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Abs t rac t - -Tempera tu re  models based on the finite difference, ADI and Runge-Kutta methods 
have been written in order to establish the most efficient algorithm when simulating the cooling of 
newly hot-rolled steel sections under a variety of cooling conditions. For air-cooling, the most efficient 
results were obtained using extended-stability Runge-Kutta methods, together with adaptive step- 
size control procedures. CPU time-savings of around 85% were achieved when an existing finite 
difference based section air-cooling model was modified to run using a specially developed, highly 
stable, second-order Runge-Kutta formula with the method of lines. The ADI approach gave the 
most efficient results for water spray cooling, producing accurate results in approximately half the 
CPU time required by the finite difference method. 

Keywords - -Pa rabo l i c  partial differential equations, Stiff systems of equations, Runge-Kutta 
methods, Extended regions of absolute stability, Semidiscretisation, Thermal modelling of steel. 

1.  I N T R O D U C T I O N  

When a t tempt ing  to optimise the cooling conditions of newly hot-rolled steel sections, a knowledge 
of how the proposed cooling strategy will affect the evolution of the tempera ture  distribution 
within the section is essential in order to predict residual thermal  stress development and any 
resultant  undesirable buckling of the steel. Initially at  around 900 to 1000°C, it normally takes 
several hours for the steel to reach room temperature.  Over much of this t ime the section will 
be air cooled, losing heat by radiation and convection. However for short periods the surface of 
the beam may  be sprayed with water, resulting in much more rapid tempera ture  loss. In order 
to simulate thermal  stress development and buckling, existing process models use a fine finite 
difference mesh for the tempera ture  calculations. As a result, stability requirements severely limit 
the t ime step size and simulation of the process of cooling to room tempera ture  may  take several 
hours of computer  time. The purpose of this paper  is to describe a more efficient alternative to the 
conventional explicit finite difference (FD) algorithm which will give large savings in computing 
time. 

When the step-size of an explicit process is limited by stability requirements, unconditionally 
stable implicit techniques must be considered. However, the nonlinearities caused by tempera ture  
dependent  thermal  properties and boundary conditions make each step rather  more expensive 
than  in the conventional explicit process. The Alternating-Direction-Implicit  (ADI) method,  
giving tridiagonal systems of equations, is comparat ively efficient but  is only easily applicable 
to domains with simple rectilinear geometry. For general application the a t t ract ion of explicit 
techniques is clear. 
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In recent years, much research has been devoted to the development of Runge-Kutta (RK) 
formulae with accuracy and stability characteristics chosen to suit particular types of problem. 
Although RK methods are specifically designed for ordinary rather than partial differential equa- 
tions, they may be applied to the heat conduction equation after discretisation which is applied 
to the space variables only, leaving time as the single independent variable. This process is known 
as semidiscretisation and the overall procedure is often described as the Method of Lines. 

We demonstrate below that  an extended-stability RK routine proves much more efficient in 
simulating the cooling process than the conventional explicit finite difference scheme, under con- 
ditions where accuracy considerations do not severely limit time-step size. 

2.  T H E  H E A T  C O N D U C T I O N  P R O B L E M  

We aim to establish the most efficient temperature calculation routines for the simulation of 
steel sections cooling under a variety of conditions, the most common being air and spray cooling. 
As the geometry of steel sections is relatively complex, initial modelling work was performed on a 
simple 2-dimensional mesh, representing a steel block of rectangular cross-section. Once the ideal 
temperature calculation routines had been established for each cooling condition, the modelling 
work could then be extended to cover steel sections. 

The heat conduction equation in two space dimensions (x, y) may be written 

Ou ~(ul (O2u O2u~ u(x,y,  Ol = ~(x ,y) ,  (1) 
O---t -- \ Ox 2 + Oy2 ] ' 

where u is the temperature, t is the time, and a is the diffusivity. This is a parabolic initial value 
problem. The boundary conditions depend on the type of cooling under consideration, and these 
are of the form 

Ou 
q = (2) 

where K is the thermal conductivity. For air cooling, the heat flux is 

q = [ v :  - v : ]  + ha [Vb - Vo] ,  (3) 

where a is Stefan's constant, ~ is the emissivity, ha is the convective heat transfer coefficient, 
and the suffices b and o indicate boundary and ambient temperatures. During air cooling there 
will be an exchange of radiated heat energy between any adjacent steel surfaces, such that  the 
net radiative heat flux from a given point on a surface will be reduced to a fraction V (radiation 
view factor) of its original value. For water-spray cooling 

q = h8 [Ub - Uo], (4) 

where h8 is the spray heat transfer coefficient. The finite difference discretisation of (1) and (2) is 
well known and can be found in any standard text [1]. A more rigorous approach would include 
the gradient of the diffusivity but in practice this may be neglected in favour of tabulation. The 
thermal conductivity may be treated in a similar fashion and so the only nonlinear temperature 
dependence is associated with the air cooling boundary condition (3). 

3 .  R U N G E - K U T T A  M E T H O D S  

3 . 1 .  E m b e d d e d  R K  M e t h o d s  

RK methods provide a convenient method of solving initial value problems of the type 

y' = f (x ,  y(x)), y(xo) given, y e R m. (5) 
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Embedded methods use two RK formulae of orders p and q (RKp and RKq), where q = p + 1, 
which share the same function evaluations, to calculate two estimates of y(Xn+l)  = y(Xn + h~) at 

each step. Using the symbol ~) to denote the higher order solution, and adopting the RK notat ion 
given in [2], the two estimates for y(xn+l)  can be writ ten 

~)n+l = Yn + hn ~ b~fi, Yn+l : Yn ~- h n  b ~ f i ,  (6) 
i = l  i = l  

where 
i-1 ) 

f i = f  x n + c i h ~ , ~ ) n + h ~ a i j f j  • 
j=l 

Both RK formulae have s stages, so s function evaluations are performed at each step. The  local 

error en+l is given approximately by 

e n + l  = Y n + l  - -  Y n - k l ,  ( 7 )  

so the embedded method gives an estimate of the local error without the need for extra  function 
evaluations, and this est imate can be used to ensure tha t  the size of each step is small enough to 
avoid local errors larger than a tolerance value T. At each step, the local error is estimated,  and 
the step-size modified according to the optimal reduction formula [2]: 

hn+l h ,  (r-~+l ) 1/q "e,+l"o~ (8) : ' rn+l -- T ' 

where rn+l < 1 for an acceptable step and a is a s t rategy parameter ,  a typical value being 0.5. 
The ability to est imate local error and modify the step-size at each step is an advantage not 

shared by FD methods. 
The equations of condition tha t  must be satisfied by the RK coefficients aij, bi, and ci, for 

RK formulae of order up to 6, are given in [2]. 

3.2. S t a b i l i t y  o f  R K  F o r m u l a e  

Applying RK techniques to the scalar problem yt = Ay, we obtain the difference equation 

Yn+l = P( r ) yn ,  r = hA. (9) 

For absolute stability (decreasing solution), we require [P(r)l < 1, a condition which can be 
satisfied by choosing a sufficiently small h. Given the system of equations y/ = Ay,  where the 
matr ix  A is m × m, with eigenvalues hi, i = 1 , 2 , . . . ,  m, the corresponding stability requireraent 

is 
IP(hAi)l < 1, i = 1 , 2 , . . . , m .  

Since A may  be complex, it is possible to define a region in the complex plane (for hAi) in which 
stabili ty is satisfied. If  all the eigenvalues are real, then the step-size is limited only by the extent 
of the region of absolute stability including the real axis. For an RKp formula of s stages, it can 
be shown [3] tha t  the stability polynomial P ( r )  is of degree s, given by 

P ( r )  = 1 + r Z bi + r2 ~-~ bici + r3 ~ biaijcj + r4 ~-~ biaijajkck 
i i i j  i j k  

+ . . . + r s ~ b~a~jajk . . . avwCw (10) 
i j k . . . v w  

= 1 + ~ - ' ~ W i r  ~, 
i=1 

where Wi = 1/i!, i = 1, 2 , . . .  ,p. 
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3.3 .  T h e  M e t h o d  o f  L ines  w i t h  R K  F o r m u l a e  

Consider the application of the heat conduction equation (1) to the rectangular domain 

0 < x < N A x ,  0 <_ y <_ M A y .  

The explicit FD formula for the solution of (1), obtained by discretising both spatial and time 
variables, is 

U n + l =  U.n. a i jA t  Un a~jAt U~ U~ z,3 ~,7 ~- ~ [ i+l,j - 2V~j  Jr V~n_l,j] + ~ [ i , j + l -  2V~,,j -~- i , j-1] " (11) 

The method of lines adopts the alternative approach of semi-discretising (1), leaving t as a 
continuous variable. Setting u(x i ,  y j ,  t) = Uij (t), i = 0, 1 , . . . ,  N; j = 0, 1 , . . . ,  M, and discretising 
the space derivatives in (1), we obtain the system of ordinary differential equations 

du, (t) [ 
(12) 

which has the same form as (5) and thus may be solved conveniently with RK methods. 
For a linear cooling problem, the matrix associated with the system of ODEs (12) has negative 

real eigenvalues [3], so for an RK formula with absolute stability in (-/3, 0), the time step will 
satisfy 

A t  = h < (13) 

In the problem of interest, the boundary conditions (3) will cause nonlinearity. However it is 
normally assumed that  this factor will not perturb significantly the matrix eigenvalues. 

3.4. C o m p a r i s o n  of  R K  a n d  F D  F o r m u l a e  

Application of the explicit finite difference formula to (1) is equivalent to the use of Euler's 
method ( a first order RK with s = 1) to solve the ODE system (12). For Euler's method,/3 = 2, 
and the resulting step-size limit, for the FD method applied to the linear problem, is 

hFD 2a (1/(Ax) 2 + 1/(Ay)2)" 

The corresponding limit for an RK method with real negative stability interval ( - f l ,  0) is 

hRg = 4a (1/(Ax) 2 + 1/(Ay)2)" (14) 

Since multistage RK formulae allow /3 >> 2 as well as higher orders of accuracy (/9 > 1), it is 
natural to compare their performance with that  of the simpler method. Extra stages mean ex- 
t ra  function evaluations and so, for higher efficiency, the step-size increase factor for our new 
RK method must be greater than the cost per step increase factor. Assuming that  the computa- 
tional cost per RK step is proportional to the number of function evaluations s, and that  stability 
rather than truncation error limits the step-size, we define an efficiency factor to be 

E = ~ (15) 
8 

For the explicit finite difference method we have E -- 2. 
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3.5. C h o i c e  o f  R K  M e t h o d  

Two main types of section cooling are under consideration, air cooling and spray cooling. 
Experience with FD calculations suggests tha t  numerical stability may be limiting t ime step size 
for air cooling• With  spray cooling, which is much faster, this may not be the case. 

We aim to find an embedded RK formula pair with the highest possible /~/s ratio, where 
/~ derives from the lower of the two stability limits. 

The development of explicit RK formulae suitable for the efficient integration of parabolic PDEs  
has been described by Van der Houwen [4], who presented three families of low order meth- 
ods (RK2, RK3, and RK4). Each family was generated from a set of stability polynomials (10) 
chosen to satisfy the appropriate  order conditions and to have the max imum possible negative 

real absolute stability limit. These polynomials are closely related to Chebyshev polynomials 
but the order constraint is imposed. For the first-order case, an appropriately shifted Chebyshev 
polynomial suffices• The stability limits of these RK formulae are given in Table 1, and these val- 
ues increase with the the number of stages and hence with the degree of the stability polynomial.  
Plots of the polynomials show them to be similar to minimax polynomials• 

Table 1. Stability characteristics of Van der Houwen's formulae. 

Stages (s) .... 

3 
4 
5 
6 
7 
8 
9 

10 
11 
12 

Stability Limit/~ 

RK2 RK3 RK4 

6.26 
12.05 6.03 
19.46 10.54 6.06 
28.50 16.05 9.97 
39.19 22 .56  14.59 
51.52 3 0 . 0 7  19.93 
65.49 38 .60  25.98 
81.11 48 .11  32.74 
98.37 58 .64  40.22 

117.27 70 .17  48.11 

Families of embedded RK formulae (RK5(4) and RK6(5)), which include members  with en- 
larged regions of absolute stability and small t runcation error norms were presented by Dormand 
and Prince [2,5]• However the efficiency factors (15) of these formulae are smaller than  tha t  of 
the Euler method and considerably less than those of the Van der Houwen families. Consequently 
they may be useful only where step-sizes are controlled by truncation error• 

A set of low-order embedded RK formulae with extended but not maximised stabili ty has been 
published by Fehlberg [6]. However these formulae do not use local extrapolation• 

3.6. S t a b l e  E m b e d d e d  R K  P a i r s  

From Table 1, the RK2 formulae of Van der Houwen have the highest efficiency factors. To 
permit  error est imation and step-size control it is convenient to embed a first-order formula in 
one of these RK2 schemes• The resulting RK2(1)sS formula pair can be displayed in the tabular  
form: 

0 
c2 
c3 

1 

a21 
0 a32 

. . .  

0 
0 
0 

1 

bl 
b2 
b3 

bs 

(16) 
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i - - 1  
where ci = Zj=I  aij, and the coefficients b l , . . . ,  b8 refer to the lower-order (first-order) formula, 

s b and must satisfy ~]i=1 ~ = 1. 
It  appears from Table 1 that  the efficiency factor E increases almost linearly with the number 

of stages, and we have constructed RK2 formulae with up to 15 stages. With s -- 15, we 

obtain f~ = 183.9, giving E = 12.3. Larger s proves to be very difficult because of nonconvergence 
of the Remez iteration [7] which was used to determine the RK2 stability polynomial. Fortunately 
numerical tests will indicate that  larger s may not be more efficient in practice. For the first- 
order member of the embedded pair, the real stability limit should be at least as large as that  of 
the RK2, and so the shifted Chebyshev polynomial 

P(r) = Tlo ( l  + ~o0) , r = hA, 

is a convenient choice for the stability polynomial. This is stable for r • [-200, 0]. The appro- 
priate bi are obtained from equation (10), and the second-order coefficients are given in Table 2. 

T a b l e  2. C o e f f i c i e n t s  fo r  t h e  1 5 - s t a g e  R K 2 .  

i c i  

2 7 . 3 1 5 3 6 2 0 9 7 8 9 4 1 4 8 6 3 2 6 5 7 8 5 8 1 0 1 4 7 0 4 2 8 0  × 10 - 4  

3 1 . 6 2 7 6 8 2 4 9 0 7 8 3 8 5 0 3 3 5 4 0 9 4 9 8 1 1 9 3 7 6 0 3 0 5  × 10 - 3  

4 2 . 7 4 2 5 1 8 6 5 6 7 5 5 8 0 9 0 9 4 5 7 1 4 4 4 6 7 0 0 1 7 0 0 0 2  x 10 - 3  

5 4 . 1 5 4 4 9 1 7 2 3 0 6 5 1 1 3 4 2 9 0 2 9 0 1 6 8 5 3 4 2 6 4 6 9 2  x 10 - 3  

6 5 . 9 8 0 9 6 7 6 2 5 5 6 4 8 8 5 1 5 3 7 1 7 4 2 2 6 1 0 8 5 8 0 1 2 1  × 10 - 3  

7 8 . 4 0 4 0 8 4 1 7 7 6 9 2 4 7 6 1 4 3 5 5 6 4 7 7 8 4 5 9 1 6 4 3 6 7  × 10 - 3  

8 1 . 1 7 1 9 2 1 7 7 3 3 3 5 6 2 8 8 6 2 1 9 4 6 2 3 5 2 1 4 2 7 0 6 8 1  × 10 - 2  

9 1 . 6 4 3 1 9 5 4 9 4 4 7 9 1 8 9 3 3 6 4 2 0 6 3 4 8 9 7 5 3 7 1 4 0 1  × 10 - 2  

10 2 . 3 4 6 8 3 7 7 2 3 1 2 8 3 1 8 9 6 2 6 9 6 8 4 1 0 0 8 5 9 6 0 3 8 2  × 10 - 2  

11 3 . 4 6 8 0 0 6 8 3 8 1 3 5 9 8 6 6 9 3 4 0 9 1 3 4 2 3 3 6 3 9 0 7 2 5  × 10 - 2  

12 5 . 4 2 2 9 8 8 6 4 6 9 9 7 9 7 1 5 3 4 7 7 2 8 0 5 3 4 0 0 0 3 0 2 1 3  x 10 - 2  

13 9 . 3 1 4 2 8 9 6 9 0 6 7 2 2 8 5 7 7 5 8 8 7 9 4 3 9 0 1 9 0 9 2 9 3 8  × 10 - 2  

14 1 . 8 8 3 4 9 7 1 7 1 5 8 7 5 3 3 0 4 2 8 3 6 4 3 8 0 4 4 5 1 9 9 2 8 2  × 10 - 1  

15 5 . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  × 10 - 1  

4.  L I N E A R  T E S T  P R O B L E M  

To test the efficiency of the embedded RK2(1) pairs, they have been applied to the one- 
dimensional equation 

U t - ~  U x x  , 

with boundary and initial conditions 

u(0, t) = u(1, t) = 0; u(x, O) = sin r x ,  x • [0, 1]. 

The true solution is 

t) = exp sin x. (17) 

Semidiscretization yields the linear system 

du~ ui-1 - 2u~ + Ui+l 
dt = (Ax) 2 , i = l , 2 , . . . , m - 1 ,  r e [ 0 , 5 ] .  (18) 

With initial and boundary conditions satisfying the PDE, this system of equations has solution 

u i ( t ) = e x p { - 4 m 2 s i n 2 ( ~ m ) t } s i n  , 

and as Ax = 1 /m --* 0, this will converge to the solution (17). 
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Figure 1 shows the efficiency curves for four second order formulae applied to equation (18) 
with m -- 21. Three of the formulae are the 6, 9, and 12-stage processes defined by Van der 
Houwen, and the fourth is the 15-stage method given in Table 2. Step-size control was achieved 
using error estimates based on embedding. The solution has a fast transient phase in which in- 
creasing step-sizes are predictable according to the asymptotically valid formula (8). The effective 
duration of this phase is dependent on the stability properties of the integrator, being greatest 
(t ,-~ [0, 0.5]) for the 15-stage formula. After the transient phase is complete, the steplength is 
governed by stability and so the formula (8) is no longer appropriate, although the embedding 
still furnishes the error estimate. A modification of the Watts algorithm [8], 

hn+l-~2nhn, ~)n : ( hh~_l) [(?.~+1) ( rr---~+l)] l/q, (19) 

where ~2mi n < ~2 < ~)max, in which the step-size is prevented from rapid variation, proved to be 
an efficient means of controlling the steplength during the stiff phase. At most tolerances, the 
solution included a single rejected step near the start of the stiff phase. 

-1 

-2 

T -3 

O 
-4 

-5 

I I i I i I i I 

,~ + 6 s tages  - * - -  
9 s tages  --*--- 

i ; 12  s tages  -s- - -  
', ,5sta  . . . .  

- 6  i i ! i i t t i 
500 1000 1500 2000 2500 3000 3500 4000 4500 5000 

Funct ion Evaluat ions (Cost) 

Figure 1. Efficiency curves for RK2 formulae with extended stability. 

The 15-stage formula proves is the most efficient at lax tolerances, yielding global error Ilvll > 
10 -4 , where the norm is taken over all steps and components of the solution. For more stringent 
tolerances, the stability property is less important and the 6-stage formula is the best of the 
four shown here. It seems unlikely that  an increase in the number of stages would produce a 
significantly improved performance for the accuracy required in this work. 

It should be noted that  the more conventional RK5(4)7FS formula requires more than 10000 
function evaluations to produce a global e r ro r  10 - 3  for problem (18). 

5. A P P L I C A T I O N  T O  C O O L I N G  O F  S T E E L  

5.1.  P r e l i m i n a r y  

The semidiscretisation method with special RK processing has been applied to the cooling of 
hot-rolled steel sections. The cooling process is modelled in two space dimensions (equation (1)) 
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with various boundary conditions (Section 2 and Figure 2). For mild steel, the diffusivity (a) 
is temperature dependent, and so the numerical stability limit will not be constant throughout 
the cooling period. As the steel cools from 900°C to 20°C the diffusivity increases by a factor 
of about 3. This implies a decreasing step length for the time integration. The step size control 
procedure developed in the test problem serves to vary the steplength appropriately without 
too many rejected steps. The extended stability property does not permit an embedded pair 
satisfying the step size equilibrium condition of Hall [9]. 

AIR or WATER SPRAY 

Ay~ 

Azl 

AIR or 
WATER 
SPRAY 

FLANGE 

Ay2 

AIR or 
WATER SPRAY 

WEB 
Ax2 

JUNCTION Symmetry plane 

Symmel y 
plane 

Figure 2. Cross-section of part of "H"-section showing symmetry, boundary condi- 
tions, and mesh geometry. 

The accuracies of the special RK and FD processes were checked for a rectangular domain using 
a high-order RK integrator [10] with a stringent tolerance. 

5 . 2 .  A i r - C o o l i n g  Resul ts  

The 15-stage embedded RK2 formula (RK2(1)15s) has been used to simulate the air-cooling 
of a steel "H"-section (Figure 2), from a uniform initial temperature of 1000°C, over a time 
period of 15,000 seconds. Final temperatures were in the range 192°C to 202°C (see Figure 3). 
Results were compared with those obtained using the conventional FD method. A comparatively 
lax local error tolerance of I°C was used, appropriate to the industrial application. As in the 
one-dimensional test problem, the solution had an initial fast transient phase, during which 
increasing steplength could be successfully predicted using the optimal reduction formula (8). 
This corresponds to the period of very rapid heat loss from the steel boundary at the start of 
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Figure 3. Temperature profile after 15000s of air cooling. 

cooling. The solution subsequently entered a stiff phase for the remainder of the cooling period. 
As expected, the asymptotically valid step-size control formula (8) was found to be inappropriate 
during the stiff phase, and the modified Watts algorithm (19) developed for the test problem was 
required to prevent costly step-size oscillations about the numerical stability limit. The onset 
of stiffness was detectable by the occurrence of a rejected step with a local error estimate many 
times greater than the tolerance. 

The step-size sequence achieved using the RK2(1)15s formula with the Watts algorithm is 
shown in Figure 4. In the transient phase rapid step-size variation was allowed, step length in- 
creases and decreases being limited to factors 2.0 and 0.1, respectively. During the stiff phase, 
far more stringent step change limit factors of 1.02 and 0.75 were imposed, preventing significant 
numbers of step rejections and maintaining the step length close to the (declining) numerical 
stability limit. As the stiff phase dominates the overall cooling period, the air-cooling simulation 
proved to be highly efficient. CPU-time usage was less than 1/7 of that required for the con- 
ventional FD approach, and throughout the simulation, mesh point temperatures differed by at 
most 2°C in the two solutions. This discrepancy is negligible in the industrial context. 

Air-cooling simulations were also performed using the alternating-direction-implicit (ADI) 
method, which like the RK2(1)15s formula is second order, but is unconditionally stable. Nu- 
merical experiments revealed that good accuracy could be achieved using step-sizes of similar 
length to those used with the RK2(1)15s formula. With a lower computational cost per step, 
considerable additional CPU-time savings can be achieved. However, as the ADI method is only 
easily applicable to domains with simple rectilinear geometry, it could only be readily applied to 
a restricted range of BS products. 

5.3. Spray-Cool ing  Resul t s  

The extended stability RK formulae developed were used to simulate the cooling of steel sections 
with water sprays (Figure 2). With heat transfer coefficients for many industrial spray-cooling 
systems in the range 10,000 to 30,000W m -2 k -1 the rate of heat loss involved is considerably 
higher than for air-cooling, and is typically over 100 times greater immediately after hot-rolling. 
Consequently, ambient temperature is reached in minutes rather than hours. 
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Figure 4. Step-size sequence with air cooling problem. 
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As expected, the initial transient solution phase was found to dominate the cooling period. 
Even with lax local error tolerances small step-sizes were required to accurately model the rapid 
cooling. The highly stable RK2(1) formulae were found to be less efficient than the FD method, 
on account of the high computational cost per step. Improved results were obtained by using 
higher order stable RK4(3) formulae, but the efficiency achieved was highly sensitive to the 
heat transfer characteristics of the spray system used, and also to the extent of spray application 
around the steel boundary. For particularly rapid rates of heat extraction, the FD method with its 
low computational cost per step required less CPU-time usage than any of the stiff RK formulae 
developed. 

Spray-cooling simulations were also performed using higher order methods including the al- 
ternating direction implicit (ADI) method. For rapid cooling due to heavy spraying, the higher 
order methods permit larger step-sizes and tend to be superior to the FD method. Steps are 
computationally more expensive than with the FD approach but stability considerations are less 
important as cooling becomes more rapid. Numerical experiments revealed that for most spray- 
cooling applications, the ADI method gave reasonable results (accurate to within 5°C) using time 
steps considerably longer than is possible with the FD approach. CPU-time savings of up to 50% 
were achieved by adopting the ADI formula. 

6. C O N C L U S I O N S  

A study of different methods for simulating the cooling of newly hot-rolled steel sections has 
revealed that more efficient alternatives to the traditional FD approach exist for the cooling sys- 
tems currently in use. For air cooling conditions, under which the solution exhibits stiff behaviour 
over most of the cooling period, the use of extended stability embedded RK2(1) formulae has 
allowed cooling simulations to be performed using only a small fraction of the CPU-time required 
by the FD approach. The application of a specially developed highly stable RK2(1)15s formula, 
together with a modified version of the Watts step-size control procedure in which suitably chosen 
parameters prevent costly step length oscillations about the numerical stability limit, has led to 
CPU-time savings in excess of 85%. 
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Under spray cooling conditions the step-size was constrained by accuracy rather than numerical 
stability for most of the cooling period. Consequently the highly stable RK formulae developed 

did not perform efficiently, on account of the high computational cost per step. CPU-time savings 

of up to 50% were achieved with the second-order unconditionally stable ADI method, but this 
method can only be readily applied to sections with very simple rectilinear geometries. For 

sections with more irregular boundaries, an explicit approach (perhaps FD) remains the most 

suitable option. 
The adoption of the RK2(1)15s formula and/or  the ADI method within the process models 

for section cooling has greatly reduced the time and expense involved in running industrial sim- 

ulations. This should be of considerable benefit to current research programmes investigating 

optimum cooling strategies for a wide range of steel products. 
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