brought to you by .. CORE

View metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

Physics Letters B 757 (2016) 510-514

Contents lists available at ScienceDirect
PHYSICS LETTERS B

Physics Letters B

www.elsevier.com/locate/physletb

Testing local Lorentz invariance with gravitational waves

@ CrossMark

V. Alan Kostelecky **, Matthew Mewes "

@ Physics Department, Indiana University, Bloomington, IN 47405, USA
b physics Department, California Polytechnic State University, San Luis Obispo, CA 93407, USA

ARTICLE INFO ABSTRACT

Article history:
Received 4 April 2016
Accepted 18 April 2016

The effects of local Lorentz violation on dispersion and birefringence of gravitational waves are
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The recent discovery of gravitational waves [1], a century af-
ter their prediction by Einstein [2], opens the door to a new
class of experimental tests of General Relativity (GR). While GR
is an impressively successful classical field theory of gravity, in-
corporating a consistent description of quantum effects is widely
expected to involve changes to its underlying principles. An essen-
tial foundation of GR is the Einstein equivalence principle, which
combines the requirements of local Lorentz invariance with lo-
cal position invariance and the weak equivalence principle. In this
work, we demonstrate that the observation of gravitational waves
from coalescing black holes at cosmological distances presents an
opportunity for clean tests of local Lorentz invariance in the pure-
gravity sector. We use the chirp data from the gravitational-wave
event GW150914 to place first constraints on certain types of local
Lorentz violation involving the gravitational field.

Experimental studies of local Lorentz invariance, which in-
cludes symmetry under local rotations and boosts, have enjoyed
a resurgence in popularity in recent decades [3,4], triggered by
the demonstration that minuscule Lorentz violation could naturally
emerge in quantum-gravity theories such as strings [5]. A gen-
eral and model-independent approach to describing the effects
of Lorentz violation in quantum gravity is provided by effective
field theory [6]. Studying specific models offers an alternative ap-
proach [7]. We are interested in the model-independent action for
pure gravity, which is formed as the sum of the usual Einstein-
Hilbert action with cosmological constant together with all pos-
sible terms involving operators formed from gravitational fields.
This theory is a piece of the general effective field theory for grav-
ity and matter, the gravitational Standard-Model Extension (SME).
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A Lorentz-violating term in the action is an observer-independent
quantity [6] containing a Lorentz-violating operator contracted
with a coefficient governing the size of its effects. Using natural
units, each operator can be assigned a mass dimension d, and the
associated coefficient then has mass dimension 4 — d. Under the
plausible assumption that Lorentz violation is suppressed by pow-
ers of the Planck mass, which is the natural mass scale associated
with the Newton gravitational coupling, operators of higher d can
be expected to induce smaller effects.

Observational [8-15] and analytical [16-23] investigations using
this pure-gravity effective field theory have largely concentrated
on minimal Lorentz-violating operators, which have dimension
d = 4. Theoretical aspects of nonminimal operators with dimen-
sions d = 5,6 have been studied [24], and constraints on some
nonrelativistic combinations of operators with d = 6 have been
obtained via laboratory tests of short-range gravity [25-27]. The
tightest constraints to date on local Lorentz violation in the grav-
ity sector have been deduced from the absence of gravitational
Cerenkov radiation by cosmic rays [31-37] with a large class of
effects for d =4, 6, and 8 now being excluded at sharp levels [36].
Reviews can be found, for example, in Refs. [3,4,28-30]. Here, we
construct the general quadratic Lagrange density for gravitational
waves in the presence of Lorentz-violating operators of arbitrary d,
and we extract the covariant dispersion relation involving gauge-
invariant effects. We show that observations of gravitational waves
provide sensitivities to nonminimal Lorentz violation independent
of matter-sector effects, and we use the gravitational-wave event
GW150914 to place numerous first limits on gravity-sector opera-
tors with d > 5.

The effective field theory for gravitational Lorentz violation [6]
can be linearized in a flat-spacetime background with Minkowski
metric, gyv = Nyw + hyo. Our first goal is to construct the general
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Table 1 .
Contributions K@HVP% to the gauge-invariant part of the theory (1).
Operator K@#vpo Tableau d Number
s@pupovooo™ w[v-] even, > 4 d-3)@d-2d+1)
Lo
[olo]
qnpoveoes’? ulviol-] odd, > 5 Sd-4Hd-nd+1)
o[o]
L]
k(@ povoperod® [u[v]plo]-] even, > 6 3@d=-5)dd+1)
[o]o[o]o]

Lagrange density quadratic in the dimensionless metric perturba-
tion hy,, allowing for both Lorentz-invariant and Lorentz-violating
terms. A generic term of this type takes the form

L = ghu K@y, (1)
where
K@Dpvpo _ j-(d)pvpoeiez...d-2 ey Dy - - ey,

= K(d)/,wpaod‘z )

is an operator of mass dimension d > 2 and the coefficients
K@uvpoeieraz have mass dimension 4 —d and are assumed
both small and constant over the scales relevant here. In this equa-
tion, we have introduced a convenient notation by which indices
contracted into a derivative are denoted with a circle index o, and
n-fold contractions are denoted as o". The Lorentz-invariant pieces
of the expression (2) consist of complete traces of the coefficients
K @uvpoeierta2 yarying the action reveals that only operators
satisfying the condition K@ (#)(po) 1 £@ (o) Wv) £ 0 can con-
tribute to the equations of motion, where the upper sign is for
even d and lower one for odd d. )

To construct explicitly the operators K@HVP  we perform a
decomposition into irreducible pieces and examine the proper-
ties of each. This reveals that 14 independent classes of operators
can control the behavior of gravitational waves. However, many
violate the usual gauge symmetry of GR under the transforma-
tion hy,y — hyy + 944y + 0,€,. Performing this transformation
on the term (2) shows that the condition for gauge invariance is
(Iﬁ@(uv)(ﬂa) + 1€<d></’”><#“))au =0. Only three of the 14 classes of
irreducible operators obey this condition, and they are therefore
of particular interest. Their existence can be understood as follow-
ing from spontaneous breaking of the diffeomorphism and Lorentz
invariance [38], which hides symmetry rather than explicitly vio-
lating it and is therefore automatically compatible with the Bianchi
identities [6]. The gauge invariance maintains the standard count-
ing of degrees of freedom in h,,, insuring that the three classes of
operators induce perturbative modifications to the two usual prop-
agating modes in a gravitational wave. Note that in principle the
higher derivatives occurring in the term (2) introduce additional
modes, but these are nonperturbative in Lorentz violation and oc-
cur only at high energies outside the domain of validity of the
effective field theory [39].

The three classes of gauge-invariant operators are determined
by their symmetries, which can be determined via standard meth-
ods in group theory [40] and are specified by the Young tableaux
shown in Table 1. It is convenient to denote these operators by
the three specific symbols shown in the first column of the ta-
ble, instead of the generic form K@#v#% The CPT handedness of
the corresponding terms in the quadratic Lagrange density is given
in the third column. The operators exist only in the dimensions
listed in the fourth column of the table. The number of indepen-
dent components of each is displayed in the fifth column of the

table. In what follows, it is also useful to define quantities that are
the sums over d of each of these sets of operators,

~ d-3 n d—4
SHoVO Zs(d)upovao , q;L,ova — Zq(d)upovooo i
d d

5

]A{,uv,oa — Zk(d)/.l,ovopoao'j’ ) (3)
d

The operator g*°V? is antisymmetric in the first pair of indices and
symmetric in the second, while the operator $#”V? is antisymmet-
ric in both the first and second pairs of indices, and krvoo is totally
symmetric. Any contraction of these operators with a derivative
vanishes.

The complete gauge-invariant quadratic Lagrange density, in-
cluding all Lorentz-violating and Lorentz-invariant terms of arbi-
trary mass dimension d, then takes the form

L=Lo+ %hw(@“’”“ +gHeve 4 ;}uvm)hm,
Lo= %Eupakévgﬂ)\nkkhuvaaaﬁhpa, (4)

where Ly is the quadratic approximation to the Einstein-Hilbert
action. The symmetries of £¢ involving the double Levi-Civita ten-
sor show that this term is a subset of the d =4 component of
SHPYO We remark in passing that the introduction of a dual op-
erator via $HPVT — _eHpaK gavoBig o dp reveals that $#°V con-
tributes as a momentum-dependent metric perturbation, 1, —
Nicx — §A,d. The effects of 5“ on gravitational Cerenkov radiation
are the subject of Ref. [36].

Following methods developed for the study of Lorentz invari-
ance in the photon sector of the SME [39], the covariant dispersion
relation for propagation of a gravitational wave of 4-momentum
p"* = (w, p) can be derived from the Lagrange density (4). Some
algebra reveals that the leading-order dispersion relation for the
relevant two perturbative modes takes the form

o=(1-¢%% /()2 + (22 +(cH? )b, (5)
with

S_O = 4]?<_5Mv;w + %]}P« ;w),
(cH?+(cH? = #(WWU,}MUW - vapf‘uaw

352 1 1Apnpvo 4 AUVPO A
(s7) =W(‘§QW) quva_qM P Qupvo

+ (‘A]M’m)p +‘A1Vpﬂp)alwv0)7 (6)

where now the derivative factors 9,, in the coefficients (3) are un-
derstood to be replaced by their 4-momentum equivalent, 9, —
ip,.. The observer covariance of the dispersion relation is manifest
in the complete index contractions in this equation.
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The structure of the dispersion relation (5) indicates that
Lorentz-violating modifications to the propagation of gravitational
waves can be classified in terms of anisotropy, dispersion, and bire-
fringence. Anisotropy is a consequence of the breaking of rotation
symmetry, and in a specified observer frame it is controlled by co-
efficients for Lorentz violation with spatial indices. All three classes
of gauge-invariant operators can produce anisotropic effects. Dis-
persion arises when the speed of the gravitational wave depends
on its frequency. Since every coefficient for Lorentz violation with
d > 4 is associated with powers of momenta in the dispersion
relation, only coefficients with d =4 produce dispersion-free prop-
agation. These are all contained in $#°V . Finally, the separation of
polarization modes evident in the dispersion relation through the
two branches of the square root implies that birefringence of grav-
itational waves can be caused only by the operators g*°V? and
k1Pvo and hence only for d > 4.

A gravitational wave traveling along p and detected by a lab-
oratory in the vicinity of the Earth appears to emanate from a
source located in the direction of the unit radial vector i = —p
in spherical polar coordinates centered on the Earth. For example,
the most likely location of the source of the gravitational-wave
event GW150914 is a region of about ~ 600 square degrees in
the southern hemisphere around declination —70° and right as-
cension 8 hr [41], so that i has spherical polar angles 6 ~ 160°,
¢ ~ 120° in the Sun-centered celestial-equatorial frame canoni-
cally used to report results of searches for Lorentz violation [42].
For practical applications, it is therefore useful to perform a de-
composition of the dispersion relation (5) in spherical harmonics.
Since the metric perturbation hy,, has helicity-2 components, and
since the Lagrange density (4) is quadratic in hj,, the decom-
position involves spin-weighted spherical harmonics [43] of spin
weight |s| <4, which we denote as Y, (fi). A summary of the
properties of these harmonics can be found in Appendix A of
Ref. [39]. Note in particular that oY jm (i) = Y jm (i), the usual scalar
spherical harmonics.

Investigation shows that ¢, ¢3 are rotation scalars while ¢!,
¢? are helicity-4 tensors. The decomposition then can be written
as

0 d—4 o (d)
=3 " Y im@ K.

djm
. _ ~ d . (d
clFic? :Za)d 4 14Y jm () (kEE))jm:tlkEB))jm)’
djm
_ o
&* =Y " Y @K i (7)
djm

where |s| < j <d — 2. The CPT-odd operators in the Lagrange den-

sity are controlled by the coefficients kE“j,))jm. The dimension d > 4
@
k(l)jm

and d > 6 is even for k

for Lorentz violation,

d)
(E)jm and

@
k(1) jm

is even for the spherical coefficients

while d > 5 is odd for ki),
k(d)

(B)jm" The number of independent components for each of

@ . 2 (d) (d)
k(v)jm is (d—1)#, and the number for each of k(E)jm (B)jm

is (d—1)2—16. In the language of spherical coefficients, anisotropic
effects are governed by all coefficients with j # 0, dispersion man-
ifests for all coefficients except kgf))jm, while birefringence occurs
for all coefficients except kE‘f; m- We remark in passing that this im-
plies birefringence for even d can occur only for nonminimal oper-
ators, d > 6, unlike the case of Lorentz violation in the pure-photon
sector for which minimal d = 4 birefringent operators exist [44].
Armed with the above tools, we can use the gravitational-wave
event GW150914 to test local Lorentz invariance in gravity. Since

and and k

operators with larger d are expected to be more suppressed, it
might seem natural to study first effects involving the coefficients
kE;l))jm' However, the corresponding operators are nondispersive
and nonbirefringent, so detecting their effects is more challeng-
ing and typically would require a comparison to light or neutrinos
propagating from the same source [36,45]. Instead, we consider
in turn the d =5 coefficients kE?/))jm and the d = 6 coefficients
kg?) me I<g)) jm* Since polarimetric information for GW150914 and
its source is unavailable, we focus here on dispersive effects.
Consider first the generic situation involving a source produc-
ing gravitational waves, such as the merger and ringdown of a
black-hole binary. We can reasonably assume the observed wave is
generated in a superposition of the two propagating modes. For ex-
ample, the eigenmodes in the presence of d =5 Lorentz violation
are circularly polarized, so special physical circumstances would
be required for a source to produce only one eigenmode. Note
that this assumption is independent of possible Lorentz-violating
modifications to the black-hole structure or merger itself. The dis-
persion between the two modes evinced in the dispersion rela-
tion (5) can be used to constrain Lorentz violation by comparing
their arrival times. The difference in their velocities generically de-
pends on both the frequency w of the wave and the location #f
of its source. Both the source and the detector can be taken as
comoving objects. The coordinate interval between them is there-
fore dlc = (1 4+ 2)dl, = —v.dz/H;, where v, is the velocity of the
source at redshift z, and H, = Ho(S2:¢% 4+ Q3 + 22 + Q)12
¢ =1+ z, is the Hubble expansion rate at z expressed in terms
of the Hubble constant Hp ~ 67.3 km/s/Mpc, radiation density
Qr >~ 0, matter density Q, ~ 0.315, vacuum density Q4 =~ 0.685,
and curvature density Q =1 — Qr — Qi — Q4. Although the co-
ordinate distance is identical for both modes, their velocities and
hence their travel times differ in the presence of Lorentz violation.
For example, the arrival-time difference between the two modes

for coefficients kzc‘i,)) jm with fixed d is given by

z
142704 .
At~ 2a)d‘4/ %dzz Yim (n)kg/))jm. (8)
0 Jm

For GW150914, the linear combinations of kﬁ?/))jm or kgg))jm,
kEg)) im appearing in the corresponding expression for At are de-
termined by spin-weighted spherical harmonics with approximate
angular arguments 6 ~ 160°, ¢ ~ 120° in the Sun-centered frame.
The source is located at redshift z = 0.09f8:gi [1]. At the max-
imum amplitude of the observed chirp signal, the width of the
peak is approximately 0.003 s and no indication of splitting is
evident. We can therefore reasonably take At < 0.003 s. The fre-
quency f = w/2m of the chirp spans the range 35-250 Hz [1], and
we can adopt a conservative value of f =~ 100 Hz.

With the above values, we obtain the constraints

‘ 3 ¥in@. ¢)k§f))jm‘ <2x10 " m, 9)
jm
6 .1 (6 _
|3 Vim0, 9) (KD £ K )| <8 % 1070 m2, (10)
jm

The result (9) represents the first constraint on pure-gravity
Lorentz-violating operators with d = 5. It also represents the first
limit on CPT violation in gravitational waves, which here corre-
sponds to a difference in propagation speed between the two
circularly polarized CPT-conjugate eigenmodes. Note that sensitiv-
ity to d =5 effects is empirically unavailable in the nonrelativistic
limit and hence to typical laboratory experiments on Newton grav-
ity, because the presence of d =5 Lorentz-violating operators in
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Table 2
Constraints on coefficients for Lorentz violation.
d j Coefficient Constraint
5 0 K& 0ol <6x107 m
5 1 K)ol <4x107“ m
L5 <1x107 3 m
5 2 k&) 30! <3x107“ m
K1 <7x1074 m
K& 20l <4x107 B3 m
5 3 k30! <3x107“ m
k)31 <4x1074m
K52 <2x107 B m
K35 <1x10712m
(6) (6) 6 2
6 4 |k(E>40|' ‘k(B)40| <1x107° m

6 6 —
(K 41 1o 1K) 411 <3x 1077 m?

©) (6)
lk(gyazls 1K(gyaz)

(6) (6)
lk(gyazl 1K(gyazl

(6) (6)
k(gyaals 1K(g)asl

<6x 1078 m?
<2x1078 m?

<1x 1078 m?

the action leaves unaffected Newton’s law [24]. This fact under-
scores the added value of the discovery of gravitational waves in
the context of studies of the foundations of relativistic gravity. The
result (10) represents the first bound on all birefringent coeffi-
cients at d =6 and is competitive with existing laboratory bounds
[25-27].

Some insight into the implications of these bounds can be
gained by deriving from them the constraint on each individual co-
efficient in turn, under the assumption that the other components
vanish. The resulting estimated bounds on the modulus of each
component of kif,))jm, kgg))jm, and kgg))jm obtained for 6 ~ 160°,
¢ >~ 120° are displayed in Table 2. Note that each entry thereby
also represents constraints on the moduli of the real and imaginary
parts of each component. This standard practice [3] is useful in
comparing limits across different experiments and in constraining
specific models. For example, models with rotation-invariant gravi-
tational Lorentz violation [46,47] can involve at most the spherical

coefficients kE‘Ij)) m and kE“j/)) jm with jm = 00, for which it is con-
venient to define ch‘,i; = k57300/~/4” and fcg“j/)) = I‘E?/))oo /4. The

rotation-invariant limit of the dispersion relation (5) then takes the
form

4 5) 2
w=(1-ky))Ipl £k o

—k{pw? £k ot — ko’ £ ... (11)
and the first row of Table 2 constrains IQE?,)). Note that the =+ signs
reflect the presence of birefringence and CPT violation for even
powers of w, and they are required to describe physics associated
with an effective field theory [48]. Also, the isotropic frequency-
independent change in the speed of gravitational waves is gov-
erned by f(E;l)) , which is related by 5&? = —Zkﬁ))oo = —+/161 IQE?))
to the coefficient 5&? constrained in Ref. [36].

In principle, methods related to the one adopted here could
be used to obtain estimated constraints on other coefficients with
d > 5, which are all associated with dispersive operators. The ap-
(d) (d)

proach used above can be applied directly to I<(E)jm, k(B)jm, and
kEc‘l,)) jm» @S these always control birefringent operators. For exam-

K7

-2 3
wyjml <1 x107% m>. In

ple, it yields the approximate bounds |

contrast, no birefringence occurs for kg)) jm» SO @ dispersive analy-

sis for this type of Lorentz violation requires a somewhat different
approach. One option might be to reverse-propagate the observed
signal to the source while allowing for the presence of frequency-
dependent Lorentz violation, comparing the result to waveform
templates for black-hole coalescence to extract constraints. The

resulting limits on the coefficients kE‘,i))jm for d =6, 8 would be sig-
nificantly weaker than ones already deduced from the absence of
gravitational Cerenkov radiation in cosmic rays [36]. Related tech-
niques are applicable to searches for a graviton mass and other
nonbirefringent physics [49]. Note that dispersion limits of the
type discussed here are particularly clean because they involve
comparing the properties of two gravitational modes and hence lie
entirely within the pure-gravity sector, whereas bounds from grav-
itational Cerenkov radiation involve comparative tests between the
gravity and matter sectors. Indeed, gravitational Cerenkov radiation
may even be forbidden for certain relative sizes of the coefficients
for Lorentz violation for gravity and matter, which would obviate
any bounds obtained via this technique. We also note in passing
that the results in Ref. [36] are presented as limits on components
of §#V,,, but the analysis in fact bounds ¢Y and hence kE‘,j))jm,
which contains pieces of both §*,,, and I%“”,w.

In summary, this work uses the recent event GW150914 to con-
strain dispersive and birefringent effects associated with Lorentz
violation in gravitational waves. The future detection of additional
gravitational-wave events will yield direct improvements on the
limits obtained in this work. Moreover, the use of dispersion in-
formation from multiple astrophysical sources at different sky lo-
cations permits extraction of independent constraints on different
coefficients, as has already been demonstrated for nonminimal co-
efficients in the photon and neutrino sectors of the SME [50,51].
Improved sensitivities can also be expected for gravitational waves
of higher frequency, as might be emitted in a supernova core
collapse. The prospects are evidently bright for future studies of
foundational physical principles via measurements of gravitational-
wave properties.
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