natural three-dimensional
representation of S;. For any (4,, 4;, 43, 4, Uy, f3) in Q° let us put
(o, B)= (1 23, Ao, Ariaps), (Aihrps, Arpads, pyAyAs)), if
(Aypty — A (A iy — Ay WAty — A, 4,) #0. This last condition ensures
us that (a, B) ¢ Fix g, for any transposition g. It corresponds to the
equation of the algebraic variety described at the end of Section 3 and
means that the three vectors (4,, p,), (4;, #2), (A3, u3) are pairwise
independent, so that the conditions A,a + u;f € Fix g, are not redundant. If
this condition is not satisfied, replace (4, u)} by (4, 1’} such that the
condition is satisfied for (1, u') and the lines (4,, &,} C (1 <i<3) belong to
{(4}, #;) C: 1<i<3}; then compute the corresponding value for (o, f). For
instance (1, 2, 3, 0, 4, 6) may be replaced by (1, 2, 3, 0, 4, 1) without
loss of generality. This shows that k,(V; Q)= 3. By the first part of the
proposition we have & (V; Q)=k(D;)=3. |
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Let us see now how the notion of k-admissibility applies to get various
polynomial identities. Let G be a finite group and ¢ a non-trivial represen-
tation of G of dimension 1. Let us assume that ¢(G)={—1, +1}.

THEOREM 3. Let V be a finite dimensional rational representation of G
such that G is k-admissible over V with respect to ¢. Then there exist 2 |G|
polynomials of degree one in x with coefficients in Q\{0}, namely (f(x));cq
and (f(x)); e, Such that

Y ([ X)) —f(—x)* ) =Cx for some CeQ,

geG

Y (f()* P~ fi(—x)* ) =C'x  forsome C'eQ.

geCG

Proof. Let (e,, ..., e,) be a basis of V. Let us define a formal exponential
on V by

x x Od

d
e =x e x if a=Y we,.

i=1

Now let us choose (4, )= ((3, 2k—2), (5, 2k —4), .., (2k+1, 0)) e (Q?)~.
Then we are able to find («, f)e V? such that conditions (i) and (ii) of
k-admissibility are satisfied. For ge G, let us put f,(x)=¢(g) e® *x + €% #
and F(x)=3,./f,(x)**". The polynomial F(x)— F(—x) is odd, of
degree less than or equal to 2k + 1. Let us compute the coefficient S; of
23y x¥*+! for 1<i<k. We have

Sl’= Z (e(g)eg-a)ZH»l (eg<ﬁ)(2k+l)—(2i+1)= Z S(g)eg-(;l.at+;q/9)

geCG 2cG
= T s(gg)ef h i =g(g) T 5(g) et hrrud)
geCG g€ G
=&(g:) S,

Since &(g;) # 1, we deduce from this equality that S§;=0. Thus F(x)—
F(—x)=2(2k+ 1) §,x, as required. The second equality corresponds to
the choice (4, u)=((3, 2k — 1), (5, 2k —3), ..., (2k+ 1), 1)). It is interesting
to note that different specializations of the formal variables x; will lead to
different identities. Let us also remark that condition (ii) in the definition
of k-admissibility ensures us that the forms are distinct. ||

The proof of Theorem 3 provides an algorithm to construct identities
from a k-admissible group. Since Proposition 4 gives us k-admissibility
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results for dihedral groups, let us make explicit some identities we can
deduce from the proofs of Proposition 4 and Theorem 3.

(1) For n=1, let us consider G=D,=S5, and (4, ) =(3, 0). Let us
put a=e?% and b=¢'"?). Then we get the identity

(x+a)P+(—x+b)Y+(x—a)’+(—=x—»b)’=6(a®>—b?) x. (1)
Now if (4, u)=(3, 1), we obtain by putting a=¢'"% and b=¢"",
(ax + )+ (—=bx+a)* — (ax —b*) — (bx+ a®)* =8ab(b* —a®) x. (2)

This identity is due to Norrie [3].

(2) For n=2, let us consider G=D,=S5,xS, and (4 u)=
((3,5),(2,0)). We find «=(2,0,0,0) and f=(0,3,0,5). Let us put
a=e 1000 p=p@ 100 = 0050 and d=e'"%%% Then we get

(@*x 4+ b%d)’ + (—a’x + b’c)’ + (=b*x + a’d)’ + (b*x + a’c)®
+(a@’x —b*d) + (—a*x — bPc)’ + (—b*x— a’d)® + (b*x — a’c)®
=10a%b*(6'° — a'®)(d* — c*) x. (3)
Now if (4, u)=((3, 5), (3, 1)) we get by the same method Rao’s identity
(@c + bdx)® + (a°d — bex)® + (P°c — adx)® + (b°d + acx)®
—(@’c — bdx)® — (a’d + bex)® — (b + adx)® — (b°d — acx)®
= 12abcd(c* — d*)(a** — b*) x (4)

(3) For n=3, let us consider G=D,=.S, and (4, u)=((3, 4), (5, 2),
(7,0)). We find a«=(56,0,0) and =0, 42, 140). Putting a=e"*%,
b=e%19 and c=e®*'" leads to the identity

(@*x + b)Y + (b*x + a'c®) + (c*x + @b'°) + (a®x — bc'%)
+ (b*x —a'%*) + (c*x —a®b'%) + (—a'x + b'%3)
+(=b'x+a’c'y -|~(—c“x+a”’b3)7+(—a“x—b“’c3)7
+(—b%x— @) + (= c*x ~a'p?)’
=14(abc)* (¢’ —a") (b —a' ' = b)
x(@*+b"%+c% 44" +bc"+a'c7)x. (5)
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Now if (4 u)=1((3,5),(53),(7,1)) we get by the same method
Vaserstein’s identity

(u7vIO + uSwéy)S + (H7W'lo— uSUéy)S + (U7W’10 + vSu()y)8

(676" — 03wo)® 4 (WTul® + wSuSp)® + (wTpl® — wSuSy)®
(70" — uSwop)® — (W' + 1Sp6p)E — (8Tw'® — pSuSy)®
(0701 4 05w — (wTu'® — wSsSp)® — (wT0'® 4+ wudy)®
= 16(urw)® (w'® — u'%)(v'% — '0)(w'® — v'9)

x (0207 + 132w 4 03232 4 (ow)® (' + 0 + wi¢)) x.  (6)

+

One can also get non-trivial identities between k-powers by using the
following theorem.

THEOREM 4. In the notation of Theorem 3, there exist 2 |G| polynomials
of degree one in x with coefficients in Q\{0}, namely (f,(x));cc and
(fo(X))ge, such that

Y (fe)* T =f(—x)* 1) =0,

geCG

2 (Fx)* =f(—x)*)=0.

geC

Proof. The proof is essentially the same as the proof of Theorem 3. We
just have to make the new choices (4, u)=((1, 2k —2), .., (2k—1,0)) and

As before, let us make explicit the identities we can get from Proposi-
tion 4 and Theorem 4.

(1) Forn=1,
(x+a)+(—x+b)+(x—a)+(—x—b)=0, (1)
(ax + b)Y+ (bx—a)* = (ax — b)* + (bx + a)*. (29

(2) Forn=2,

(@®x +bd) + (—b*x+ad)® + (—a’*x + be)* + (b*x + ac)’

=(—a’x +bd)® + (b*x + ad)® + (a*x + bc)® + (— b*x + ac)?, 39
(aPcx + bd*Y + (@Pdx — b)) + (bPex — ad®)* + (BPdx + ac®)*

=(a’cx — bd?)* + (a’dx + bc®)* + (PPex + ad?)* + (bPdx — ac®)'.  (4)

641:45:1-8
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(3) Formn=3,
(a*x + bc®) + (b*x + ca®)® + (¢*x + ab®)® + (—a'x + cb®)®
+(—=b*x+ac®)’ + (—c*x + ba®y’
=(—a*x+ b + (=b*x + ca®)® + (—c*x + ab®)®
+ (ax + cb®)® + (b*x + ac®)’ + (¢*x + ba®)?, (5)
(@®hx + bc®)® + (b%cx + ca®)® + (c®ax + ab®)® + (—a®bx + cb®)®
+(—b%ax + ac®)® + (—chx + ba®)®
= (—a®hx + bc®)° + (—b%ex + ca®)® + (— cbax + ab®)®
+ (aScx + cb®)® + (bBax + ac®)® + (c®hx + ba®)®. 6)
Remarks. (1) The identity (1) is trivial. The specialization x = b/a in

(2') gives the well-known parametrization for Pythagorean triples (cf.
(6, p. 190])

(2ab)? + (b* —a*)* = (b* + a*)~

(2) The size of these identities seems to grow linearly with k. This
behavior follows from the fact that £,(D,; Q)=n for the lower values of n.
We will see in the next section that this does not hold anymore for larger
values of k.

6. OPTIMIZATION PROBLEMS

Let n be a positive integer. Let us put U,={zeC:z"=1} and
{,=exp(2in/n). We will define the integer g,(k) to be the smallest car-
dinality of a group G such that k., (G;Q)>k, for some ¢ satisfying
&(G)=U,. Then the number of polynomials in Theorems 3 and 4 will be at
least 2g,(k). Since the applications in number theory require short iden-
tities, we will try to minimize the g,(k)’s.

LEMMA 3. &k, . (G XGy; K) 2k, (G,; K)+k,(G,; K).

Proof. Let us assume that £ (G K)=k (V;K)=k, for i=1,2. If
(4, u) is any 2(k,+ k,)-tuple of scalars, we will consider the vectors
a=o,®a, and f=5,®p, in V=V, ®V,, where a, and B, are the
vectors in V¥, obtained by the k;-admissibility of G, with respect to ¢,.
Then o and f satisfy to the conditions (i) and (it), with the choice of
elements of G, xG, (g, x1, .., g, %1, 1xg/, .., 1xg},). This shows that
kooolVi®V,;K)2k, +k, and the lemma is proved. ||
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PROPOSITION 5. For any k, ne N*, we have:

(1) guk)=+0,
(2) guk)< +oc fornz?2,
(3) g.(k) is a multiple of n.

Proof. (1) If n=1, the character ¢ has to be trivial, which is
impossible by hypothesis. Thus no group satisfies the conditions defining
g.(k) and then g,(k)= + c.

(2) If n=2, let us consider the cyclic group C, of order » and the
character ¢, defined on C, by ¢,(i)={,. Let us prove that k_(C,; Q)=1.
Since C, is abelian, all its irreducible complex representations are one-
dimensional. Also, for ge C, with ¢,(g)# 1, we have codim Fix g=1 and,
by Theorem 2, k; (C,; C) <2. Using Propositions 1 and 3 we get

k. (Cp; @) <k, (C,; @)=k, (C,; €)=k, (C,;C)<S L.

Let us consider now any one-dimensional representation V of C,. Let us
define (a, f§) to be (—pu, ) if (4, u) #(0, 0) and (1, 0) if (4, u) =(0, 0). Then
(2, B) satisfies the requirements of 1l-admissibility, which shows that
k,(C,; Q)=1. Then we just have to apply Lemma 3 to get k, (CX; Q) =k
and the assertion follows.

(3) If&(G)=U,, there exists an element in G of order » and thus |G|
is a multiple of n. Then the definition of g,(k) implies the desired result. |

Remarks. (1) In the definition of g,(k), the condition &(G)= U, can
be replaced by the more convenient condition &(G) < U, to define a new
function g, (k). Since ¢(G)= U, for some positive integer d dividing n, we
have the formula

gn(k)= r;llig ga(k).

This implies that g, (k)=g,(k) when n is a prime.

(2) The preceding proofs show that g,(k)<|C%|=n* This upper
bound is fairly weak and we will try to improve it. However, when £ =1,
it gives the exact formula g,(1)=n, due to Proposition 5(3). Using the first
remark leads us to g,(1)=min{p prime: p divides n}.

Let us study the case n =2. We will then have g,(k) = g5(k) by Remark 1
and g,(k) even by Proposition 5.

THEOREM 5. (1) g5(1)=2, £:(2)=4, g,(3)=6, £:(4) = 12.
(2) g,(3k+r) <26~
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Proof. (1) The first equality is a special case of the general formula
g.(1)=n for n=2. Applying Lemma 3 gives g,(2)<2?=4. Thus g,(2)e
{2,4}. The only group of order 2 is §,, with only one non-trivial character
¢, for which k,(S,; Q)= 1 by Proposition 4. This shows that g,(2)=4.

Applying again Proposition 4 gives us the upper bound g,(3)<6 and
thus g(3)e {4,6}. When |G|=4, there are at most two elements in G
whose character value is — 1; since the g;’s occurring in the definition of the
k-admissibility are distinct we will have k(G)<2 for any {—1, +1}-
valued character ¢ defined on G. This shows that g,(3) =6. Using Lemma 3
and the same arguments as before, we have g,(4)e {8, 10, 12}. Moreover
we have the inequality

k(D,; Q)<k(D,;Q)=3,

for ne {4,5} and for any character ¢ on D,, by a proof similar to that
of Proposition 4. Computing also the k,(G) for any Ge {Cy, C, x C,,
C,x Cyx Cy, H,, Cyo} and for any character 6: G — { —1, +1} shows that
g2.(4)=12.

(2) Using Lemma 3 and Proposition 4 we get
kc‘f@s;(sg X S;’ @) = 3k +r.

Since |S%x S| =276, the second part of the theorem follows. I

The upper bound given in (2) is fairly weak and should be easily
improved for larger values of k. It would also be interesting to get lower
bounds for g, (k).

7. APPLICATIONS TO THE EASIER WARING’S PROBLEM OVER ALGEBRAS OF
ZERO CHARACTERISTIC

Let o/ be an algebra of zero characteristicc. For ke N* one defines
[12, 13] the function v, (.%/) to be the least integer s for which the equation
x=+x¥+ ... + x* has always a solution (x,, .., x,) for any x in /. When
& = Q, the function v,(Q) coincides with the function p{k) introduced by
Chowla and Cowles [2].

Vaserstein [13] uses solutions to the Tarry-Escott problem to bound
v (). If there exists rational integers (ay, ..., a,, by, .., b,) such that

Y a'=Y b" for O<h<k—2 and Y a*"'#£Y b5, (T)
i=1

i=1 i=1 i=1
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we have an identity defined for any x in ./

Y ((x+a)—(x+b))=cx+d, with c#0.

i=1

Replacing x by x/c — d will show that v, (/)< 2s. Wright [14] has defined
T(k) as the smallest number s such that (T) has a solution. Bastien [1]
proved that T(k)>=k — | and one conjectures that the equality holds. The
best upper bound has been found by Hua [7] and behaves as k?logk
when k goes to infinity.

We can use Theorem 3 to sharpen some of these upper bounds for
vi{«/). Indeed if C and C’' are non-zero, we will get the inequality
vi(o#) <2 |G|. Thus we have almost surely the upper bound v, , (&)<
2g,(k), for i=1,2. For instance the identities (1)-(6) lead to the upper
bounds v;(o) <4, vu(H)<4, vi(F)<E, ve(HF)<8, vi(HF)<12,
ve(#) < 12. This improves the upper bounds given by the Tarry-Escott
approach when k € {4, 6, 8}. This was already noticed by Vaserstein [13]
for k =6 (Rao’s identity) and k& =8 (Vaserstein’s identity).

The identities we used involve a large number of parameters.
However, some specializations may improve the theoretical upper bound
2g,(k). For instance we can get this way v,o(o/)<20<24=2g,(4).
Indeed the equation associated to S, x.S; by Lemma 3 and Proposition 4
is

Fla, b, u,v,w; x)— Fla, b,u, v, w; —x)=C(a, b, u, v, w) x,
where

Fla, b, u, v, w; x) = (av®w?' + bu’v?x)'° + (aw’u®' + bv®w?x)'°
+ (awPv® + bwi?x)'0 + (brPw?! — au’vx)'0
+ (bwu? — av®w?x)'° + (buPv? — aw®u’x)'°
+ (aw?v? — bu’wx)"" + (au*w?' — bv°u’x)"°
+ (av*u®' — bwv?x)'0 + (bw?v? + au’w?x)'°
+ (b1Pw? + av’u®x)'° + (b03uP' + aw®vx)'°

and

C(a, b, u, v, w) = 20ab(uvw)® (a® — b®)

% (UZOWISO + w20u180 + uZOUIBO _ U20u180 _ WZOUISO _ MZOWISO).
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If we want to have av’w?! + bu’v’x = bw’u?' + av’w?x, we have to choose
w=uvt’, u=vot*, a=bt*, for some t. Setting b=wv =1, factorizing out r°°,
and replacing x by xr* leads to

G(;x)—G(t;, —x)=C'(1) x,
where

G(t; x) — (t114+x)10+ (t33 + t29X)10+ (t54_ ’60x)10+ (13_ t59x)10
+ (t30__ t36x)10+ ([96-— ZZY)IO'{' (t105 _ tle)IO

+ (1 + f66X)|0+ ([66+ t32x)]0+ (175 + t51x)10
and

C/(t)= 20[66(1240— 1)(t180_ 1)(t160— 1)(t380+ t200+ {20_ 1— 1160— 1320).

In this case, the upper bound v,,(&/)<20 is weaker than the upper
bound 18 provided by solutions to the Tarry-Escott problem. However, we
believe it can be useful to try to simplify general identities by specializing
the parameters.

8. APPLICATIONS TO THE EASIER WARING’S PROBLEM OVER Z

Let us put v(k)=v,(Z). The only known values of the function v(k) are
v(1)=1 and v(2)=3 (cf. [6, p. 327]) and v(4)e {9, 10} [8]. Updated
bounds may be found in [13] for larger values of k. The best general upper
bound is furnished by the trivial inequality v(k) < G(k)+ 1 and asymptotic
estimates of G(k). However, when k is small, the elementary method given
by Fuchs and Wright [5] gives the best results. This method consists of find-
ing an identity of the form Cx = X + f;(x)* to reduce the problem modulo C;
then we just have to apply the results in [4] to find an upper bound for v(k).
For instance (cf. [6,p.327]), we have the identities 6x=(x+1)*+
(x=1)2=2x* and 6x+3=x*-(x—4)’+(2x—5) - (2x—4)° and we
know that, modulo 3, any residue class is a cube; thus v(3)<4+1=>35.

Applying this method with identities (1)-(6) leads to the following upper
bounds:

v(3)<8, v(4)<12, w5)<13, w6)<14, v(7)<16, v(8)<28.

The identity involving G(¢; x) at the end of Section 7 also gives v(10) < 32.
The best upper bounds found so far for v(k), k=3, 4, 5, 6, 7, 8, 10 are 5,
10, 10, 14, 14, 28, 30, respectively. The only cases where this approach gives
better results than the Tarry-Escott problem are k=6 (due to Rao’s
identity) and k£ =8 (due to Vaserstein’s identity). We believe also that the
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asymptotic bound for v(k) cannot be improved this way. It is interesting
to note that, in some sense, Rao and Vaserstein's identities were the only
identities that can apply usefully to the easier Waring problem over Z.

9. THE FuncTioN (k)

Chowla and Cowles [2] defined the function 8(k) to be the least integer
s for which the equation + x¥+ ... + x¥*=0 has a non-trivial solution.
They showed that 8(k) < 2k, by proving the existence of a non-trivial solu-
tion to the equation x\ + --- + x{=y{+ --- + y;. They also improved this
general upper bound when k=9 by proving that 6(9) < 17. Fermat’s last
theorem would imply that 6{k)> 3 for k> 3. Euler conjectured that the
equation y*=x*+ ... + x¥ always has a non-trivial solution over the
integers. Euler’s conjecture would imply that 8(k) <k + 1. However, even
the case k=6 is still not proved; on the other hand better results are
known when k=45 Elkies [4] found solutions to the equation
A*+ B*4+ C*=D* and Frye found the smallest solution (A4, B, C,D)=
(95800, 217519, 414560, 422481); this shows that 6(4)=4. Lander and
Parkin [9] found the identity 27°+84°+110°+ 133°=144°, which
implies that 8(5)e {4, 5}.

The method used by Chowla and Cowles to prove 8(9) < 17 consists in
finding an identity of the form Cx=2X+f,(x)*, in which they put
x=C*"'y*. When we apply this method with the identities (1)-(6), we find
some new formulas such as

(6(a* — b*))’ = (36(a® — b*)* + a)’ + (36(a* ~ b*)* —a)’®
+(—36(a’ —b)* +b)’ +(—36(a> —b7)* — b)*.
From this we deduce that
0(3)<5, 6(4)<5, 0(5)<9, 0(6)<9, 6(7)<13, 6(8)<13.

The last three results improve the previous bounds quoted. Let us remark
that solutions to the Tarry—Escott problem would lead to the inequality
08(k) <2k —1; in particular the bounds 6(6)<9 and 6(8)< 13 cannot be
reached.

Another method consists in considering identities of the form
0 =2+ f,(x)* and taking x to be a zero of some f;(x). For instance, putting
x =bd/a* in (3') gives

(2a%bd)? + (= b*d + a*d)® + (—a*bd + a’bc)® + (b*d + a’c)?
= (b*d + a*d)* + (a’bd + a’bc)® + (—b*d + a’c)>.
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From (2')-(5") we deduce that
0(2)<3, 8(3)<7, 0(4)<7, 6(5)<11, 6(6)<I1L

These bounds are weaker than the ones we obtained first. This is due to the
fact that go(k +1)> g,(k) + 1, for the values of & we considered.

10. PROBLEMS AND POSSIBLE EXTENSIONS

In Section 3, we conjectured that k(V; K)=k,(V; K). If this is true, it
would make k,(G; K) much easier to compute, using Theorem 2 and
character tables. An exact formula for k,(G; @) would be of special interest.

More specifically, one could try to calculate k,(G; Q) for special cases.
For instance one could try to generalize Proposition 4 to any Coxeter
group, the character ¢ being the signature.

Section 6 provides only partial results on the function g,(k). It would
be interesting to investigate the asymptotic behavior of this function for
large k.

All the applications to number theory we gave in Sections 7, 8, and 9 are
consequences of the case e(G)<= {—1, +1}, ie, n=2. Larger values of n
would also give significant results in other rings than Z. For instance the
case n=4 would provide information about the ring of Gaussian integers.

One can also try to generalize the k-admissibility notion in the following
way. First comnsider the scalars (4, .., 44, #,, .., #t) as the coefficients
of a kx2 matrix. Then one can define a notion of (%, /)-admissibility by
considering any k x/ matrix. It would imply the existence of / vectors
&, ..., & such that:

(i) A, 0,+ --- +4,2,€ Fix g, for some g, with &(g;) #1;
(ii) For any geG, {a,,..,a,} cFixg=¢(g)=1.

Most of the propositions and theorems given here would extend. It would
also imply number-theoretic identities by using the /-multinomial theorem
instead of the binomial theorem. However, the size of these identities would
grow too fast to be useful. One could recover at most some of the results
obtained in the /=2 case. For instance we can obtain the identity

(6a*x? + 6ab’x — b'°) + (—6a*x* + 6ab’x + b'°)?
+ (—6b°x% + 6ba’x + a'®)’ + ((6b°x* — 6ba’x — a'®)?
=T2ab(b** — a**) x,

and get again the inequality 8(3) <5.
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By duality one can also define a k-admissibility notion for compact
groups. In this case we obtain identities involving integrals over the group
with respect to the Haar measure (instead of sums over the finite groups).
These identities are proven the same way by using Fubini’s theorem.
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