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The effects of local Lorentz violation on dispersion and birefringence of gravitational waves are 
investigated. The covariant dispersion relation for gravitational waves involving gauge-invariant Lorentz-
violating operators of arbitrary mass dimension is constructed. The chirp signal from the gravitational-
wave event GW150914 is used to place numerous first constraints on gravitational Lorentz violation.
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The recent discovery of gravitational waves [1], a century af-
ter their prediction by Einstein [2], opens the door to a new 
class of experimental tests of General Relativity (GR). While GR 
is an impressively successful classical field theory of gravity, in-
corporating a consistent description of quantum effects is widely 
expected to involve changes to its underlying principles. An essen-
tial foundation of GR is the Einstein equivalence principle, which 
combines the requirements of local Lorentz invariance with lo-
cal position invariance and the weak equivalence principle. In this 
work, we demonstrate that the observation of gravitational waves 
from coalescing black holes at cosmological distances presents an 
opportunity for clean tests of local Lorentz invariance in the pure-
gravity sector. We use the chirp data from the gravitational-wave 
event GW150914 to place first constraints on certain types of local 
Lorentz violation involving the gravitational field.

Experimental studies of local Lorentz invariance, which in-
cludes symmetry under local rotations and boosts, have enjoyed 
a resurgence in popularity in recent decades [3,4], triggered by 
the demonstration that minuscule Lorentz violation could naturally 
emerge in quantum-gravity theories such as strings [5]. A gen-
eral and model-independent approach to describing the effects 
of Lorentz violation in quantum gravity is provided by effective 
field theory [6]. Studying specific models offers an alternative ap-
proach [7]. We are interested in the model-independent action for 
pure gravity, which is formed as the sum of the usual Einstein–
Hilbert action with cosmological constant together with all pos-
sible terms involving operators formed from gravitational fields. 
This theory is a piece of the general effective field theory for grav-
ity and matter, the gravitational Standard-Model Extension (SME). 
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A Lorentz-violating term in the action is an observer-independent 
quantity [6] containing a Lorentz-violating operator contracted 
with a coefficient governing the size of its effects. Using natural 
units, each operator can be assigned a mass dimension d, and the 
associated coefficient then has mass dimension 4 − d. Under the 
plausible assumption that Lorentz violation is suppressed by pow-
ers of the Planck mass, which is the natural mass scale associated 
with the Newton gravitational coupling, operators of higher d can 
be expected to induce smaller effects.

Observational [8–15] and analytical [16–23] investigations using 
this pure-gravity effective field theory have largely concentrated 
on minimal Lorentz-violating operators, which have dimension 
d = 4. Theoretical aspects of nonminimal operators with dimen-
sions d = 5, 6 have been studied [24], and constraints on some 
nonrelativistic combinations of operators with d = 6 have been 
obtained via laboratory tests of short-range gravity [25–27]. The 
tightest constraints to date on local Lorentz violation in the grav-
ity sector have been deduced from the absence of gravitational 
Čerenkov radiation by cosmic rays [31–37] with a large class of 
effects for d = 4, 6, and 8 now being excluded at sharp levels [36]. 
Reviews can be found, for example, in Refs. [3,4,28–30]. Here, we 
construct the general quadratic Lagrange density for gravitational 
waves in the presence of Lorentz-violating operators of arbitrary d, 
and we extract the covariant dispersion relation involving gauge-
invariant effects. We show that observations of gravitational waves 
provide sensitivities to nonminimal Lorentz violation independent 
of matter-sector effects, and we use the gravitational-wave event 
GW150914 to place numerous first limits on gravity-sector opera-
tors with d ≥ 5.

The effective field theory for gravitational Lorentz violation [6]
can be linearized in a flat-spacetime background with Minkowski 
metric, gμν = ημν + hμν . Our first goal is to construct the general 
 under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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Table 1
Contributions K̂(d)μνρσ to the gauge-invariant part of the theory (1).

Operator K̂(d)μνρσ Tableau CPT d Number

s(d)μρ◦νσ◦◦d−4
μ ν · · ·
ρ σ
◦ ◦

even even, ≥ 4 (d − 3)(d − 2)(d + 1)

q(d)μρ◦ν◦σ◦◦d−5
μ ν σ · · ·
ρ ◦ ◦
◦

odd odd, ≥ 5 5
2 (d − 4)(d − 1)(d + 1)

k(d)μ◦ν◦ρ◦σ◦◦d−6
μ ν ρ σ · · ·
◦ ◦ ◦ ◦

even even, ≥ 6 5
2 (d − 5)d(d + 1)
Lagrange density quadratic in the dimensionless metric perturba-
tion hμν , allowing for both Lorentz-invariant and Lorentz-violating 
terms. A generic term of this type takes the form

LK(d) = 1
4 hμνK̂(d)μνρσ hρσ , (1)

where

K̂(d)μνρσ = K(d)μνρσε1ε2...εd−2∂ε1∂ε2 . . . ∂εd−2

≡ K(d)μνρσ◦d−2
(2)

is an operator of mass dimension d ≥ 2 and the coefficients 
K(d)μνρσε1ε2...εd−2 have mass dimension 4 − d and are assumed 
both small and constant over the scales relevant here. In this equa-
tion, we have introduced a convenient notation by which indices 
contracted into a derivative are denoted with a circle index ◦, and 
n-fold contractions are denoted as ◦n . The Lorentz-invariant pieces 
of the expression (2) consist of complete traces of the coefficients 
K(d)μνρσε1ε2...εd−2 . Varying the action reveals that only operators 
satisfying the condition K̂(d)(μν)(ρσ ) ± K̂(d)(ρσ )(μν) �= 0 can con-
tribute to the equations of motion, where the upper sign is for 
even d and lower one for odd d.

To construct explicitly the operators K̂(d)μνρσ , we perform a 
decomposition into irreducible pieces and examine the proper-
ties of each. This reveals that 14 independent classes of operators 
can control the behavior of gravitational waves. However, many 
violate the usual gauge symmetry of GR under the transforma-
tion hμν → hμν + ∂μξν + ∂νξμ . Performing this transformation 
on the term (2) shows that the condition for gauge invariance is (
K̂(d)(μν)(ρσ ) ± K̂(d)(ρσ )(μν)

)
∂ν = 0. Only three of the 14 classes of 

irreducible operators obey this condition, and they are therefore 
of particular interest. Their existence can be understood as follow-
ing from spontaneous breaking of the diffeomorphism and Lorentz 
invariance [38], which hides symmetry rather than explicitly vio-
lating it and is therefore automatically compatible with the Bianchi 
identities [6]. The gauge invariance maintains the standard count-
ing of degrees of freedom in hμν , insuring that the three classes of 
operators induce perturbative modifications to the two usual prop-
agating modes in a gravitational wave. Note that in principle the 
higher derivatives occurring in the term (2) introduce additional 
modes, but these are nonperturbative in Lorentz violation and oc-
cur only at high energies outside the domain of validity of the 
effective field theory [39].

The three classes of gauge-invariant operators are determined 
by their symmetries, which can be determined via standard meth-
ods in group theory [40] and are specified by the Young tableaux 
shown in Table 1. It is convenient to denote these operators by 
the three specific symbols shown in the first column of the ta-
ble, instead of the generic form K̂(d)μνρσ . The CPT handedness of 
the corresponding terms in the quadratic Lagrange density is given 
in the third column. The operators exist only in the dimensions 
listed in the fourth column of the table. The number of indepen-
dent components of each is displayed in the fifth column of the 
table. In what follows, it is also useful to define quantities that are 
the sums over d of each of these sets of operators,

ŝμρνσ =
∑

d

s(d)μρ◦νσ◦d−3
, q̂μρνσ =

∑
d

q(d)μρ◦ν◦σ◦d−4
,

k̂μνρσ =
∑

d

k(d)μ◦ν◦ρ◦σ◦d−5
. (3)

The operator q̂μρνσ is antisymmetric in the first pair of indices and 
symmetric in the second, while the operator ŝμρνσ is antisymmet-
ric in both the first and second pairs of indices, and k̂μνρσ is totally 
symmetric. Any contraction of these operators with a derivative 
vanishes.

The complete gauge-invariant quadratic Lagrange density, in-
cluding all Lorentz-violating and Lorentz-invariant terms of arbi-
trary mass dimension d, then takes the form

L = L0 + 1
4 hμν(ŝμρνσ + q̂μρνσ + k̂μνρσ )hρσ ,

L0 = 1
4εμρακενσβληκλhμν∂α∂βhρσ , (4)

where L0 is the quadratic approximation to the Einstein–Hilbert 
action. The symmetries of L0 involving the double Levi-Civita ten-
sor show that this term is a subset of the d = 4 component of 
ŝμρνσ . We remark in passing that the introduction of a dual op-
erator via ŝμρνσ = −εμρακεανσβλ ŝκλ∂α∂β reveals that ŝμρνσ con-
tributes as a momentum-dependent metric perturbation, ηκλ →
ηκλ − ŝκλ . The effects of ŝκλ on gravitational Čerenkov radiation 
are the subject of Ref. [36].

Following methods developed for the study of Lorentz invari-
ance in the photon sector of the SME [39], the covariant dispersion 
relation for propagation of a gravitational wave of 4-momentum 
pμ = (ω, p) can be derived from the Lagrange density (4). Some 
algebra reveals that the leading-order dispersion relation for the 
relevant two perturbative modes takes the form

ω =
(

1 − ς0 ±
√

(ς1)2 + (ς2)2 + (ς3)2
)
|p|, (5)

with

ς0 = 1
4p2

(
− ŝμν

μν + 1
2 k̂μν

μν

)
,

(ς1)2 + (ς2)2 = 1
8p4

(
k̂μνρσ k̂μνρσ − k̂μρ

νρ k̂μσ
νσ

+ 1
8 k̂μν

μν k̂ρσ
ρσ

)
,

(ς3)2 = 1
16p4

(
− 1

2 q̂μρνσ q̂μρνσ − q̂μνρσ q̂μρνσ

+ (
q̂μρν

ρ + q̂νρμ
ρ

)
q̂μσν

σ
)
, (6)

where now the derivative factors ∂μ in the coefficients (3) are un-
derstood to be replaced by their 4-momentum equivalent, ∂μ →
ipμ . The observer covariance of the dispersion relation is manifest 
in the complete index contractions in this equation.
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The structure of the dispersion relation (5) indicates that 
Lorentz-violating modifications to the propagation of gravitational 
waves can be classified in terms of anisotropy, dispersion, and bire-
fringence. Anisotropy is a consequence of the breaking of rotation 
symmetry, and in a specified observer frame it is controlled by co-
efficients for Lorentz violation with spatial indices. All three classes 
of gauge-invariant operators can produce anisotropic effects. Dis-
persion arises when the speed of the gravitational wave depends 
on its frequency. Since every coefficient for Lorentz violation with 
d > 4 is associated with powers of momenta in the dispersion 
relation, only coefficients with d = 4 produce dispersion-free prop-
agation. These are all contained in ŝμρνσ . Finally, the separation of 
polarization modes evident in the dispersion relation through the 
two branches of the square root implies that birefringence of grav-
itational waves can be caused only by the operators q̂μρνσ and 
k̂μρνσ and hence only for d > 4.

A gravitational wave traveling along p̂ and detected by a lab-
oratory in the vicinity of the Earth appears to emanate from a 
source located in the direction of the unit radial vector n̂ = −p̂
in spherical polar coordinates centered on the Earth. For example, 
the most likely location of the source of the gravitational-wave 
event GW150914 is a region of about ∼ 600 square degrees in 
the southern hemisphere around declination −70◦ and right as-
cension 8 hr [41], so that n̂ has spherical polar angles θ 	 160◦ , 
φ 	 120◦ in the Sun-centered celestial–equatorial frame canoni-
cally used to report results of searches for Lorentz violation [42]. 
For practical applications, it is therefore useful to perform a de-
composition of the dispersion relation (5) in spherical harmonics. 
Since the metric perturbation hμν has helicity-2 components, and 
since the Lagrange density (4) is quadratic in hμν , the decom-
position involves spin-weighted spherical harmonics [43] of spin 
weight |s| ≤ 4, which we denote as s Y jm(n̂). A summary of the 
properties of these harmonics can be found in Appendix A of 
Ref. [39]. Note in particular that 0Y jm(n̂) ≡ Y jm(n̂), the usual scalar 
spherical harmonics.

Investigation shows that ς0, ς3 are rotation scalars while ς1, 
ς2 are helicity-4 tensors. The decomposition then can be written 
as

ς0 =
∑
djm

ωd−4 Y jm(n̂)k(d)
(I) jm,

ς1 ∓ iς2 =
∑
djm

ωd−4 ±4Y jm(n̂)
(
k(d)
(E) jm ± ik(d)

(B) jm

)
,

ς3 =
∑
djm

ωd−4 Y jm(n̂)k(d)
(V ) jm, (7)

where |s| ≤ j ≤ d − 2. The CPT-odd operators in the Lagrange den-
sity are controlled by the coefficients k(d)

(V ) jm . The dimension d ≥ 4

is even for the spherical coefficients k(d)
(I) jm for Lorentz violation, 

while d ≥ 5 is odd for k(d)
(V ) jm and d ≥ 6 is even for k(d)

(E) jm and 
k(d)
(B) jm . The number of independent components for each of k(d)

(I) jm

and k(d)
(V ) jm is (d −1)2, and the number for each of k(d)

(E) jm and k(d)
(B) jm

is (d −1)2 −16. In the language of spherical coefficients, anisotropic 
effects are governed by all coefficients with j �= 0, dispersion man-
ifests for all coefficients except k(4)

(I) jm , while birefringence occurs 
for all coefficients except k(d)

(I) jm . We remark in passing that this im-
plies birefringence for even d can occur only for nonminimal oper-
ators, d ≥ 6, unlike the case of Lorentz violation in the pure-photon 
sector for which minimal d = 4 birefringent operators exist [44].

Armed with the above tools, we can use the gravitational-wave 
event GW150914 to test local Lorentz invariance in gravity. Since 
operators with larger d are expected to be more suppressed, it 
might seem natural to study first effects involving the coefficients 
k(4)
(I) jm . However, the corresponding operators are nondispersive 

and nonbirefringent, so detecting their effects is more challeng-
ing and typically would require a comparison to light or neutrinos 
propagating from the same source [36,45]. Instead, we consider 
in turn the d = 5 coefficients k(5)

(V ) jm and the d = 6 coefficients

k(6)
(E) jm , k(6)

(B) jm . Since polarimetric information for GW150914 and 
its source is unavailable, we focus here on dispersive effects.

Consider first the generic situation involving a source produc-
ing gravitational waves, such as the merger and ringdown of a 
black-hole binary. We can reasonably assume the observed wave is 
generated in a superposition of the two propagating modes. For ex-
ample, the eigenmodes in the presence of d = 5 Lorentz violation 
are circularly polarized, so special physical circumstances would 
be required for a source to produce only one eigenmode. Note 
that this assumption is independent of possible Lorentz-violating 
modifications to the black-hole structure or merger itself. The dis-
persion between the two modes evinced in the dispersion rela-
tion (5) can be used to constrain Lorentz violation by comparing 
their arrival times. The difference in their velocities generically de-
pends on both the frequency ω of the wave and the location n̂
of its source. Both the source and the detector can be taken as 
comoving objects. The coordinate interval between them is there-
fore dlc = (1 + z)dlp = −vzdz/Hz , where vz is the velocity of the 
source at redshift z, and Hz = H0(�rζ

4 + �mζ 3 + �kζ
2 + ��)1/2, 

ζ ≡ 1 + z, is the Hubble expansion rate at z expressed in terms 
of the Hubble constant H0 	 67.3 km/s/Mpc, radiation density 
�r 	 0, matter density �m 	 0.315, vacuum density �� 	 0.685, 
and curvature density �k = 1 − �r − �m − �� . Although the co-
ordinate distance is identical for both modes, their velocities and 
hence their travel times differ in the presence of Lorentz violation. 
For example, the arrival-time difference between the two modes 
for coefficients k(d)

(V ) jm with fixed d is given by

�t ≈ 2ωd−4

z∫

0

(1 + z)d−4

Hz
dz

∑
jm

Y jm(n̂)k(d)
(V ) jm. (8)

For GW150914, the linear combinations of k(5)
(V ) jm or k(6)

(E) jm , 
k(6)
(B) jm appearing in the corresponding expression for �t are de-

termined by spin-weighted spherical harmonics with approximate 
angular arguments θ 	 160◦ , φ 	 120◦ in the Sun-centered frame. 
The source is located at redshift z = 0.09+0.03

−0.04 [1]. At the max-
imum amplitude of the observed chirp signal, the width of the 
peak is approximately 0.003 s and no indication of splitting is 
evident. We can therefore reasonably take �t ∼< 0.003 s. The fre-
quency f = ω/2π of the chirp spans the range 35–250 Hz [1], and 
we can adopt a conservative value of f 	 100 Hz.

With the above values, we obtain the constraints∣∣∣∑
jm

Y jm(θ,φ)k(5)
(V ) jm

∣∣∣ ∼< 2 × 10−14 m, (9)

∣∣∣∑
jm

±4Y jm(θ,φ)
(
k(6)
(E) jm ± ik(6)

(B) jm

)∣∣∣ ∼< 8 × 10−9 m2. (10)

The result (9) represents the first constraint on pure-gravity 
Lorentz-violating operators with d = 5. It also represents the first 
limit on CPT violation in gravitational waves, which here corre-
sponds to a difference in propagation speed between the two 
circularly polarized CPT-conjugate eigenmodes. Note that sensitiv-
ity to d = 5 effects is empirically unavailable in the nonrelativistic 
limit and hence to typical laboratory experiments on Newton grav-
ity, because the presence of d = 5 Lorentz-violating operators in 
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Table 2
Constraints on coefficients for Lorentz violation.

d j Coefficient Constraint

5 0 |k(5)
(V )00| < 6 × 10−14 m

5 1 |k(5)
(V )10| < 4 × 10−14 m

|k(5)
(V )11| < 1 × 10−13 m

5 2 |k(5)
(V )20| < 3 × 10−14 m

|k(5)
(V )21| < 7 × 10−14 m

|k(5)
(V )22| < 4 × 10−13 m

5 3 |k(5)
(V )30| < 3 × 10−14 m

|k(5)
(V )31| < 4 × 10−14 m

|k(5)
(V )32| < 2 × 10−13 m

|k(5)
(V )33| < 1 × 10−12 m

6 4 |k(6)
(E)40|, |k(6)

(B)40| < 1 × 10−6 m2

|k(6)
(E)41|, |k(6)

(B)41| < 3 × 10−7 m2

|k(6)
(E)42|, |k(6)

(B)42| < 6 × 10−8 m2

|k(6)
(E)43|, |k(6)

(B)43| < 2 × 10−8 m2

|k(6)
(E)44|, |k(6)

(B)44| < 1 × 10−8 m2

the action leaves unaffected Newton’s law [24]. This fact under-
scores the added value of the discovery of gravitational waves in 
the context of studies of the foundations of relativistic gravity. The 
result (10) represents the first bound on all birefringent coeffi-
cients at d = 6 and is competitive with existing laboratory bounds 
[25–27].

Some insight into the implications of these bounds can be 
gained by deriving from them the constraint on each individual co-
efficient in turn, under the assumption that the other components 
vanish. The resulting estimated bounds on the modulus of each 
component of k(5)

(V ) jm , k(6)
(E) jm , and k(6)

(B) jm obtained for θ 	 160◦ , 
φ 	 120◦ are displayed in Table 2. Note that each entry thereby 
also represents constraints on the moduli of the real and imaginary 
parts of each component. This standard practice [3] is useful in 
comparing limits across different experiments and in constraining 
specific models. For example, models with rotation-invariant gravi-
tational Lorentz violation [46,47] can involve at most the spherical 
coefficients k(d)

(I) jm and k(d)
(V ) jm with jm = 00, for which it is con-

venient to define k̊(d)
(I) ≡ k(d)

(I)00/
√

4π and k̊(d)
(V ) ≡ k(d)

(V )00/
√

4π . The 
rotation-invariant limit of the dispersion relation (5) then takes the 
form

ω = (
1 − k̊(4)

(I)

)|p| ± k̊(5)
(V )ω

2

− k̊(6)
(I)ω

3 ± k̊(7)
(V )ω

4 − k̊(8)
(I)ω

5 ± . . . , (11)

and the first row of Table 2 constrains k̊(5)
(V ) . Note that the ± signs 

reflect the presence of birefringence and CPT violation for even 
powers of ω, and they are required to describe physics associated 
with an effective field theory [48]. Also, the isotropic frequency-
independent change in the speed of gravitational waves is gov-
erned by k̊(4)

(I) , which is related by s(4)
00 ≡ −2k(4)

(I)00 = −√
16π k̊(4)

(I)

to the coefficient s(4)
00 constrained in Ref. [36].

In principle, methods related to the one adopted here could 
be used to obtain estimated constraints on other coefficients with 
d > 5, which are all associated with dispersive operators. The ap-

proach used above can be applied directly to k(d)
(E) jm , k(d)

(B) jm , and 
k(d)
(V ) jm , as these always control birefringent operators. For exam-

ple, it yields the approximate bounds |k(7) m| < 1 × 10−2 m3. In 

(V ) j ∼
contrast, no birefringence occurs for k(d)
(I) jm , so a dispersive analy-

sis for this type of Lorentz violation requires a somewhat different 
approach. One option might be to reverse-propagate the observed 
signal to the source while allowing for the presence of frequency-
dependent Lorentz violation, comparing the result to waveform 
templates for black-hole coalescence to extract constraints. The 
resulting limits on the coefficients k(d)

(I) jm for d = 6, 8 would be sig-
nificantly weaker than ones already deduced from the absence of 
gravitational Čerenkov radiation in cosmic rays [36]. Related tech-
niques are applicable to searches for a graviton mass and other 
nonbirefringent physics [49]. Note that dispersion limits of the 
type discussed here are particularly clean because they involve 
comparing the properties of two gravitational modes and hence lie 
entirely within the pure-gravity sector, whereas bounds from grav-
itational Čerenkov radiation involve comparative tests between the 
gravity and matter sectors. Indeed, gravitational Čerenkov radiation 
may even be forbidden for certain relative sizes of the coefficients 
for Lorentz violation for gravity and matter, which would obviate 
any bounds obtained via this technique. We also note in passing 
that the results in Ref. [36] are presented as limits on components 
of ŝμν

μν , but the analysis in fact bounds ς0 and hence k(d)
(I) jm , 

which contains pieces of both ŝμν
μν and k̂μν

μν .
In summary, this work uses the recent event GW150914 to con-

strain dispersive and birefringent effects associated with Lorentz 
violation in gravitational waves. The future detection of additional 
gravitational-wave events will yield direct improvements on the 
limits obtained in this work. Moreover, the use of dispersion in-
formation from multiple astrophysical sources at different sky lo-
cations permits extraction of independent constraints on different 
coefficients, as has already been demonstrated for nonminimal co-
efficients in the photon and neutrino sectors of the SME [50,51]. 
Improved sensitivities can also be expected for gravitational waves 
of higher frequency, as might be emitted in a supernova core 
collapse. The prospects are evidently bright for future studies of 
foundational physical principles via measurements of gravitational-
wave properties.
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