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An Adult Passive Transfer Mouse Model to Study
Desmoglein 3 Signaling in Pemphigus Vulgaris

Katja Schulze', Arnaud Galichet'?, Beyza S. Sayar'~?, Anthea Scothern®, Denise Howald'~?,
Hillard Zymann', Myriam Siffert'?, Denise Zenhiusern®, Reinhard Bolli®, Peter J. Koch?,
David Garrod®>®, Maja M. Suter'* and Eliane J. Miiller'?

Evidence has accumulated that changes in intracellular signaling downstream of desmoglein 3 (Dsg3) may have
a significant role in epithelial blistering in the autoimmune disease pemphigus vulgaris (PV). Currently, most
studies on PV involve passive transfer of pathogenic antibodies into neonatal mice that have not finalized
epidermal morphogenesis, and do not permit analysis of mature hair follicles (HFs) and stem cell niches.
To investigate Dsg3 antibody-induced signaling in the adult epidermis at defined stages of the HF cycle, we
developed a model with passive transfer of AK23 (a mouse monoclonal pathogenic anti-Dsg3 antibody) into
adult 8-week-old C57BI/6) mice. Validated using histopathological and molecular methods, we found that this
model faithfully recapitulates major features described in PV patients and PV models. Two hours after AK23
transfer, we observed widening of intercellular spaces between desmosomes and EGFR activation, followed by
increased Myc expression and epidermal hyperproliferation, desmosomal Dsg3 depletion, and predominant
blistering in HFs and oral mucosa. These data confirm that the adult passive transfer mouse model is ideally
suited for detailed studies of Dsg3 antibody-mediated signaling in adult skin, providing the basis for

investigations on novel keratinocyte-specific therapeutic strategies.
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INTRODUCTION

Pemphigus vulgaris (PV) is a severe autoimmune blistering
disease characterized by suprabasal blisters in skin and
mucous membranes (Stanley and Amagai, 2006). On
average, 90% of PV patients exhibit autoantibodies against
desmoglein 3 (Dsg3; Ishii et al., 1997; Amagai et al., 1999a),
an intercellular adhesion molecule and component of
desmosomes (Garrod et al., 2002). Although the pathogenic
mechanism leading to blister formation is not well under-
stood, intracellular signaling has been found to be both
involved and necessary in this process. A new paradigm was
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therefore brought forward that Dsg3 and other possible
molecular targets in PV govern outside-in signaling (Miiller
et al., 2008; Getsios et al., 2010).

Over a decade ago, Kitajima and collaborators reported on
PV IgG-induced signaling events such as the rapid activation
of protein kinase C and phospholipase C (Esaki et al., 1995;
Osada et al., 1997). More recently, lack of responsiveness
to PV IgG in keratinocytes deleted for the adhesion and
signaling molecule plakoglobin (PG) underscored the neces-
sity of a signaling response in PV (Caldelari et al., 2001;
de Bruin et al., 2007). To date, passive transfer of PV 1gG into
neonatal mice, in combination with chemical inhibitors, has
confirmed a number of signaling effectors contributing to PV
pathophysiology, including EGFR, Myc, p38, phospholipase
C/protein kinase C, and Src (Sanchez-Carpintero et al., 2004;
Berkowitz et al., 2006; Williamson et al., 2006; Chernyavsky
et al., 2007; Pretel et al., 2009). These observations suggest
that inhibition of specific signaling molecules represents a
potent therapeutic strategy in PV (Getsios et al., 2010).

Myc expression is critical for normal skin homeostasis, in
which overexpression in combination with stem cell deple-
tion can lead to epidermal hyperproliferation, hair loss,
and spontaneous wounds (Watt et al., 2008). Human PV
patients exhibit increased Myc expression and hyperproli-
feration in epidermis and hair follicles (HFs; Williamson
et al., 2006), the sites of Dsg3 expression in human skin
(Hanakawa et al., 2004). Moreover, they suffer from increased
hair loss (Koch et al, 1998; personal communication
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Dr Michael Hertl, University of Marburg, Marburg,
Germany). Hair loss due to blisters in the resting (telogen)
HF are predominant features of Rag2—/— mice after adoptive
transfer of Dsg3—/— splenocytes or AK23 hybridoma cells
(producing a pathogenic Dsg3-specific mouse antibody), as
well as of Dsg3-null mice (Koch et al., 1998; Amagai et al.,
2000; Tsunoda et al, 2003). Because of these striking
observations, it is of interest to address the consequences of
disrupted Dsg3 function in HFs and epidermal stem cell
niches in PV.

Currently, neonatal mice are the model system to test
PV antibody pathogenicity in vivo (Anhalt et al., 1982).
However, the morphogenesis of murine epidermis and its
appendages including HFs is not finalized until postnatal day
15 (Schneider et al, 2009). Furthermore, after adoptive
transfer, adult Rag2—/— mice typically develop blisters over a
prolonged incubation time, precluding defined time-course
studies on antibody-triggered primary signaling events
(Amagai et al., 2000; Tsunoda et al., 2003). Hence, the goal
of this study was to establish a mouse model for prospective
studies on Dsg3-antibody-initiated signaling in adult skin at
defined stages of the HF cycle.

Here we validate the passive transfer of the pathogenic
monospecific Dsg3 antibody AK23 into 8-week-old C57BI/6)
mice (which are in the prolonged synchronized telogen HF
stage) by focusing on major ultrastructural, biochemical, and
signaling parameters observed in PV patients, neonatal mice,
human tissue models, and cultured keratinocytes. Our data
reveal that this adult mouse model recapitulates major
findings in PV, and demonstrate that passive transfer into
adult mice represents an ideal tool both to study Dsg3
signaling in adult skin, including HFs and stem cell niches,
and to test novel therapeutic strategies in PV.

RESULTS

AK23- and AK23/PF-induced changes in neonatal mice

To validate the response of AK23-injected adult mice against
the neonatal model, we first tested whether neonatal mice
treated with AK23 recapitulate previous findings obtained
with PV IgG (containing Dsg1 antibodies), such as EGFR,
p38, and c-Myc activation (Berkowitz et al., 2006; William-
son et al., 2006; Pretel et al., 2009). AK23 was injected alone,
and as a control, with a half-pathogenic dose of pemphigus
foliaceus (PF) patients’ 1gG (containing Dsgl antibodies;
AK23/PF; Mahoney et al., 1999).

In agreement with our former results (Williamson et al.,
2006), only AK23/PF-injected neonatal mice exhibited epider-
mal lesions after 24 hours, whereas AK23/PF- and AK23-
treated animals showed PV-like lesions in the lip and the hard
palate (data not shown). Independently of PF IgG, proliferation
was increased in epidermis of all AK23-treated mice as
quantified on non-lesional skin sections labeled for the
proliferation marker Ki67 (Figure 1a). Back skin protein extracts
further revealed significant EGFR activation in AK23/PF- and
AK23-treated mice (Figure 1b and c). Phosphorylation sites
previously addressed in PV were investigated (Heupel et al.,
2009; Pretel et al.,, 2009). In AK23/PF-treated animals, we
observed increased phosphorylation of Tyr845, a Src kinase
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substrate, and its phosphorylation was reported to result in
receptor activation and mitogenesis in fibroblasts and human
breast cancer cells (Ishizawar and Parsons, 2004; Figure 1b).
Phosphorylation of Tyr992 and, to a minor extent, Tyr1173
was also increased. P-Tyr992 is a high-affinity binding site for
phospholipase Cy and has been involved in mitogen-activated
protein kinase signaling (Morandell et al., 2008). P-Tyr1173
has been linked to phosphatidylinositol-3 kinase/Akt signaling,
which results in stabilization of factors such as c-Myc,
and further triggers EGFR de-phosphorylation and silencing
(Segrelles et al., 2006, Morandell et al., 2008). In AK23-treated
animals, EGFR steady-state protein levels were reduced,
suggesting receptor activation and internalization (Sorkin and
Goh, 2009), consistent with a significant increase in EGFR
phosphorylation on Tyr1173. Phosphorylation of Tyr845 and
Tyr992 was not significantly increased at this time point.

In contrast to a previous report (Berkowitz et al., 2006),
phosphorylation of p38 was not enhanced in AK23/PF- or
AK23-treated neonatal skin at 24 hours, but c-Myc steady-
state levels were significantly increased (Figure 1b and c). In
non-junctional (Triton X-100 soluble) lysates, Dsg3 together
with PG was increased in AK23/PF-treated animals and Dsg3
in AK23-treated animals (Figure 1d and e). In contrast, Dsg3
was markedly depleted from desmosomal (Triton X-100
insoluble) extracts in all AK23-treated mice, whereas other
components such as desmocollin3 (Dsc3), Dsg1/2, and
desmoplakin remained unchanged.

Consistent with findings in PV patients and PV IgG-
injected neonatal mice (Williamson et al., 2006, 2007a, b;
Shu et al, 2007; Pretel et al., 2009), AK23 induced
hyperproliferation in neonatal mice, which correlated with
EGFR activation and c-Myc overexpression, as well as
depletion of Dsg3 from desmosomes. Interestingly, AK23-
induced molecular changes were largely similar with or
without additional PF IgG, identifying injections with AK23
alone as a suitable test system to address the feasibility of
adult mice for prospective studies on Dsg3 antibody-
mediated signaling.

AK23-injected 8-week-old mice predominantly develop lesions
in telogen HFs and oral mucosa

AK23-induced changes were then addressed in adult 8-week-
old C57BI/6) mice. After 24hours, widespread PV-like
blisters were observed in all AK23-treated animals in areas
of mechanical stress, such as the hard palate, the esophagus,
and the lip/snout skin (Figure 2a and b). Blisters were further
present in the stem cell niche of the telogen HF known as the
bulge, between the inner layer and the outer root sheath
(Figure 2¢) as reported for Dsg3-null mice (Koch et al., 1998).
At 24 hours, 75% of the follicles were affected, rising to 80%
after 48 hours (Figure 2d). Macroscopically, this correlated
with loosely anchored hair revealed by tape stripping (Figure
2e). In contrast, spontaneous clinical blisters rarely formed on
back skin, in spite of evenly bound AK23 antibody in the
basal cell layer (Figure 2a and b). However, widening of
intercellular spaces, the earliest sign of loosening of inter-
cellular contacts, was occasionally observed. Indicative
of reduced food intake due to blisters in the oral cavity,
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Figure 1. AK23/PF 1gG- and AK23-treated neonatal mice show hyperproliferation, EGFR activation, c-Myc upregulation, and depletion of Dsg3 from
desmosomes. (a) Shown are micrographs of immunofluorescence microscopy for Ki67 and graph of total Ki67+ cells in basal keratinocytes counted on
micrographs of biopsies from neonatal mice injected with AK23 or control migG, with or without a half-maximal dose of PF IgG as indicated. More than 1,000
cells per animal were counted. Bar =25 pm. (b, ¢) Graphs depict average quantitative results of immunoblots from indicated proteins in Triton X-100-soluble
fractions at 24 hours. Signals on each blot were quantified, normalized to tubulin, and plotted relative to migG set as 1. (d, e) Immunoblots and graphs of
indicated proteins from Triton X-100-soluble and -insoluble fractions. Lanes indicate different animals. Blots were normalized to tubulin (soluble fractions, upper
panel) or lamin B1 (insoluble fractions, lower panel; shown is lamin B1 of blots probed for (d) Dsg3/Dsc3/PG/Pph1, (e) Dsg3/Dsg1/2/PG). Data are mean £ SEM
(n(mlIgG/PF; mlgG) =4 and n(AK23/PF; AK23)=5 animals); *P<0.05 and **P<0.01. AK23, mouse monoclonal pathogenic anti-Dsg3 antibody;

DP, desmoplakin; Dsc, desmocollin; Dsg, desmoglein; migG, mouse I1gG; PF, pemphigus foliaceus; PG, plakoglobin; Pph1, plakophilin.
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Figure 2. AK23-treated 8-week-old C57BI/6) mice exhibit typical PV lesions and epidermal hyperproliferation. (a) Blister sites and number of affected/tested
animals are summarized. (b) H&E-stained paraffin sections of indicated tissues show lesions, and direct immunofluorescence (dIF) microscopy depicts AK23
binding to basal epidermal keratinocytes. Inserts show lesions (arrowheads) in esophagus and snout skin and a rare lesion in the epidermis. (c) Histology and
(d) percentage of HF blisters (insert, arrowhead) in AK23-treated animals. Data are mean £ SDM. HF analyzed (n(24 hours) = 115; n(48 hours) = 455).

(e) Hair loss by tape stripping. (f) Representative flow cytometry blots for FSC and BrdU-labeled viable cells gated for BrdU-positive cells, and graph of average
results. Data are mean £ SDM. (n=2 animals per group; two experiments), *P<0.05. (g) Representative flow cytometry histogram for BrdU-labeled cells
and graph of average results. Data are mean + SDM. (n=4 animals per group). **P<0.01. (h) Immunofluorescence microscopy depicting the distribution

of BrdU-positive and Ki67-positive cells in epidermis (inserts: close up of epidermis). Bars =50 um or as indicated. AK23, mouse monoclonal pathogenic
anti-Dsg3 antibody; Esoph., esophagus; FSC, forward scatter; H&E, hematoxylin and eosin; HF, hair follicle; max., maximum; mlgG, mouse 1gG;

PV, pemphigus vulgaris.

AK23-treated mice exhibited weight loss and were killed by BrdU incorporation and Ki67 staining. Using flow
at 48 hours. cytometry, 35% more BrdU-positive cells were measured in

Eight-week-old Rag2—/— mice responded similarly to AK23 ~ AK23-treated mice as compared with control animals
than C57BI/6) mice, establishing that blister formation in 24 hours after a single BrdU injection (Figure 2f), and 60%
response to AK23 does not involve a B- and T-cell-mediated more BrdU-positive cells were measured at 48hours

immune response (Supplementary Figure S1 online). after four consecutive BrdU injections (Figure 2g). Immuno-
fluorescence microscopy visually confirmed increased
AK23 induces hyperproliferation in 8-week-old mice BrdU incorporation and more numerous Ki67-positive

Proliferation in the epidermis of 8-week-old AK23- or cells in the basal layer of the epidermis and in HFs
mouse 1gG (mlgG)-injected C57BI/6) mice was assessed  (Figure 2h).
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Taken together, these results recapitulate the hyperproli-
feration in neonatal mice (shown here) and PV patients’
epidermis (Williamson et al., 2006).

AK23-treated 8-week-old mice exhibit EGFR activation, Myc
upregulation, and increased non-junctional Dsg3

We then addressed the status of EGFR, p38, and Myc in
Triton X-100-soluble protein fractions from back skin of
8-week-old C57BI/6) mice, together with Dsg3, E-cadherin,
and PG protein levels. Compatible with receptor activation
(Sorkin and Goh, 2009), EGFR steady-state levels were
already reduced 2 hours after AK23 injection, and the relative
levels of mitotically active p-Tyr845 EGFR were on average
increased by 2-fold (Figure 3a). Furthermore, phosphorylation
of Tyr992 was weakly detectable in two animals out of four
(but not measurable; data not shown) and Tyr1173 was
unchanged. At 48 hours, phosphorylation of Tyr845 was no
longer detectable, whereas that of Tyr1173 had increased in
2/2 C57Bl/6) mice and 4/4 mice of a different genetic
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EGFR phosphorylation correlated at 2 hours with an increase
in cyclin D1, expressed in actively dividing cells, and at
48 hours with increased c-Myc and N-Myc but not L-Myc
(Figure 3b). The latter changes were not yet seen at 24 hours
(data not shown). At 48 hours, a tendency toward increased
phosphorylation of p38 was observed. In the same lysates,
80% more non-junctional Dsg3 protein was measured at
2 hours in AK23-treated animals, which then returned to base
levels (Figure 3c). No changes were observed for E-cadherin
and PG.

On the mRNA steady-state level, c-Myc was significantly
decreased at 2 hours in AK23-treated mice, whereas N-Myc
and cyclin D1 were increased (Figure 3d). N-Myc then
continued to increase up to 24 hours, together with increased
expression of L-Myc and cyclin D2. Except for N-and L-Myc,
mMRNA expression levels were back to normal at 48 hours.

In summary, between adult and neonatal AK23-injected
mice, the molecular changes were largely similar, including
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Figure 3. EGFR is activated and Myc, cyclin D, and Dsg3 protein steady-state levels are significantly increased in Triton X-100-soluble fractions of AK23-
treated 8-week-old C57BI/6) mice. (a) Immunoblots and graphs of average quantitative results are shown for indicated proteins at 24 and 48 hours. Signals were
quantified, normalized to tubulin on each blot, and plotted relative to mIgG set as 1 (n(2 hours) =4 animals per group; n(48 hours, migG) =4, n(48 hours,
AK23)=2). (b) Graphs as in a, n(2 hours) =4 animals per group, n(48 hours, mlgG) =8 animals, n(48 hours, AK23) =6 animals). (c) Similar to a, n(2 hours) =4
animals per group, n(48 hours, migG) =8 animals, n(48 hours, AK23) =6 animals. (a-c) Data are mean £ SEM. **P<0.01 and *P<0.05. (d) Graphs show
indicated mRNA steady-state levels obtained by quantitative RT-PCR. Values were normalized to cyclophilin and are plotted relative to migG set as 1
(n(2/24 hours) =4 animals per group, n(48 hours, migG) =8, n(48 hours, AK23) =7 animals). Data are mean = SEM. AK23, mouse monoclonal pathogenic
anti-Dsg3 antibody; Dsg3, desmoglein 3; migG, mouse IgG; PG, plakoglobin; RT-PCR, reverse transcriptase PCR.

Journal of Investigative Dermatology (2012), Volume 132



an increase in soluble Dsg3, potentially stemming from
desmosome remodeling (Aoyama et al., 2010). Furthermore,
in adult mice, changes in mRNA preceded or coincided with
changes in corresponding proteins, indicating de novo
synthesis. The decrease in c-Myc mRNA might suggest a
negative feedback loop involving an enhanced turnover rate
following early transcriptional activation (Dai and Lu, 2008).

Dsg3 depletion from desmosomes is characteristic for
AK23-treated 8-week-old mice

Desmosomal proteins were quantified in Triton X-100-
insoluble fractions of 8-week-old C57Bl/6) mouse skin.
Steady-state levels of junctional Dsg3 started to decrease at
24 hours, and were reduced to roughly 30% at 48 hours in all
AK23-injected animals, whereas Dsc3 levels were largely
unchanged (Figure 4). Dsg1/2 was not affected at 24 hours
but significantly reduced at 48 hours, concomitant with a
tendency toward a decrease in plaque proteins plakophilin
and desmoplakin but not PG. On average, no significant
differences in keratin expression were measured between
treated and untreated animals. However, three out of
four AK23-injected animals exhibited decreased keratin
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15 expression, whereas keratin 14 levels were above that of
the control in two out of four AK23-treated animals at
48hours, both features of hyperproliferative epidermis
(Werner and Munz, 2000).

Comparative immunofluorescence analyses performed on
skin biopsies 24 and 48 hours after AK23 injection revealed
no major changes in the expression pattern of epidermal
markers, except for a reduction in Dsg1/2 and keratin 15
(Supplementary Figure S3 online, shows 48hours). De-
creased Dsgl1/2 is a consistent feature of PV patients and
PV antibody-challenged human organotypic and mouse
keratinocyte cultures (Williamson et al., 2006; van der Wier
et al., 2010).

AK23 induces a rapid interdesmosomal membrane detachment
To further correlate the AK23-induced signal activation to
changes in desmosomal ultrastructure in 8-week-old C57Bl/
6) mice, we performed electron microscopy. Two hours after
AK23 injection, antibodies were already bound to the
surface of basal keratinocytes, no blisters were observed by
routine histology in the epidermis and HF, and only a small
blister was present in the hard palate in one out of eight
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Figure 4. Dsg3 is depleted from desmosomes in AK23-treated 8-week-old C57BI/6) mice. Imnmunoblot of the Triton X-100-insoluble fractions are shown
for indicated proteins. Numbered lanes correspond to four different animals per group. Each blot was normalized with respect to lamin B1 (shown is the
blot probed for Dsg3/K15 at 24 hours and for PG, K15/Pph1 at 48 hours). Signals were quantified, normalized, and are plotted relative to mlIgG set as 1.
Data are mean * SEM (n(24 hours) =4 animals per group; n(48 hours) =4 animals per group), *P<0.05. AK23, mouse monoclonal pathogenic

anti-Dsg3 antibody; DP, desmoplakin; Dsc, desmocollin; Dsg, desmoglein; K(1,14,15), keratin (1,14,15); migG, mouse IgG; PG, plakoglobin; Pph1, plakophilin.
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AK23-treated animals (Figure 5a). In spite of an intact
epidermis, electron microscopy of the same animals showed
basal keratinocytes that were still joined by desmosomes, but
most exhibited widening of interdesmosomal spaces (Figure
5b). By 48 hours, microscopic tissue damage largely confined
to basal cells indicated skin fragility.

a migG

AK23

Epidermis

Basal
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DISCUSSION

This study describes an adult passive transfer model of
8-week-old C57Bl/6) mice injected with the monospecific
pathogenic Dsg3 antibody AK23 (Tsunoda et al., 2003). We
demonstrate that this mouse model reproduces molecular
events observed in AK23-injected neonatal mice, as well as
major features reported in PV.

Histopathologically, PV patients with Dsg3 antibodies (the
mucosal dominant phenotype) develop oral blisters with rare
clinical lesions in skin (Amagai et al., 1999b) and occasional
blisters in HFs. Hair loss is a characteristic clinical feature
of PV patients, but telogen HF blisters may be overlooked
because, unlike in mice, the telogen phase is short
and human hair grows asynchronously (Koch et al., 1998;
Dr Michael Hertl). In line with other adult PV mouse models
using adoptive transfer (Amagai et al., 2000; Tsunoda et al.,
2003), passive transfer of AK23 into adult mice mimics these
clinical features (Figure 2a).

Our observations are also consistent with previous in vivo
and in vitro reports on Dsg3 depletion from desmosomes in
PV (Aoyama and Kitajima, 1999; Calkins et al., 2006;
Williamson et al., 2006; Shu et al., 2007; Yamamoto et al.,
2007; Mao et al.,, 2009), which are also seen in AK23-
injected neonatal mice shown here. In the adult mouse
model, a visible Dsg3 loss commenced at 24 hours without
affecting other proteins. It was preceded by a transient
increase in Triton X-100-soluble Dsg3, also observed in
neonatal mice. This is compatible with the recent suggestion
that PV IgG/Dsg3 immune complexes are rapidly excluded
from desmosomes internalized and degraded without initially
affecting other components such as desmoplakin (Aoyama
et al, 2010). Internalization and degradation of non-
junctional Dsg3 is also in line with previous studies on
cultured mouse and human keratinocytes (Aoyama and
Kitajima, 1999; Calkins et al., 2006; Williamson et al., 2006;
Yamamoto et al., 2007). Our lysis conditions do not allow us to
discriminate between surface-exposed and internalized
non-junctional Dsg3. Internalization can therefore not be
excluded and is indirectly supported by the early widening
of interdesmosomal spaces, also described previously
in PV IgG-injected neonatal mice (Takahashi et al., 1985).
This suggests that after AK23 injection, non-junctional Dsg3
molecules (and presumably other adhesion molecules) are no
longer available for transadhesion outside of desmosomes.
The increase in non-junctional Dsg3 returned to normal after
48 hours, indicative of degradation.

«

Figure 5. AK23 causes widening of the intercellular spaces after 2 hours
and microblisters after 48 hours in basal keratinocytes of AK23-treated
8-week-old C57BI/6) mice. (a) Histology (upper panel) and direct
immunofluorescence (dIF) analyses (lower panel) at 2 hours in samples
processed for electron microscopy. Only one animal out of eight showed a
microblister in the hard palate (insert) but not in the epidermis. Arrows
indicate AK23 binding. Bar =25 pum. (b) Electron microscopical pictures at
2 and 48 hours. Tissue damage is seen in basal cells but not in suprabasal cells
or controls (n(2/48 hours) =2 animals per group). Scale bars: as indicated.
AK23, mouse monoclonal pathogenic anti-Dsg3 antibody; Dsg, desmoglein;
mlgG, mouse I1gG; SC, stratum corneum; *, widened intercellular spaces.



Consistent with numerous reports on PV IgG-treated kerati-
nocytes, desmosome function was affected in the epidermis
of adult mice at around 48hours; the loss of additional
desmosomal proteins such as Dsg1/2 and DP correlated with
epidermal fragility in basal keratinocytes as underscored by
microlesions and tissue damage. In line with the compensa-
tion hypothesis (Mahoney et al, 1999), AK23-induced
microlesions however rarely evolved into clinical blisters
(Figure 2a), except in the presence of PF IgG, as seen in
neonatal mice. In view of the similar activation of signaling
molecules in AK23/PF- and AK23-treated mice at the time
point analyzed, it appears that blister formation could be
determined by either the length and strength of the signal or
by complementary PF IgG-induced signaling. These possibi-
lities can now be pursued further in comparison with the
initial signals involved in desmosome remodeling in skin and
adult HFs under defined pathological conditions. Together,
these observations reveal that AK23 triggers a stepwise signal-
driven mechanism that results in Nikolsky-positive skin with
weakened desmosomes.

In addition to desmosomal proteins, we also investigated
signaling molecules reported in PV to validate the adult
mouse model for analyses on AK23-mediated signal induc-
tion. A recent study has suggested that p38 activation
correlates with Dsc3 endocytosis and clinical blisters (Mao
et al., 2011). We did not observe a decrease in Dsc3
following AK23 treatment of adult or neonatal mice, and p38
showed only a tendency to be hyperphosphorylated at
48 hours. This may support the conclusion by the authors
that p38 is not involved in mechanisms leading to Nikolsky-
positive skin but contributes to clinical lesions. Alternatively,
because PF IgG-injected neonatal mice showed a biphasic
p38 activation scheme (Lee et al., 2009), it can currently not
be excluded that p38 activation occurred outside the time
points investigated here.

Compatible with EGFR activation, we also observed
increased proliferation, upregulation of cyclin as well as
Myc isoforms in adult and neonatal mice. Although little is
known about N-Myc and L-Myc in epidermis, balanced N-
Myc expression was found to be essential for HF develop-
ment and regeneration (Mill et al.,, 2005). Furthermore,
hyperproliferation and increased Myc/c-Myc have been
associated with PV pathology and disease progression
(Williamson et al., 2006, 2007a). As previously shown,
transcriptional activation of c-Myc resulted from PV IgG-
mediated nuclear depletion of its repressor PG. Intriguingly,
at 2 hours, we observed a decrease in c-Myc steady-state
mRNA, whereas c-Myc protein was increased at 48 hours.
This might indicate a negative feedback loop involving
enhanced c-Myc turnover in response to transcriptional
activation (Dai and Lu, 2008), followed by stabilization of
c-Myc protein, for example, through EGFR-mediated phos-
phatidylinositol-3 kinase/Akt activation (Segrelles et al.,
2006). Indeed, hyperproliferation and Myc overexpression
correlated with EGFR phosphorylation of Tyr845 (pro-
mitogenic) and Tyr1173 (phosphatidylinositol-3 kinase/
Akt activation), respectively, which is consistent with EGFR
activation reported in PV IgG-treated neonatal mice and
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various epidermoid cell types (Chernyavsky et al., 2005;
Frusic-Zlotkin et al., 2006; Pretel et al., 2009). Our current
result on late phosphorylation of EGFR on Tyr1173 could
further explain why this event was not observed in human
keratinocytes 1hour after treatment with PV IgG (Heupel
et al., 2009).

In summary, AK23 injection in this adult mouse model
induced early molecular changes and widening of inter-
cellular spaces in basal keratinocytes, followed by a stepwise
series of changes in intracellular signaling and adhesion
molecules reported in PV. Therefore, the adult passive
transfer mouse model described here represents a valuable
test system to further unravel the initial Dsg3 antibody-
induced molecular changes in epidermis, HF, and stem cell
niches of adult skin, and holds great promise as a test system
for the validation of novel therapeutic indications in PV.

MATERIALS AND METHODS

Mice and passive transfer

Seven- to eight-week-old C57BI/6) or B6. 12956-Rag2"™"™N12
(Taconic, Ry, Denmark) mice received a single subcutaneous
injection of 12 pgg™" body weight AK23 (a kind gift from Dr
Masayuki Amagai, Tokyo; (Tsunoda et al., 2003)) or normal
mlgG (Equitech-Bio, Kerrville, TX) at the back as defined in a
dose-response study ranging from 5pg and 2.5mgg~" body
weight AK23. Neonatal C57BI/6) mice received 90pgg™
body weight AK23/mlgG with or without 1.5 mg PF IgG as
described previously (Williamson et al., 2006). Experiments
were approved by the ethics committee, Canton Bern,
Switzerland (26/08).

BrdU incorporation

Mice received 50 pg per g body weight BrdU (Sigma, Buchs,
Switzerland; B5002) once intraperitoneally at the time point
of AK23/mlgG injection and were killed at 24 hours, or
alternatively received four times 50 pg per g body weight in
12-hour intervals before being killed at 48 hours.

Cell isolation and flow cytometry

Epidermis was incubated in Trypsin-EDTA/phosphate-
buffered saline (PBS; 0.2%/0.08%; Amimed, Allschwil,
Switzerland) for 2 hours at 32°C, and keratinocytes were
scraped off and dissociated in DMEM/10% fetal calf serum on
a magnetic stirrer for 20 minutes. Cells were consecutively
filtered through a 70-um and 40-um cell strainer (BD,
Allschwil, Switzerland), washed with CnT-02 (CELLnTEC,
Bern, Switzerland), and stained with the LIVE/DEAD Fixable
Dead Cell Stain Kit BLUE (Invitrogen, Zug, Switzerland). The
FITC BrdU Flow Kit was used (BD) following the manufac-
turer’s protocol. Cells were gated for single cells and viability
using a BD LSR I (BD), and 50,000 cells were analyzed using
the FlowJo 7.5 (Tree Star, Ashland, OR).

Immunofluorescence microscopy

Routine histology, BrdU and Ki67 detections were done on
paraffin-embedded biopsies. Heat-mediated antigen retrieval
was performed for 3 x 5minutes, using a microwave, in
0.01 m sodium citrate buffer, pH 6.0. Sections were blocked
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with 5% NGS, 4% BSA in PBS™ (containing 0.2 mm CaCl,),
incubated with BrdU (Clone BU1/75, Abcam, Luzern,
Switzerland) or Ki67 (SP6, Rocklin, CA) antibodies in PBS ™
containing 2% BSA, 2.5% NGS, 0.2% Triton X-100 at 4 °C
overnight, followed by treatment with anti-rabbit/rat 1gG
Alexa Fluor 488 or 594 (Invitrogen).

For direct immunofluorescence, frozen sections were
prepared from OCT-embedded tissues (Tissue Tek, Sakura
Torrance, CA). Sections of 8 um were fixed for 10 minutes
in 4% paraformaldehyde at room temperature, washed
with PBS* followed by 20 mm glycine in PBS™, and blocked
in PBS™ containing 2.5% NGS, 1% BSA, 2% gelatine, and
0.1% Triton X-100 for 1hour at room temperature before
incubation with anti-migG Alexa Fluor 488 for 1 hour at room
temperature.

Protein extraction and western blot analyses

Mouse back skin was minced in lysis buffer (100 mm Tris HCI,
pH 7.4, 150 mm NaCl, 1% Triton X-100, 10 mm NaF, 10 mm
B-glycerophosphate, 10mm Na3VO,, 1mm PMSF, and
complete protease inhibitor EDTA-free (Roche, Rotkreuz,
Switzerland)) using a Polytron PT 1600E (Kinematica, Luzern,
Switzerland). Lysates were incubated for 30 minutes on ice,
and Triton X-100-soluble and -insoluble fractions were
obtained after 10minutes centrifugation at 12,000r.p.m.
and 4°C. Insoluble fractions (pellet) were solubilized with
8m urea, 1% SDS, 10% glycerol, 60 mm Tris, pH 6.8, 5%
B-mercaptoethanol, and 1mm phenylmethanesulfonylfluo-
ride. Equal amounts of total protein were subjected to SDS-
PAGE and transferred onto nitrocellulose or polyvinylidene
difluoride (for EGFR) membranes. Signals were quantified
using Odyssey (LICOR, Bad Homberg, Germany). Antibodies
used are listed in Supplementary Methods online.

Quantitative reverse transcriptase PCR

Total RNA was extracted from mouse back skin using
the RNeasy Fibrous Tissue kit (Qiagen, Hombrechtikon,
Switzerland) according to the manufacturer’s instructions and
processed as described previously (Kolly et al., 2005).
Primers are described in Supplementary Methods online.

Electron microscopy

For cryopreservation, back skin samples were processed by a
modified version of the Tokuyasu method (Peters et al., 2006)
as previously described (Scothern and Garrod, 2008).

Statistical analyses

Statistical analyses were performed using NCSS (Kaysville,
UT). Significant differences between two groups were defined
using the Student’s t-test with P<<0.05.
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